
USER’S GUIDE FOR TOMLAB 71

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4

May 5, 2010

-TOMLAB NOW INCLUDES THE MODELING ENGINE, TomSym [See section 4.3]!

1More information available at the TOMLAB home page: http://tomopt.com/ and at the Applied Optimization and Modeling

TOM home page http://www.ima.mdh.se/tom. E-mail: tomlab@tomopt.com.
2Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Väster̊as,

Sweden, kenneth.holmstrom@mdh.se.
3Tomlab Optimization AB, Väster̊as Technology Park, Trefasgatan 4, SE-721 30 Väster̊as, Sweden, anders@tomopt.com.
4Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA 99163, USA, medvall@tomopt.com.

1

http://tomopt.com/
http://www.ima.mdh.se/tom
mailto:tomlab@tomopt.com
mailto:kenneth.holmstrom@mdh.se
mailto:anders@tomopt.com
mailto:medvall@tomopt.com

Contents

Contents 2

1 Introduction 8

1.1 What is TOMLAB? . 8

1.2 The Organization of This Guide . 9

1.3 Further Reading . 10

2 Overall Design 11

2.1 Structure Input and Output . 11

2.2 Introduction to Solver and Problem Types . 11

2.3 The Process of Solving Optimization Problems . 13

2.4 Low Level Routines and Gateway Routines . 15

3 Problem Types and Solver Routines 18

3.1 Problem Types Defined in TOMLAB . 18

3.2 Solver Routines in TOMLAB . 23

3.2.1 TOMLAB Base Module . 23

3.2.2 TOMLAB /BARNLP . 24

3.2.3 TOMLAB /CGO . 24

3.2.4 TOMLAB /CONOPT . 25

3.2.5 TOMLAB /CPLEX . 25

3.2.6 TOMLAB /KNITRO . 25

3.2.7 TOMLAB /LGO . 25

3.2.8 TOMLAB /MINLP . 25

3.2.9 TOMLAB /MINOS . 25

3.2.10 TOMLAB /OQNLP . 25

3.2.11 TOMLAB /NLPQL . 26

3.2.12 TOMLAB /NPSOL . 26

3.2.13 TOMLAB /PENBMI . 27

3.2.14 TOMLAB /PENSDP . 27

3.2.15 TOMLAB /SNOPT . 27

3.2.16 TOMLAB /SOL . 27

3.2.17 TOMLAB /SPRNLP . 27

3.2.18 TOMLAB /XA . 28

2

3.2.19 TOMLAB /Xpress . 28

3.2.20 Finding Available Solvers . 29

4 Defining Problems in TOMLAB 31

4.1 The TOMLAB Format . 31

4.2 Modifying existing problems . 32

4.2.1 add A . 32

4.2.2 keep A . 33

4.2.3 remove A . 33

4.2.4 replace A . 34

4.2.5 modify b L . 34

4.2.6 modify b U . 35

4.2.7 modify c . 35

4.2.8 modify c L . 36

4.2.9 modify c U . 36

4.2.10 modify x 0 . 36

4.2.11 modify x L . 37

4.2.12 modify x U . 37

4.3 TomSym . 39

4.3.1 Modeling . 39

4.3.2 Ezsolve . 40

4.3.3 Usage . 41

4.3.4 Scaling variables . 42

4.3.5 SDP/LMI/BMI interface . 42

4.3.6 Interface to MAD and finite differences . 42

4.3.7 Simplifications . 44

4.3.8 Special functions . 45

4.3.9 Procedure vs parse-tree . 46

4.3.10 Problems and error messages . 49

4.3.11 Example . 49

5 Solving Linear, Quadratic and Integer Programming Problems 51

5.1 Linear Programming Problems . 51

5.1.1 A Quick Linear Programming Solution . 52

5.2 Quadratic Programming Problems . 53

5.2.1 A Quick Quadratic Programming solution . 53

3

5.3 Mixed-Integer Programming Problems . 55

6 Solving Unconstrained and Constrained Optimization Problems 60

6.1 Defining the Problem in Matlab m-files . 60

6.1.1 Communication between user routines . 63

6.2 Unconstrained Optimization Problems . 64

6.3 Direct Call to an Optimization Routine . 66

6.4 Constrained Optimization Problems . 66

6.5 Efficient use of the TOMLAB solvers . 69

7 Solving Global Optimization Problems 70

7.1 Box-Bounded Global Optimization Problems . 70

7.2 Global Mixed-Integer Nonlinear Problems . 72

8 Solving Least Squares and Parameter Estimation Problems 74

8.1 Linear Least Squares Problems . 74

8.2 Linear Least Squares Problems using the SOL Solver LSSOL . 75

8.3 Nonlinear Least Squares Problems . 76

8.4 Fitting Sums of Exponentials to Empirical Data . 79

8.5 Large Scale LS problems with Tlsqr . 81

9 Multi Layer Optimization 84

10 tomHelp - The Help Program 85

11 TOMLAB Solver Reference 86

11.1 TOMLAB Base Module . 86

11.1.1 clsSolve . 86

11.1.2 conSolve . 90

11.1.3 cutPlane . 94

11.1.4 DualSolve . 97

11.1.5 expSolve . 100

11.1.6 glbDirect . 102

11.1.7 glbSolve . 106

11.1.8 glcCluster . 109

11.1.9 glcDirect . 112

11.1.10 glcSolve . 118

11.1.11 infLinSolve . 123

4

11.1.12 infSolve . 125

11.1.13 linRatSolve . 127

11.1.14 lpSimplex . 129

11.1.15 L1Solve . 131

11.1.16 MILPSOLVE . 133

11.1.17 minlpSolve . 145

11.1.18 mipSolve . 150

11.1.19 multiMin . 153

11.1.20 multiMINLP . 157

11.1.21 nlpSolve . 160

11.1.22 pdcoTL . 163

11.1.23 pdscoTL . 166

11.1.24 qpSolve . 169

11.1.25 slsSolve . 171

11.1.26 sTrustr . 174

11.1.27 Tfmin . 177

11.1.28 Tfzero . 178

11.1.29 ucSolve . 180

11.1.30 Additional solvers . 183

12 TOMLAB Utility Functions 184

12.1 tomRun . 184

12.2 addPwLinFun . 186

12.3 binbin2lin . 188

12.4 bincont2lin . 189

12.5 checkFuncs . 190

12.6 checkDerivs . 191

12.7 cpTransf . 192

12.8 estBestHessian . 194

12.9 lls2qp . 195

12.10LineSearch . 196

12.11preSolve . 198

12.12PrintResult . 199

12.13runtest . 201

12.14SolverList . 202

12.15StatLS . 203

5

12.16systest . 204

13 Approximation of Derivatives 205

14 Special Notes and Features 213

14.1 Speed and Solution of Optimization Subproblems . 213

14.2 User Supplied Problem Parameters . 214

14.3 User Given Stationary Point . 216

14.4 Print Levels and Printing Utilities . 216

14.5 Partially Separable Functions . 218

14.6 Utility Test Routines . 219

A Prob - the Input Problem Structure 220

B Result - the Output Result Structure 235

C TomSym - the Modeling Engine 240

C.1 Main functions . 240

C.1.1 tom — Generate a tomSym symbol. 240

C.1.2 toms — Create tomSym objects. 240

C.1.3 tomSym/tomSym — Class constructor . 241

C.1.4 ezsolve — Solve a tomSym optimization problem. 241

C.1.5 sym2prob — Compile symbolic function/constraints into a Prob struct. 242

C.1.6 getSolution — Extract variables from a solution retuned by tomRun. 243

C.1.7 tomDiagnose — Determine the type for of tomSym optimization problem. 243

C.1.8 tomCleanup — Remove any temporary files created for a tomSym problem. 244

C.2 Using MAD . 245

C.2.1 madWrap — Compute a Jacobian using MAD. 245

C.3 Sub function details . 246

C.3.1 ifThenElse — Smoothened if/then/else. 246

C.3.2 tomSym/derivative . 246

C.3.3 ppderivative — The derivative of a piecewise polynomial. 247

C.3.4 tomSym/mcode . 247

D Global Variables and Recursive Calls 248

E External Interfaces 251

E.1 Solver Call Compatible with Optimization Toolbox . 251

6

E.1.1 Solving LP Similar to Optimization Toolbox . 251

E.1.2 Solving QP Similar to Optimization Toolbox . 253

E.2 The Matlab Optimization Toolbox Interface . 254

E.3 The AMPL Interface . 256

F Motivation and Background to TOMLAB 257

G Performance Tests on Linear Programming Solvers 258

References 264

7

1 Introduction

1.1 What is TOMLAB?

TOMLAB is a general purpose development, modeling and optimal control environment in Matlab for research,
teaching and practical solution of optimization problems.

TOMLAB has grown out of the need for advanced, robust and reliable tools to be used in the development of
algorithms and software for the solution of many different types of applied optimization problems.

There are many good tools available in the area of numerical analysis, operations research and optimization,
but because of the different languages and systems, as well as a lack of standardization, it is a time consuming
and complicated task to use these tools. Often one has to rewrite the problem formulation, rewrite the function
specifications, or make some new interface routine to make everything work. Therefore the first obvious and basic
design principle in TOMLAB is: Define your problem once, run all available solvers. The system takes care of all
interface problems, whether between languages or due to different demands on the problem specification.

In the process of optimization one sometimes wants to graphically view the problem and the solution process,
especially for ill-conditioned nonlinear problems. Sometimes it is not clear what solver is best for the particular
type of problem and tests on different solvers can be of use. In teaching one wants to view the details of the
algorithms and look more carefully at the different algorithmic steps. When developing new algorithms tests on
thousands of problems are necessary to fully access the pros and cons of the new algorithm. One might want
to solve a practical problem very many times, with slightly different conditions for the run. Or solve a control
problem looping in real-time and solving the optimization problem each time slot.

All these issues and many more are addressed with the TOMLAB optimization environment. TOMLAB gives easy
access to a large set of standard test problems, optimization solvers and utilities.

8

1.2 The Organization of This Guide

Section 2 presents the general design of TOMLAB.

Section 3 contains strict mathematical definitions of the optimization problem types. All solver routines available
in TOMLAB are described.

Section 4 describes the input format and modeling environment. The functionality of the modeling engine
TomSym is discussed in 4.3 and also in appendix C.

Sections 5, 6, 7 and 8 contain examples on the process of defining problems and solving them. All test examples
are available as part of the TOMLAB distribution.

Section 9 shows how to setup and define multi layer optimization problems in TOMLAB.

Section 11 contains detailed descriptions of many of the functions in TOMLAB. The TOM solvers, originally
developed by the Applied Optimization and Modeling (TOM) group, are described together with TOMLAB driver
routine and utility functions. Other solvers, like the Stanford Optimization Laboratory (SOL) solvers are not
described, but documentation is available for each solver.

Section 12 describes the utility functions that can be used, for example tomRun and SolverList.

Section 13 introduces the different options for derivatives, automatic differentiation.

Section 14 discusses a number of special system features such as partially separable functions and user supplied
parameter information for the function computations.

Appendix A contains tables describing all elements defined in the problem structure. Some subfields are either
empty, or filled with information if the particular type of optimization problem is defined. To be able to set
different parameter options for the optimization solution, and change problem dependent information, the user
should consult the tables in this Appendix.

Appendix B contains tables describing all elements defined in the output result structure returned from all solvers
and driver routines.

Appendix D is concerned with the global variables used in TOMLAB and routines for handling important global
variables enabling recursive calls of any depth.

Appendix E describes the available set of interfaces to other optimization software, such as CUTE, AMPL, and
The Mathworks’ Optimization Toolbox.

Appendix F gives some motivation for the development of TOMLAB.

9

1.3 Further Reading

TOMLAB has been discussed in several papers and at several conferences. The main paper on TOMLAB v1.0 is
[42]. The use of TOMLAB for nonlinear programming and parameter estimation is presented in [45], and the use
of linear and discrete optimization is discussed in [46]. Global optimization routines are also implemented, one is
described in [8].

In all these papers TOMLAB was divided into two toolboxes, the NLPLIB TB and the OPERA TB. TOMLAB v2.0
was discussed in [43], [40]. and [41]. TOMLAB v4.0 and how to solve practical optimization problems with
TOMLAB is discussed in [44].

The use of TOMLAB for costly global optimization with industrial applications is discussed in [9]; costly global
optimization with financial applications in [37, 38, 39]. Applications of global optimization for robust control is
presented in [25, 26]. The use of TOMLAB for exponential fitting and nonlinear parameter estimation are discussed
in e.g. [49, 4, 22, 23, 47, 48].

The manuals for the add-on solver packages are also recommended reading material.

10

2 Overall Design

The scope of TOMLAB is large and broad, and therefore there is a need of a well-designed system. It is also
natural to use the power of the Matlab language, to make the system flexible and easy to use and maintain. The
concept of structure arrays is used and the ability in Matlab to execute Matlab code defined as string expressions
and to execute functions specified by a string.

2.1 Structure Input and Output

Normally, when solving an optimization problem, a direct call to a solver is made with a long list of parameters
in the call. The parameter list is solver-dependent and makes it difficult to make additions and changes to the
system.

TOMLAB solves the problem in two steps. First the problem is defined and stored in a Matlab structure. Then the
solver is called with a single argument, the problem structure. Solvers that were not originally developed for the
TOMLAB environment needs the usual long list of parameters. This is handled by the driver routine tomRun.m
which can call any available solver, hiding the details of the call from the user. The solver output is collected in a
standardized result structure and returned to the user.

2.2 Introduction to Solver and Problem Types

TOMLAB solves a number of different types of optimization problems. The currently defined types are listed in
Table 1.

The global variable probType contains the current type of optimization problem to be solved. An optimization
solver is defined to be of type solvType, where solvType is any of the probType entries in Table 1. It is clear that a
solver of a certain solvType is able to solve a problem defined to be of another type. For example, a constrained
nonlinear programming solver should be able to solve unconstrained problems, linear and quadratic programs
and constrained nonlinear least squares problems. In the graphical user interface and menu system an additional
variable optType is defined to keep track of what type of problem is defined as the main subject. As an example,
the user may select the type of optimization to be quadratic programming (optType == 2), then select a particular
problem that is a linear programming problem (probType == 8) and then as the solver choose a constrained NLP
solver like MINOS (solvType == 3).

Table 1: The different types of optimization problems defined in TOMLAB.

probType Type of optimization problem
uc 1 Unconstrained optimization (incl. bound constraints).
qp 2 Quadratic programming.
con 3 Constrained nonlinear optimization.
ls 4 Nonlinear least squares problems (incl. bound constraints).
lls 5 Linear least squares problems.
cls 6 Constrained nonlinear least squares problems.
mip 7 Mixed-Integer programming.
lp 8 Linear programming.
glb 9 Box-bounded global optimization.
glc 10 Global mixed-integer nonlinear programming.
miqp 11 Constrained mixed-integer quadratic programming.

11

Table 1: The different types of optimization problems defined in TOMLAB, continued

probType Type of optimization problem
minlp 12 Constrained mixed-integer nonlinear optimization.
lmi 13 Semi-definite programming with Linear Matrix Inequalities.
bmi 14 Semi-definite programming with Bilinear Matrix Inequalities.
exp 15 Exponential fitting problems.
nts 16 Nonlinear Time Series.
lcp 22 Linear Mixed-Complimentary Problems.
mcp 23 Nonlinear Mixed-Complimentary Problems.

Please note that since the actual numbers used for probType may change in future releases, it is recommended to
use the text abbreviations. See help for checkType for further information.

Define probSet to be a set of defined optimization problems belonging to a certain class of problems of type
probType. Each probSet is physically stored in one file, an Init File. In Table 2 the currently defined problem sets
are listed, and new probSet sets are easily added.

Table 2: Defined test problem sets in TOMLAB. probSets marked with ∗ are not part of the
standard distribution

probSet probType Description of test problem set
uc 1 Unconstrained test problems.
qp 2 Quadratic programming test problems.
con 3 Constrained test problems.
ls 4 Nonlinear least squares test problems.
lls 5 Linear least squares problems.
cls 6 Linear constrained nonlinear least squares problems.
mip 7 Mixed-integer programming problems.
lp 8 Linear programming problems.
glb 9 Box-bounded global optimization test problems.
glc 10 Global MINLP test problems.

miqp 11 Constrained mixed-integer quadratic problems.
minlp 12 Constrained mixed-integer nonlinear problems.

lmi 13 Semi-definite programming with Linear Matrix Inequalities.
bmi 14 Semi-definite programming with Bilinear Matrix Inequalities.
exp 15 Exponential fitting problems.
nts 16 Nonlinear time series problems.
lcp 22 Linear mixed-complimentary problems.

mcp 23 Nonlinear mixed-complimentary problems.

mgh 4 More, Garbow, Hillstrom nonlinear least squares problems.
chs 3 Hock-Schittkowski constrained test problems.
uhs 1 Hock-Schittkowski unconstrained test problems.

The names of the predefined Init Files that do the problem setup, and the corresponding low level routines are
constructed as two parts. The first part being the abbreviation of the relevant probSet, see Table 2, and the

12

second part denotes the computed task, shown in Table 3. The user normally does not have to define the more
complicated functions � d2c and � d2r. It is recommended to supply this information when using solvers which
can utilize second order information, such as TOMLAB /KNITRO and TOMLAB /CONOPT.

Table 3: Names for predefined Init Files and low level m-files in TOMLAB.

Generic name Purpose (� is any probSet, e.g. �=con)
� prob Init File that either defines a string matrix with problem names

or a structure prob for the selected problem.
� f Compute objective function f(x).
� g Compute the gradient vector g(x).
� H Compute the Hessian matrix H(x).
� c Compute the vector of constraint functions c(x).
� dc Compute the matrix of constraint normals, ∂c(x)/dx.
� d2c Compute the 2nd part of 2nd derivative matrix of the Lagrangian

function,
∑
i λi∂

2ci(x)/dx2.
� r Compute the residual vector r(x).
� J Compute the Jacobian matrix J(x).
� d2r Compute the 2nd part of the Hessian matrix,

∑
i ri(x)∂2ri(x)/dx2

The Init File has two modes of operation; either return a string matrix with the names of the problems in the
probSet or a structure with all information about the selected problem. All fields in the structure, named Prob,
are presented in tables in Section A. Using a structure makes it easy to add new items without too many changes
in the rest of the system. For further discussion about the definition of optimization problems in TOMLAB, see
Section 4.

There are default values for everything that is possible to set defaults for, and all routines are written in a way
that makes it possible for the user to just set an input argument empty and get the default.

2.3 The Process of Solving Optimization Problems

A flow-chart of the process of optimization in TOMLAB is shown in Figure 1. It is inefficient to use an interactive
system. This is symbolized with the Standard User box in the figure, which directly runs the Optimization Driver,
tomRun. The direct solver call is possible for all TOMLAB solvers, if the user has executed ProbCheck prior to
the call. See Section 3 for a list of the TOMLAB solvers.

Depending on the type of problem, the user needs to supply the low-level routines that calculate the objective
function, constraint functions for constrained problems, and also if possible, derivatives. To simplify this coding
process so that the work has to be performed only once, TOMLAB provides gateway routines that ensure that any
solver can obtain the values in the correct format.

For example, when working with a least squares problem, it is natural to code the function that computes the vector
of residual functions ri(x1, x2, . . .), since a dedicated least squares solver probably operates on the residual while
a general nonlinear solver needs a scalar function, in this case f(x) = 1

2r
T (x)r(x). Such issues are automatically

handled by the gateway functions.

13

Figure 1: The process of optimization in TOMLAB.

14

2.4 Low Level Routines and Gateway Routines

Low level routines are the routines that compute:

• The objective function value

• The gradient vector

• The Hessian matrix (second derivative matrix)

• The residual vector (for nonlinear least squares problems)

• The Jacobian matrix (for nonlinear least squares problems)

• The vector of constraint functions

• The matrix of constraint normals (the constraint Jacobian)

• The second part of the second derivative of the Lagrangian function.

The last three routines are only needed for constrained problems.

The names of these routines are defined in the structure fields Prob.FUNCS.f, Prob.FUNCS.g, Prob.FUNCS.H etc.
It is the task for the Assign routine to set the names of the low level m-files. This is done by a call to the routine
conAssign with the names as arguments for example. There are Assign routines for all problem types handled by
TOMLAB. As an example, see ’help conAssign’ in MATLAB.

Prob = conAssign(’f’, ’g’, ’H’, HessPattern, x_L, x_U, Name,x_0,...

pSepFunc, fLowBnd, A, b_L, b_U, ’c’, ’dc’, ’d2c’, ConsPattern,...

c_L, c_U, x_min, x_max, f_opt, x_opt);

Only the low level routines relevant for a certain type of optimization problem need to be coded. There are dummy
routines for the others. Numerical differentiation is automatically used for gradient, Jacobian and constraint
gradient if the corresponding user routine is non present or left out when calling conAssign. However, the solver
always needs more time to estimate the derivatives compared to if the user supplies a code for them. Also the
numerical accuracy is lower for estimated derivatives, so it is recommended that the user always tries to code the
derivatives, if it is possible. Another option is automatic differentiation with TOMLAB /MAD.

TOMLAB uses gateway routines (nlp f, nlp g, nlp H, nlp c, nlp dc, nlp d2c, nlp r, nlp J, nlp d2r). These routines
extract the search directions and line search steps, count iterations, handle separable functions, keep track of the
kind of differentiation wanted etc. They also handle the separable NLLS case and NLLS weighting. By the use of
global variables, unnecessary evaluations of the user supplied routines are avoided.

To get a picture of how the low-level routines are used in the system, consider Figure 2 and 3. Figure 2 illustrates
the chain of calls when computing the objective function value in ucSolve for a nonlinear least squares problem
defined in mgh prob, mgh r and mgh J. Figure 3 illustrates the chain of calls when computing the numerical
approximation of the gradient (by use of the routine fdng) in ucSolve for an unconstrained problem defined in
uc prob and uc f.

Information about a problem is stored in the structure variable Prob, described in detail in the tables in Appendix
A. This variable is an argument to all low level routines. In the field element Prob.user, problem specific information

15

ucSolve <==> nlp_f <==> ls_f <==> nlp_r <==> mgh_r

Figure 2: The chain of calls when computing the objective function value in ucSolve for a nonlinear least
squares problem defined in mgh prob, mgh r and mgh J.

ucSolve <==> nlp_g <==> fdng <==> nlp_r <==> uc_f

Figure 3: The chain of calls when computing the numerical approximation of the gradient in ucSolve for
an unconstrained problem defined in uc prob and uc f.

needed to evaluate the low level routines are stored. This field is most often used if problem related questions
are asked when generating the problem. It is often the case that the user wants to supply the low-level routines
with additional information besides the variables x that are optimized. Any unused fields could be defined in the
structure Prob for that purpose. To avoid potential conflicts with future TOMLAB releases, it is recommended
to use subfields of Prob.user. It the user wants to send some variables a, B and C, then, after creating the Prob
structure, these extra variables are added to the structure:

Prob.user.a=a;

Prob.user.B=B;

Prob.user.C=C;

Then, because the Prob structure is sent to all low-level routines, in any of these routines the variables are picked
out from the structure:

a = Prob.user.a;

B = Prob.user.B;

C = Prob.user.C;

A more detailed description of how to define new problems is given in sections 5, 6 and 8. The usage of Prob.user
is described in Section 14.2.

Different solvers all have different demand on how information should be supplied, i.e. the function to optimize, the
gradient vector, the Hessian matrix etc. To be able to code the problem only once, and then use this formulation
to run all types of solvers, interface routines that returns information in the format needed for the relevant solver
were developed.

Table 4 describes the low level test functions and the corresponding Init File routine needed for the predefined
constrained optimization (con) problems. For the predefined unconstrained optimization (uc) problems, the
global optimization (glb, glc) problems and the quadratic programming problems (qp) similar routines have been
defined.

To conclude, the system design is flexible and easy to expand in many different ways.

16

Table 4: Generally constrained nonlinear (con) test problems.

Function Description
con prob Init File. Does the initialization of the con test problems.
con f Compute the objective function f(x) for con test problems.
con g Compute the gradient g(x) for con test problems. x
con H Compute the Hessian matrix H(x) of f(x) for con test problems.
con c Compute the constraint residuals c(x) for con test problems.
con dc Compute the derivative of the constraint residuals for con test problems.
con d2c Compute the 2nd part of 2nd derivative matrix of the Lagrangian function,∑

i λi∂
2ci(x)/dx2 for con test problems.

con fm Compute merit function θ(xk).
con gm Compute gradient of merit function θ(xk).

17

3 Problem Types and Solver Routines

Section 3.1 defines all problem types in TOMLAB. Each problem definition is accompanied by brief suggestions
on suitable solvers. This is followed in Section 3.2 by a complete list of the available solver routines in TOMLAB
and the various available extensions, such as /SOL and /CGO.

3.1 Problem Types Defined in TOMLAB

The unconstrained optimization (uc) problem is defined as

min
x

f(x)

s/t xL ≤ x ≤ xU ,

(1)

where x, xL, xU ∈ Rn and f(x) ∈ R. For unbounded variables, the corresponding elements of xL, xU may be set
to ±∞.

Recommended solvers: TOMLAB /KNITRO and TOMLAB /SNOPT.

The TOMLAB Base Module routine ucSolve includes several of the most popular search step methods for uncon-
strained optimization. Bound constraints are treated as described in Gill et. al. [28]. The search step methods
for unconstrained optimization included in ucSolve are: the Newton method, the quasi-Newton BFGS and DFP
method, the Fletcher-Reeves and Polak-Ribiere conjugate-gradient method, and the Fletcher conjugate descent
method. The quasi-Newton methods may either update the inverse Hessian (standard) or the Hessian itself. The
Newton method and the quasi-Newton methods updating the Hessian use a subspace minimization technique to
handle rank problems, see Lindström [53]. The quasi-Newton algorithms also use safe guarding techniques to avoid
rank problem in the updated matrix.

Another TOMLAB Base Module solver suitable for unconstrained problems is the structural trust region algorithm
sTrustr, combined with an initial trust region radius algorithm. The code is based on the algorithms in [13] and
[67], and treats partially separable functions. Safeguarded BFGS or DFP are used for the quasi-Newton update,
if the analytical Hessian is not used. The set of constrained nonlinear solvers could also be used for unconstrained
problems.

The quadratic programming (qp) problem is defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(2)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Recommended solvers: TOMLAB /KNITRO, TOMLAB /SNOPT and TOMLAB /MINLP.

A positive semidefinite F -matrix gives a convex QP, otherwise the problem is nonconvex. Nonconvex quadratic
programs are solved with a standard active-set method [54], implemented in the TOM routine qpSolve. qpSolve
explicitly treats both inequality and equality constraints, as well as lower and upper bounds on the variables
(simple bounds). It converges to a local minimum for indefinite quadratic programs.

In TOMLAB MINOS in the general or the QP-version (QP-MINOS), or the dense QP solver QPOPT may be
used. In the TOMLAB /SOL extension the SQOPT solver is suitable for both dense and large, sparse convex QP
and SNOPT works fine for dense or sparse nonconvex QP.

18

For very large-scale problems, an interior point solver is recommended, such as TOMLAB /KNITRO or TOMLAB
/BARNLP.

TOMLAB /CPLEX, TOMLAB /Xpress and TOMLAB /XA should always be considered for large-scale QP
problems.

The constrained nonlinear optimization problem (con) is defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(3)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Recommended solvers: TOMLAB /SNOPT, TOMLAB /NPSOL and TOMLAB /KNITRO.

For general constrained nonlinear optimization a sequential quadratic programming (SQP) method by Schittkowski
[69] is implemented in the TOMLAB Base Module solver conSolve. conSolve also includes an implementation of
the Han-Powell SQP method. There are also a TOMLAB Base Module routine nlpSolve implementing the Filter
SQP by Fletcher and Leyffer presented in [21].

Another constrained solver in TOMLAB is the structural trust region algorithm sTrustr, described above. Cur-
rently, sTrustr only solves problems where the feasible region, defined by the constraints, is convex. TOMLAB
/MINOS solves constrained nonlinear programs. The TOMLAB /SOL extension gives an additional set of general
solvers for dense or sparse problems.

sTrustr, pdco and pdsco in TOMLAB Base Module handle nonlinear problems with linear constraints only.

There are many other options for large-scale nonlinear optimization to consider in TOMLAB. TOMLAB /CONOPT,
TOMLAB /BARNLP, TOMLAB /MINLP, TOMLAB /NLPQL and TOMLAB /SPRNLP.

The box-bounded global optimization (glb) problem is defined as

min
x

f(x)

s/t −∞ < xL ≤ x ≤ xU <∞,
(4)

where x, xL, xU ∈ Rn, f(x) ∈ R, i.e. problems of the form (1) that have finite simple bounds on all variables.

Recommended solvers: TOMLAB /LGO and TOMLAB /CGO with TOMLAB /SOL.

The TOM solver glbSolve implements the DIRECT algorithm [14], which is a modification of the standard Lips-
chitzian approach that eliminates the need to specify a Lipschitz constant. In glbSolve no derivative information
is used. For global optimization problems with expensive function evaluations the TOMLAB /CGO routine ego
implements the Efficient Global Optimization (EGO) algorithm [16]. The idea of the EGO algorithm is to first fit
a response surface to data collected by evaluating the objective function at a few points. Then, EGO balances
between finding the minimum of the surface and improving the approximation by sampling where the prediction
error may be high.

19

The global mixed-integer nonlinear programming (glc) problem is defined as

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU , xj ∈ N ∀j ∈I,

(5)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 . The variables x ∈ I, the index
subset of 1, ..., n, are restricted to be integers.

Recommended solvers: TOMLAB /OQNLP.

The TOMLAB Base Module solver glcSolve implements an extended version of the DIRECT algorithm [52], that
handles problems with both nonlinear and integer constraints.

The linear programming (lp) problem is defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(6)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Recommended solvers: TOMLAB /CPLEX, TOMLAB /Xpress and TOMLAB /XA.

The TOMLAB Base Module solver lpSimplex implements a simplex algorithm for lp problems.

When a dual feasible point is known in (6) it is efficient to use the dual simplex algorithm implemented in the
TOMLAB Base Module solver DualSolve. In TOMLAB /MINOS the LP interface to MINOS, called LP-MINOS
is efficient for solving large, sparse LP problems. Dense problems are solved by LPOPT. The TOMLAB /SOL
extension gives the additional possibility of using SQOPT to solve large, sparse LP.

The recommended solvers normally outperforms all other solvers.

The mixed-integer programming problem (mip) is defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU , xj ∈ N ∀j ∈I

(7)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 . The variables x ∈ I, the index subset of 1, ..., n are
restricted to be integers. Equality constraints are defined by setting the lower bound equal to the upper bound,
i.e. for constraint i: bL(i) = bU (i).

Recommended solvers: TOMLAB /CPLEX, TOMLAB /Xpress and TOMLAB /XA.

Mixed-integer programs can be solved using the TOMLAB Base Module routine mipSolve that implements a
standard branch-and-bound algorithm, see Nemhauser and Wolsey [58, chap. 8]. When dual feasible solutions
are available, mipSolve is using the TOMLAB dual simplex solver DualSolve to solve subproblems, which is
significantly faster than using an ordinary linear programming solver, like the TOMLAB lpSimplex. mipSolve also
implements user defined priorities for variable selection, and different tree search strategies. For 0/1 - knapsack
problems a round-down primal heuristic is included. Another TOMLAB Base Module solver is the cutting plane

20

routine cutplane, using Gomory cuts. It is recommended to use mipSolve with the LP version of MINOS with
warm starts for the subproblems, giving great speed improvement. The TOMLAB /Xpress extension gives access
to the state-of-the-art LP, QP, MILP and MIQP solver Xpress-MP. For many MIP problems, it is necessary to
use such a powerful solver, if the solution should be obtained in any reasonable time frame. TOMLAB /CPLEX
is equally powerful as TOMLAB /Xpress and also includes a network solver.

The linear least squares (lls) problem is defined as

min
x

f(x) = 1
2 ||Cx− d||

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(8)

where x, xL, xU ∈ Rn, d ∈ RM , C ∈ RM×n, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Recommended solvers: TOMLAB /LSSOL.

Tlsqr solves unconstrained sparse lls problems. lsei solves the general dense problems. Tnnls is a fast and robust
replacement for the Matlab nnls. The general least squares solver clsSolve may also be used. In the TOMLAB
/NPSOL or TOMLAB /SOL extension the LSSOL solver is suitable for dense linear least squares problems.

The constrained nonlinear least squares (cls) problem is defined as

min
x

f(x) = 1
2r(x)T r(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(9)

where x, xL, xU ∈ Rn, r(x) ∈ RM , A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Recommended solvers: TOMLAB /NLSSOL.

The TOMLAB Base Module nonlinear least squares solver clsSolve treats problems with bound constraints in a
similar way as the routine ucSolve. This strategy is combined with an active-set strategy to handle linear equality
and inequality constraints [7].

clsSolve includes seven optimization methods for nonlinear least squares problems, among them: the Gauss-Newton
method, the Al-Baali-Fletcher [2] and the Fletcher-Xu [19] hybrid method, and the Huschens TSSM method [50].
If rank problems occur, the solver uses subspace minimization. The line search algorithm used is the same as for
unconstrained problems.

Another fast and robust solver is NLSSOL, available in the TOMLAB /NPSOL or the TOMLAB /SOL extension
toolbox.

One important utility routine is the TOMLAB Base Module line search algorithm LineSearch, used by the solvers
conSolve, clsSolve and ucSolve. It implements a modified version of an algorithm by Fletcher [20, chap. 2]. The
line search algorithm uses quadratic and cubic interpolation, see Section 12.10.

Another TOMLAB Base Module routine, preSolve, is running a presolve analysis on a system of linear equalities,
linear inequalities and simple bounds. An algorithm by Gondzio [36], somewhat modified, is implemented in
preSolve. See [7] for a more detailed presentation.

The linear semi-definite programming problem with linear matrix inequalities (sdp) is defined as

21

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

Qi0 +
n∑
k=1

Qikxk 4 0, i = 1, . . . ,m.

(10)

where c, x, xL, xU ∈ Rn, A ∈ Rml×n, bL, bU ∈ Rml and Qik are symmetric matrices of similar dimensions in each
constraint i. If there are several LMI constraints, each may have it’s own dimension.

Recommended solvers: TOMLAB /PENSDP and TOMLAB /PENBMI.

The linear semi-definite programming problem with bilinear matrix inequalities (bmi) is defined sim-
ilarly to but with the matrix inequality

Qi0 +
n∑
k=1

Qikxk +
n∑
k=1

n∑
l=1

xkxlK
i
kl 4 0 (11)

The MEX solvers pensdp and penbmi treat sdp and bmi problems, respectively. These are available in the
TOMLAB /PENSDP and TOMLAB /PENBMI toolboxes.

The MEX-file solver pensdp available in the TOMLAB /PENSDP toolbox implements a penalty method aimed at
large-scale dense and sparse sdp problems. The interface to the solver allows for data input in the sparse SDPA
input format as well as a TOMLAB specific format corresponding to.

The MEX-file solver penbmi available in the TOMLAB /PENBMI toolbox is similar to pensdp, with added support
for the bilinear matrix inequalities.

22

3.2 Solver Routines in TOMLAB

3.2.1 TOMLAB Base Module

TOMLAB includes a large set of optimization solvers. Most of them were originally developed by the Applied
Optimization and Modeling group (TOM) [42]. Since then they have been improved e.g. to handle Matlab sparse
arrays and been further developed. Table 5 lists the main set of TOM optimization solvers in all versions of
TOMLAB.

Table 5: The optimization solvers in TOMLAB Base Module.

Function Description Section Page

clsSolve Constrained nonlinear least squares. Handles simple bounds and
linear equality and inequality constraints using an active-set strat-
egy. Implements Gauss-Newton, and hybrid quasi-Newton and
Gauss-Newton methods.

11.1.1 86

conSolve Constrained nonlinear minimization solver using two different se-
quential quadratic programming methods.

11.1.2 90

cutplane Mixed-integer programming using a cutting plane algorithm. 11.1.3 94
DualSolve Solves a linear program with a dual feasible starting point. 11.1.4 97
expSolve Solves exponential fitting problems. 11.1.5 100
glbSolve Box-bounded global optimization, using only function values. 11.1.7 106
glcCluster Hybrid algorithm for constrained mixed-integer global optimiza-

tion. Uses a combination of glcFast (DIRECT) and a clustering
algorithm.

11.1.8 109

glcSolve Global mixed-integer nonlinear programming, using no deriva-
tives.

11.1.10 118

infSolve Constrained minimax optimization. Reformulates problem and
calls any suitable nonlinear solver.

11.1.12 125

lpSimplex Linear programming using a simplex algorithm. 11.1.14 129
MILPSOLVE Mixed-integer programming using branch and bound. 11.1.16 133
L1Solve Constrained L1 optimization. Reformulates problem and calls any

suitable nonlinear solver.
11.1.15 131

mipSolve Mixed-integer programming using a branch-and-bound algorithm. 11.1.18 150
nlpSolve Constrained nonlinear minimization solver using a filter SQP al-

gorithm.
11.1.21 160

pdco Linearly constrained nonlinear minimization solver using a primal-
dual barrier algorithm.

11.1.22 163

pdsco Linearly constrained nonlinear minimization solver using a primal-
dual barrier algorithm, for separable functions.

11.1.23 166

qpSolve Non-convex quadratic programming. 11.1.24 169
slsSolve Sparse constrained nonlinear least squares. Reformulates problem

and calls any suitable sparse nonlinear solver.
11.1.25 171

sTrustr Constrained convex optimization of partially separable functions,
using a structural trust region algorithm.

11.1.26 174

23

Table 5: The optimization solvers in TOMLAB Base Module, continued.

Field Description

ucSolve Unconstrained optimization with simple bounds on the parame-
ters. Implements Newton, quasi-Newton and conjugate-gradient
methods.

11.1.29 180

Additional Fortran solvers in TOMLAB are listed in Table 6. They are called using a set of MEX-file interfaces
developed in TOMLAB.

Table 6: Additional solvers in TOMLAB.

Function Description Reference Page
goalSolve Solves sparse multi-objective goal attainment problems
lsei Dense constrained linear least squares
qld Convex quadratic programming
Tfzero Finding a zero to f(x) in an interval, x is one-dimensional. [70, 15]
Tlsqr Sparse linear least squares. [60, 59, 68]
Tnnls Nonnegative constrained linear least squares

3.2.2 TOMLAB /BARNLP

The add-on toolbox TOMLAB /BARNLP solves large-scale nonlinear programming problems using a sparse
primal-dual interior point algorithm, in conjunction with a filter for globalization. The solver package was developed
in co-operation with Boeing Phantom Works. The TOMLAB /BARNLP package is described in a separate manual
available at http://tomopt.com.

3.2.3 TOMLAB /CGO

The add-on toolbox TOMLAB /CGO solves costly global optimization problems. The solvers are listed in Table
7. They are written in a combination of Matlab and Fortran code, where the Fortran code is called using a set of
MEX-file interfaces developed in TOMLAB.

Table 7: Additional solvers in TOMLAB /CGO.

Function Description Reference
rbfSolve Costly constrained box-bounded optimization using a RBF algorithm. [9]
ego Costly constrained box-bounded optimization using the Efficient

Global Optimization (EGO) algorithm.
[16]

24

http://tomopt.com

3.2.4 TOMLAB /CONOPT

The add-on toolbox TOMLAB /CONOPT solves large-scale nonlinear programming problems with a feasible path
GRG method . The solver package was developed in co-operation with Arki Consulting and Development A/S.
The TOMLAB /CONOPT is described in a separate manual available at http://tomopt.com. There is also m-file
help available.

3.2.5 TOMLAB /CPLEX

The add-on toolbox TOMLAB /CPLEX solves large-scale mixed-integer linear and quadratic programming prob-
lems. The solver package was developed in co-operation with ILOG S.A. The TOMLAB /CPLEX solver package
and interface are described in a manual available at http://tomopt.com.

3.2.6 TOMLAB /KNITRO

The add-on toolbox TOMLAB /KNITRO solves large-scale nonlinear programming problems with interior (barrier)
point trust-region methods. The solver package was developed in co-operation with Ziena Optimization Inc. The
TOMLAB /KNITRO manual is available at http://tomopt.com.

3.2.7 TOMLAB /LGO

The add-on toolbox TOMLAB /LGO solves global nonlinear programming problems. The LGO solver package is
developed by Pintér Consulting Services, Inc. [63] The TOMLAB /LGO manual is available at http://tomopt.

com.

3.2.8 TOMLAB /MINLP

The add-on toolbox TOMLAB /MINLP provides solvers for continuous and mixed-integer quadratic programming
(qp,miqp) and continuous and mixed-integer nonlinear constrained optimization (con, minlp).

All four solvers, written by Roger Fletcher and Sven Leyffer, University of Dundee, Scotland, are available in
sparse and dense versions. The solvers are listed in Table 8.

The TOMLAB /MINLP manual is available at http://tomopt.com.

3.2.9 TOMLAB /MINOS

Another set of Fortran solvers were developed by the Stanford Optimization Laboratory (SOL). Table 9 lists the
solvers included in TOMLAB /MINOS. The solvers are called using a set of MEX-file interfaces developed as part
of TOMLAB. All functionality of the SOL solvers are available and changeable in the TOMLAB framework in
Matlab.

3.2.10 TOMLAB /OQNLP

The add-on toolbox TOMLAB /OQNLP uses a multistart heuristic algorithm to find global optima of smooth
constrained nonlinear programs (NLPs) and mixed-integer nonlinear programs (MINLPs). The solver package

25

http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com

Table 8: Solver routines in TOMLAB /MINLP.

Function Description Reference
bqpd Quadratic programming using a null-space method. bqpdTL.m

miqpBB Mixed-integer quadratic programming using bqpd as subsolver. miqpBBTL.m

filterSQP Constrained nonlinear minimization using a Filtered Sequential QP
method.

filterSQPTL.m

minlpBB Constrained, mixed-integer nonlinear minimization using a branch-
and-bound search scheme. filterSQP is used as NLP solver.

minlpBBTL.m

Table 9: The SOL optimization solvers in TOMLAB /MINOS.

Function Description Reference Page
MINOS 5.51 Sparse linear and nonlinear programming with linear and nonlin-

ear constraints.
[57]

LP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
linear programming.

[57]

QP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
quadratic programming.

[57]

LPOPT 1.0-10 Dense linear programming. [30]
QPOPT 1.0-10 Non-convex quadratic programming with dense constraint matrix

and sparse or dense quadratic matrix.
[30]

was developed in co-operation with Optimal Methods Inc. The TOMLAB /OQNLP manual is available at http:
//tomopt.com.

3.2.11 TOMLAB /NLPQL

The add-on toolbox TOMLAB /NLPQL solves dense nonlinear programming problems, multi criteria optimiza-
tion problems and nonlinear fitting problems. The solver package was developed in co-operation with Klaus
Schittkowski. The TOMLAB /NLPQL manual is available at http://tomopt.com.

3.2.12 TOMLAB /NPSOL

The add-on toolbox TOMLAB /NPSOL is a sub package of TOMLAB /SOL. The package includes the MINOS
solvers as well as NPSOL, LSSOL and NLSSOL. The TOMLAB /NPSOL manual is available at http://tomopt.
com.

26

http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com

3.2.13 TOMLAB /PENBMI

The add-on toolbox TOMLAB /PENBMI solves linear semi-definite programming problems with linear and bilinear
matrix inequalities. The solvers are listed in Table 10. They are written in a combination of Matlab and C code.
The TOMLAB /PENBMI manual is available at http://tomopt.com.

Table 10: Additional solvers in TOMLAB /PENSDP.

Function Description Reference Page
penbmi Sparse and dense linear semi-definite programming using a penalty

algorithm.
penfeas bmi Feasibility check of systems of linear matrix inequalities, using penbmi.

3.2.14 TOMLAB /PENSDP

The add-on toolbox TOMLAB /PENSDP solves linear semi-definite programming problems with linear matrix
inequalities. The solvers are listed in Table 11. They are written in a combination of Matlab and C code. The
TOMLAB /PENSDP manual is available at http://tomopt.com.

Table 11: Additional solvers in TOMLAB /PENSDP.

Function Description Reference Page
pensdp Sparse and dense linear semi-definite programming using a penalty

algorithm.
penfeas sdp Feasibility check of systems of linear matrix inequalities, using pensdp.

3.2.15 TOMLAB /SNOPT

The add-on toolbox TOMLAB /SNOPT is a sub package of TOMLAB /SOL. The package includes the MINOS
solvers as well as SNOPT and SQOPT. The TOMLAB /SNOPT manual is available at http://tomopt.com.

3.2.16 TOMLAB /SOL

The extension toolbox TOMLAB /SOL gives access to the complete set of Fortran solvers developed by the
Stanford Systems Optimization Laboratory (SOL). These solvers are listed in Table 9 and 12.

3.2.17 TOMLAB /SPRNLP

The add-on toolbox TOMLAB /SPRNLP solves large-scale nonlinear programming problems. SPRNLP is a state-
of-the-art sequential quadratic programming (SQP) method, using an augmented Lagrangian merit function and
safeguarded line search. The solver package was developed in co-operation with Boeing Phantom Works. The
TOMLAB /SPRNLP package is described in a separate manual available at http://tomopt.com.

27

http://tomopt.com
http://tomopt.com
http://tomopt.com
http://tomopt.com

Table 12: The optimization solvers in the TOMLAB /SOL toolbox.

Function Description Reference Page
NPSOL 5.02 Dense linear and nonlinear programming with linear and nonlinear

constraints.
[34]

SNOPT 6.2-2 Large, sparse linear and nonlinear programming with linear and
nonlinear constraints.

[33, 31]

SQOPT 6.2-2 Sparse convex quadratic programming. [32]
NLSSOL 5.0-2 Constrained nonlinear least squares. NLSSOL is based on

NPSOL. No reference except for general NPSOL reference.
[34]

LSSOL 1.05-4 Dense linear and quadratic programs (convex), and constrained
linear least squares problems.

[29]

3.2.18 TOMLAB /XA

The add-on toolbox TOMLAB /XA solves large-scale linear, binary, integer and semi-continuous linear program-
ming problems, as well as quadratic programming problems. The solver package was developed in co-operation
with Sunset Software Technology. The TOMLAB /XA package is described in a separate manual available at
http://tomopt.com.

3.2.19 TOMLAB /Xpress

The add-on toolbox TOMLAB /Xpress solves large-scale mixed-integer linear and quadratic programming prob-
lems. The solver package was developed in co-operation with Dash Optimization Ltd. The TOMLAB /Xpress
solver package and interface are described in the html manual that comes with the installation package. There is
also a TOMLAB /Xpress manual available at http://tomopt.com.

28

http://tomopt.com
http://tomopt.com

3.2.20 Finding Available Solvers

To get a list of all available solvers, including Fortran, C and Matlab Optimization Toolbox solvers, for a certain
solvType, call the routine SolverList with solvType as argument. solvType should either be a string (’uc’, ’con’ etc.)
or the corresponding solvType number as given in Table 1, page 11. For example, if wanting a list of all available
solvers of solvType con, then

SolverList(’con’)

gives the output

>> SolverList(’con’);

Tomlab recommended choice for Constrained Nonlinear Programming (NLP)

npsol

Other solvers for NLP

Licensed:

nlpSolve

conSolve

sTrustr

constr

minos

snopt

fmincon

filterSQP

PDCO

PDSCO

Non-licensed:

NONE

Solvers also handling NLP

Licensed:

glcSolve

glcFast

glcCluster

rbfSolve

minlpBB

Non-licensed:

29

NONE

SolverList also returns two output arguments: all available solvers as a string matrix and a vector with the
corresponding solvType for each solver.

Note that solvers for a more general problem type may be used to solve the problem. In Table 13 an attempt has
been made to classify these relations.

Table 13: The problem classes (probType) possible to solve with each type of solver (solvType) is marked
with an x. When the solver is in theory possible to use, but from a practical point of view is probably
not suitable, parenthesis are added (x).

solvType
probType uc qp con ls lls cls mip lp glb glc
uc x x x (x)
qp x x (x)
con x (x)
ls x x x (x)
lls x x x x x (x)
cls x x (x)
mip x (x)
lp x x x x (x)
glb (x) x x
glc (x) x
exp x x (x) x (x)

30

4 Defining Problems in TOMLAB

TOMLAB is based on the principle of creating a problem structure that defines the problem and includes all
relevant information needed for the solution of the user problem. One unified format is defined, the TOMLAB
format. The TOMLAB format gives the user a fast way to setup a problem structure and solve the problem from
the Matlab command line using any suitable TOMLAB solver.

TOMLAB also includes a modeling engine (or advanced Matlab class), TomSym, see Section 4.3. The package uses
Matlab objects and operator overloading to capture Matlab procedures, and generates source code for derivatives
of any order.

In this section follows a more detailed description of the TOMLAB format.

4.1 The TOMLAB Format

The TOMLAB format is a quick way to setup a problem and easily solve it using any of the TOMLAB solvers.
The principle is to put all information in a Matlab structure, which then is passed to the solver, which extracts
the relevant information. The structure is passed to the user function routines for nonlinear problems, making it
a convenient way to pass other types of information.

The solution process for the TOMLAB format has four steps:

1. Define the problem structure, often called Prob.

2. Call the solver or the universal driver routine tomRun.

3. Postprocessing, e.g. print the result of the optimization.

Step 1 could be done in several ways in TOMLAB. Recommended is to call one of the following routines dependent
on the type of optimization problem, see Table 14.

Step 2, the solver call, is either a direct call, e.g. conSolve:

Prob = ProbCheck(Prob, ’conSolve’);

Result = conSolve(Prob);

or a call to the multi-solver driver routine tomRun, e.g. for constrained optimization:

Result = tomRun(’conSolve’, Prob);

Note that tomRun handles several input formats.

Step 3 could be a call to PrintResult.m:

PrintResult(Result);

The 3rd step could be included in Step 2 by increasing the print level to 1, 2 or 3 in the call to the driver routine

Result = tomRun(’conSolve’,Prob, 3);

See the different demo files that gives examples of how to apply the TOMLAB format: conDemo.m, ucDemo.m,
qpDemo.m, lsDemo.m, lpDemo.m, mipDemo.m, glbDemo.m and glcDemo.m.

31

Table 14: Routines to create a problem structure in the TOMLAB format.

Matlab call probTypes Type of optimization problem
Prob = bmiAssign(...) 14 Semi-definite programming with bilinear matrix inequalities.
Prob = clsAssign(...) 4,5,6 Unconstrained and constrained nonlinear least squares.
Prob = conAssign(...) 1,3 Unconstrained and constrained nonlinear optimization.
Prob = expAssign(...) 17 Exponential fitting problems.
Prob = glcAssign(...) 9,10,15 Box-bounded or mixed-integer constrained global programming.
Prob = lcpAssign(...) 22 Linear mixed-complimentary problems.
Prob = llsAssign(...) 5 Linear least-square problems.
Prob = lpAssign(...) 8 Linear programming.
Prob = lpconAssign(...) 3 Linear programming with nonlinear constraints.
Prob = mcpAssign(...) 23 Nonlinear mixed-complimentary problems.
Prob = minlpAssign(...) 12 Mixed-Integer nonlinear programming.
Prob = mipAssign(...) 7 Mixed-Integer programming.
Prob = miqpAssign(...) 11 Mixed-Integer quadratic programming.
Prob = miqqAssign(...) 18 Mixed-Integer quadratic programming with quadratic constraints.
Prob = qcpAssign(...) 23 Quadratic mixed-complimentary problems.
Prob = qpblockAssign(...) 2 Quadratic programming (factorized).
Prob = qpAssign(...) 2 Quadratic programming.
Prob = qpconAssign(...) 3 Quadratic programming with nonlinear constraints.
Prob = sdpAssign(...) 13 Semi-definite programming with linear matrix inequalities.

Prob = amplAssign(...) 1-3,7,8,11,12 For AMPL problems defined as nl -files.
Prob = simAssign(...) 1,3-6,9-10 General routine, functions and constraints calculated at the same

time .

4.2 Modifying existing problems

It is possible to modify an existing Prob structure by editing elements directly, however this is not recommended
since there are dependencies for memory allocation and problem sizes that the user may not be aware of.

There are a set of routines developed specifically for modifying linear constraints (do not modify directly, Prob.mLin
need to be set to a proper value if so). All the static information can be set with the following routines.

4.2.1 add A

Purpose
Adds linear constraints to an existing problem.

Calling Syntax
Prob = add A(Prob, A, b L, b U)

Description of Inputs

32

Prob Existing TOMLAB problem.
A The additional linear constraints.
b L The lower bounds for the new linear constraints.
b U The upper bounds for the new linear constraints.

Description of Outputs

Prob Modified TOMLAB problem.

4.2.2 keep A

Purpose
Keeps the linear constraints specified by idx.

Calling Syntax
Prob = keep A(Prob, idx)

Description of Inputs

Prob Existing TOMLAB problem.
idx The row indices to keep in the linear constraints.

Description of Outputs

Prob Modified TOMLAB problem.

4.2.3 remove A

Purpose
Removes the linear constraints specified by idx.

Calling Syntax
Prob = remove A(Prob, idx)

Description of Inputs

Prob Existing TOMLAB problem.
idx The row indices to remove in the linear constraints.

33

Description of Outputs

Prob Modified TOMLAB problem.

4.2.4 replace A

Purpose
Replaces the linear constraints.

Calling Syntax
Prob = replace A(Prob, A, b L, b U)

Description of Inputs

Prob Existing TOMLAB problem.
A New linear constraints.
b L Lower bounds for linear constraints.
b U Upper bounds for linear constraints.

Description of Outputs

Prob Modified TOMLAB problem.

4.2.5 modify b L

Purpose
Modify lower bounds for linear constraints. If idx is not given b L will be replaced.

Calling Syntax
Prob = modify b L(Prob, b L, idx)

Description of Inputs

Prob Existing TOMLAB problem.
b L New lower bounds for the linear constraints.
idx Indices for the modified constraint bounds (optional).

Description of Outputs

34

Prob Modified TOMLAB problem.

4.2.6 modify b U

Purpose
Modify upper bounds for linear constraints. If idx is not given b U will be replaced.

Calling Syntax
Prob = modify b U(Prob, b U, idx)

Description of Inputs

Prob Existing TOMLAB problem.
b U New upper bounds for the linear constraints.
idx Indices for the modified constraint bounds (optional).

Description of Outputs

Prob Modified TOMLAB problem.

4.2.7 modify c

Purpose
Modify linear objective (LP/QP only).

Calling Syntax
Prob = modify c(Prob, c, idx)

Description of Inputs

Prob Existing TOMLAB problem.
c New linear coefficients.
idx Indices for the modified linear coefficients (optional).

Description of Outputs

Prob Modified TOMLAB problem.

35

4.2.8 modify c L

Purpose
Modify lower bounds for nonlinear constraints. If idx is not given c L will be replaced.

Calling Syntax
Prob = modify c L(Prob, c L, idx)

Description of Inputs

Prob Existing TOMLAB problem.
c L New lower bounds for the nonlinear constraints.
idx Indices for the modified constraint bounds (optional).

Description of Outputs

Prob Modified TOMLAB problem.

4.2.9 modify c U

Purpose
Modify upper bounds for nonlinear constraints. If idx is not given c U will be replaced.

Calling Syntax
Prob = modify c U(Prob, c U, idx)

Description of Inputs

Prob Existing TOMLAB problem.
c U New upper bounds for the nonlinear constraints.
idx Indices for the modified constraint bounds (optional).

Description of Outputs

Prob Modified TOMLAB problem.

4.2.10 modify x 0

Purpose
Modify starting point. If x 0 is outside the bounds an error will be returned. If idx is not given x 0 will be replaced.

36

Calling Syntax
Prob = modify x 0(Prob, x 0, idx)

Description of Inputs

Prob Existing TOMLAB problem.
x 0 New starting points.
idx Indices for the modified starting points (optional).

Description of Outputs

Prob Modified TOMLAB problem.

4.2.11 modify x L

Purpose
Modify lower bounds for decision variables. If idx is not given x L will be replaced. x 0 will be shifted if needed.

Calling Syntax
Prob = modify x L(Prob, x L, idx)

Description of Inputs

Prob Existing TOMLAB problem.
x L New lower bounds for the decision variables.
idx Indices for the modified lower bounds (optional).

Description of Outputs

Prob Modified TOMLAB problem.

4.2.12 modify x U

Purpose
Modify upper bounds for decision variables. If idx is not given x U will be replaced. x 0 will be shifted if needed.

Calling Syntax
Prob = modify x U(Prob, x U, idx)

37

Description of Inputs

Prob Existing TOMLAB problem.
x U New upper bounds for the decision variables.
idx Indices for the modified upper bounds (optional).

Description of Outputs

Prob Modified TOMLAB problem.

38

4.3 TomSym

For further information about TomSym, please visit http://tomsym.com/ - the pages contain detailed modeling
examples and real life applications. All illustrated examples are available in the folder /tomlab/tomsym/examples/
in the TOMLAB installation. The modeling engine supports all problem types in TOMLAB with some minor
exceptions.

A detailed function listing is available in Appendix C.

TomSym combines the best features of symbolic differentiation, i.e. produces source code with simplifications and
optimizations, with the strong point of automatic differentiation where the result is a procedure, rather than an
expression. Hence it does not grow exponentially in size for complex expressions.

Both forward and reverse modes are supported, however, reverse is default when computing the derivative with
respect to more than one variable. The command derivative results in forward mode, and derivatives in reverse
mode.

TomSym produces very efficient and fully vectorized code and is compatible with TOMLAB /MAD for situations
where automatic differentiation may be the only option for parts of the model.

It should also be noted that TomSym automatically provides first and second order derivatives as well as problem
sparsity patterns. With the use of TomSym the user no longer needs to code cumbersome derivative expressions
and Jacobian/Hessian sparsity patterns for most optimization and optimal control problems.

The main features in TomSym can be summarized with the following list:

• A full modeling environment in Matlab with support for most built-in mathematical operators.

• Automatically generates derivatives as Matlab code.

• A complete integration with PROPT (optimal control platform).

• Interfaced and compatible with MAD, i.e. MAD can be used when symbolic modeling is not suitable.

• Support for if, then, else statements.

• Automated code simplification for generated models.

• Ability to analyze most p-coded files (if code is vectorized).

4.3.1 Modeling

One of the main strength of TomSym is the ability to automatically and quickly compute symbolic derivatives of
matrix expressions. The derivatives can then be converted into efficient Matlab code.

The matrix derivative of a matrix function is a fourth rank tensor - that is, a matrix each of whose entries is
a matrix. Rather than using four-dimensional matrices to represent this, TomSym continues to work in two
dimensions. This makes it possible to take advantage of the very efficient handling of sparse matrices in Matlab
(not available for higher-dimensional matrices).

In order for the derivative to be two-dimensional, TomSym’s derivative reduces its arguments to one-dimensional
vectors before the derivative is computed. In the returned J , each row corresponds to an element of F , and each
column corresponds to an element of X. As usual in Matlab, the elements of a matrix are taken in column-first
order.

For vectors F and X, the resulting J is the well-known Jacobian matrix.

39

http://tomsym.com/

Observe that the TomSym notation is slightly different from commonly used mathematical notation. The notation
used in tomSym was chosen to minimize the amount of element reordering needed to compute gradients for common
expressions in optimization problems. It needs to be pointed out that this is different from the commonly used
mathematical notation, where the tensor (dFdX) is flattened into a two-dimensional matrix as it is written (There are
actually two variations of this in common use - the indexing of the elements of X may or may not be transposed).

For example, in common mathematical notation, the so-called self derivative matrix (dXdX) is a mn-by-mn square (or
mm-by-nn rectangular in the non-transposed variation) matrix containing mn ones spread out in a random-looking
manner. In tomSym notation, the self-derivative matrix is the mn-by-mn identity matrix.

The difference in notation only involves the ordering of the elements, and reordering the elements to a different
notational convention should be trivial if tomSym is used to generate derivatives for applications other than for
TOMLAB and PROPT.

Example:

>> toms y

>> toms 3x1 x

>> toms 2x3 A

>> f = (A*x).^(2*y)

f = tomSym(2x1):

(A*x).^(2*y)

>> derivative(f,A)

ans = tomSym(2x6):

(2*y)*setdiag((A*x).^(2*y-1))*kron(x’,eye(2))

In the above example, the 2x1 symbol f is differentiated with respect to the 2x3 symbol A. The result is a 2x6
matrix, representing d(vec(f))

d(vec(A)) .

The displayed text is not necessarily identical to the m-code that will be generated from an expression. For
example, the identity matrix is generated using speye in m-code, but displayed as eye (Derivatives tend to involve
many sparse matrices, which Matlab handles efficiently). The mcodestr command converts a tomSym object to a
Matlab code string.

>> mcodestr(ans)

ans =

setdiag((2*y)*(A*x).^(2*y-1))*kron(x’,[1 0;0 1])

Observe that the command mcode and not mcodestr should be used when generating efficient production code.

4.3.2 Ezsolve

TomSym provides the function ezsolve, which needs minimal input to solve an optimization problem: only the
objective function and constraints. For example, the miqpQG example from the tomlab quickguide can be reduced
to the following:

40

toms integer x

toms y

objective = -6*x + 2*x^2 + 2*y^2 - 2*x*y;

constraints = {x+y<=1.9,x>=0, y>=0};

solution = ezsolve(objective,constraints)

Ezsolve calls tomDiagnose to determine the problem type, getSolver to find an appropriate solver, then sym2prob,
tomRun and getSoluton in sequence to obtain the solution.

Advanced users might not use ezsolve, and instead call sym2prob and tomRun directly. This provides for the
possibility to modify the Prob struct and set flags for the solver.

4.3.3 Usage

TomSym, unlike most other symbolic algebra packages, focuses on vectorized notation. This should be familiar
to Matlab users, but is very different from many other programming languages. When computing the derivative
of a vector-valued function with respect to a vector valued variable, tomSym attempts to give a derivative as
vectorized Matlab code. However, this only works if the original expressions use vectorized notation. For example:

toms 3x1 x

f = sum(exp(x));

g = derivative(f,x);

results in the efficient g = exp(x)′. In contrast, the mathematically equivalent but slower code:

toms 3x1 x

f = 0;

for i=1:length(x)

f = f+exp(x(i));

end

g = derivative(f,x);

results in g = (exp(x(1)) ∗ [100] + exp(x(2)) ∗ [010]) + exp(x(3)) ∗ [001] as each term is differentiated individually.
Since tomSym has no way of knowing that all the terms have the same format, it has to compute the symbolic
derivative for each one. In this example, with only three iterations, that is not really a problem, but large for-loops
can easily result in symbolic calculations that require more time than the actual numeric solution of the underlying
optimization problem.

It is thus recommended to avoid for-loops as far as possible when working with tomSym.

Because tomSym computes derivatives with respect to whole symbols, and not their individual elements, it is also
a good idea not to group several variables into one vector, when they are mostly used individually. For example:

toms 2x1 x

f = x(1)*sin(x(2));

g = derivative(f,x);

41

results in g = sin(x(2)) ∗ [10] + x(1) ∗ (cos(x(2)) ∗ [01]). Since x is never used as a 2x1 vector, it is better to use
two independent 1x1 variables:

toms a b

f = a*sin(b);

g = derivative(f,[a; b]);

which results in g = [sin(b) a ∗ cos(b)]. The main benefit here is the increased readability of the auto-generated
code, but there is also a slight performance increase (Should the vector x later be needed, it can of course easily
be created using the code x = [a; b]).

4.3.4 Scaling variables

Because tomSym provides analytic derivatives (including second order derivatives) for the solvers, badly scaled
problems will likely be less problematic from the start. To further improve the model, tomSym also makes it
very easy to manually scale variables before they are presented to the solver. For example, assuming that an
optimization problem involves the variable x which is of the order of magnitude 1e6, and the variable y, which is
of the order of 1e− 6, the code:

toms xScaled yScaled

x = 1e+6*xScaled;

y = 1e-6*yScaled;

will make it possible to work with the tomSym expressions x and y when coding the optimization problem, while
the solver will solve for the symbols xScaled and yScaled, which will both be in the order of 1. It is even possible
to provide starting guesses on x and y (in equation form), because tomSym will solve the linear equation to obtain
starting guesses for the underlying xScaled and yScaled.

The solution structure returned by ezsolve will of course only contain xScaled and yScaled, but numeric values for
x and y are easily obtained via, e.g. subs(x,solution).

4.3.5 SDP/LMI/BMI interface

An interface for bilinear semidefinite problems is included with tomSym. It is also possible to solve nonlinear
problems involving semidefinite constraints, using any nonlinear solver (The square root of the semidefinte matrix
is then introduced as an extra set of unknowns).

See the examples optimalFeedbackBMI and example sdp.

4.3.6 Interface to MAD and finite differences

If a user function is incompatible with tomSym, it can still be used in symbolic computations, by giving it a
”wrapper”. For example, if the cos function was not already overloaded by tomSym, it would still be possible to
do the equivalent of cos(3*x) by writing feval(’cos’,3*x).

MAD then computes the derivatives when the Jacobian matrix of a wrapped function is needed. If MAD is
unavailable, or unable to do the job, numeric differentiation is used.

Second order derivatives cannot be obtained in the current implementation.

42

It is also possible to force the use of automatic or numerical differentiation for any function used in the code. The
follow examples shows a few of the options available:

toms x1 x2

alpha = 100;

% 1. USE MAD FOR ONE FUNCTION.

% Create a wrapper function. In this case we use sin, but it could be any

% MAD supported function.

y = wrap(struct(’fun’,’sin’,’n’,1,’sz1’,1,’sz2’,1,’JFuns’,’MAD’),x1/x2);

f = alpha*(x2-x1^2)^2 + (1-x1)^2 + y;

% Setup and solve the problem

c = -x1^2 - x2;

con = {-1000 <= c <= 0

-10 <= x1 <= 2

-10 <= x2 <= 2};

x0 = {x1 == -1.2

x2 == 1};

solution1 = ezsolve(f,con,x0);

% 2. USE MAD FOR ALL FUNCTIONS.

options = struct;

options.derivatives = ’automatic’;

f = alpha*(x2-x1^2)^2 + (1-x1)^2 + sin(x1/x2);

solution2 = ezsolve(f,con,x0,options);

% 3. USE FD (Finite Differences) FOR ONE FUNCTIONS.

% Create a new wrapper function. In this case we use sin, but it could be

% any function since we use numerical derivatives.

y = wrap(struct(’fun’,’sin’,’n’,1,’sz1’,1,’sz2’,1,’JFuns’,’FDJac’),x1/x2);

f = alpha*(x2-x1^2)^2 + (1-x1)^2 + y;

solution3 = ezsolve(f,con,x0);

% 4. USE FD and MAD FOR ONE FUNCTION EACH.

y1 = 0.5*wrap(struct(’fun’,’sin’,’n’,1,’sz1’,1,’sz2’,1,’JFuns’,’MAD’),x1/x2);

y2 = 0.5*wrap(struct(’fun’,’sin’,’n’,1,’sz1’,1,’sz2’,1,’JFuns’,’FDJac’),x1/x2);

f = alpha*(x2-x1^2)^2 + (1-x1)^2 + y1 + y2;

solution4 = ezsolve(f,con,x0);

% 5. USE FD FOR ALL FUNCTIONS.

options = struct;

options.derivatives = ’numerical’;

f = alpha*(x2-x1^2)^2 + (1-x1)^2 + sin(x1/x2);

solution5 = ezsolve(f,con,x0,options);

43

% 6. USE MAD FOR OBJECTIVE, FD FOR CONSTRAINTS

options = struct;

options.derivatives = ’numerical’;

options.use_H = 0;

options.use_d2c = 0;

options.type = ’con’;

Prob = sym2prob(f,con,x0,options);

madinitglobals;

Prob.ADObj = 1;

Prob.ConsDiff = 1;

Result = tomRun(’snopt’, Prob, 1);

solution6 = getSolution(Result);

4.3.7 Simplifications

The code generation function detects sub-expressions that occur more than once, and optimizes by creating tem-
porary variables for those since it is very common for a function to share expressions with its derivative, or for the
derivative to contain repeated expressions.

Note that it is not necessary to complete code generation in order to evaluate a tomSym object numerically. The
subs function can be used to replace symbols by their numeric values, resulting in an evaluation.

TomSym also automatically implements algebraic simplifications of expressions. Among them are:

• Multiplication by 1 is eliminated: 1 ∗A = A

• Addition/subtraction of 0 is eliminated: 0 +A = A

• All-same matrices are reduced to scalars: [3; 3; 3] + x = 3 + x

• Scalars are moved to the left in multiplications: A ∗ y = y ∗A

• Scalars are moved to the left in addition/subtraction: A− y = −y +A

• Expressions involving element-wise operations are moved inside setdiag: setdiag(A)+setdiag(A) = setdiag(A+
A)

• Inverse operations cancel: sqrt(x)2 = x

• Multiplication by inverse cancels: A ∗ inv(A) = eye(size(A))

• Subtraction of self cancels: A−A = zeros(size(A))

• Among others...

Except in the case of scalar-matrix operations, tomSym does not reorder multiplications or additions, which means
that some expressions, like (A+B)-A will not be simplified (This might be implemented in a later version, but
must be done carefully so that truncation errors are not introduced).

Simplifications are also applied when using subs. This makes it quick and easy to handle parameterized problems.
For example, if an intricate optimization problem is to be solved for several values of a parameter a, then one

44

might first create the symbolic functions and gradients using a symbolic a, and then substitute the different values,
and generate m-code for each substituted function. If some case, like a = 0 results in entire sub-expressions being
eliminated, then the m-code will be shorter in that case.

It is also possible to generate complete problems with constants as decision variables and then change the bounds
for these variables to make them ”real constants”. The backside of this is that the problem will be slightly larger,
but the problem only has to be generated once.

The following problem defines the variable alpha as a toms, then the bounds are adjusted for alpha to solve the
problem for all alphas from 1 to 100.

toms x1 x2

% Define alpha as a toms although it is a constant

toms alpha

% Setup and solve the problem

f = alpha*(x2-x1^2)^2 + (1-x1)^2;

c = -x1^2 - x2;

con = {-1000 <= c <= 0

-10 <= x1 <= 2

-10 <= x2 <= 2};

x0 = {x1 == -1.2; x2 == 1};

Prob = sym2prob(f,con,x0);

% Now solve for alpha = 1:100, while reusing x_0

obj = zeros(100,1);

for i=1:100

Prob.x_L(Prob.tomSym.idx.alpha) = i;

Prob.x_U(Prob.tomSym.idx.alpha) = i;

Prob.x_0(Prob.tomSym.idx.alpha) = i;

Result = tomRun(’snopt’, Prob, 1);

Prob.x_0 = Result.x_k;

obj(i) = Result.f_k;

end

4.3.8 Special functions

TomSym adds some functions that duplicates the functionality of Matlab, but that are more suitable for symbolic
treatment. For example:

• setDiag and getDiag - Replaces some uses of Matlab’s diag function, but clarifies whether diag(x) means
”create a matrix where the diagonal elements are the elements of x” or ”extract the main diagonal from the
matrix x”.

• subsVec applies an expression to a list of values. The same effect can be achieved with a for-loop, but
subsVec gives more efficient derivatives.

45

• ifThenElse - A replacement for the if ... then ... else constructs (See below).

If ... then ... else:

A common reason that it is difficult to implement a function in tomSym is that it contains code like the following:

if x<2

y = 0;

else

y = x-2;

end

Because x is a symbolic object, the expression x < 2 does not evaluate to true or false, but to another symbolic
object.

In tomSym, one should instead write:

y = ifThenElse(x<2,0,x-2)

This will result in a symbolic object that contains information about both the ”true” and the ”false” scenario.
However, taking the derivative of this function will result in a warning, because the derivative is not well-defined
at x = 2.

The ”smoothed” form:

y = ifThenElse(x<2,0,x-2,0.1)

yields a function that is essentially the same for abs(x− 2) > 3 ∗ 0.1, but which follows a smooth curve near x = 2,
ensuring that derivatives of all orders exist. However, this introduces a local minimum which did not exist in the
original function, and invalidates the convexity.

It is recommended that the smooth form ifThenElse be used for nonlinear problems whenever it replaces a dis-
continuous function. However, for convex functions (like the one above) it is usually better to use code that helps
tomSym know that convexity is preserved. For example, instead of the above ifThenElse(x < 2, 0, x− 2, 0.1), the
equivalent max(0, x− 2) is preferred.

4.3.9 Procedure vs parse-tree

TomSym works with procedures. This makes it different from many symbolic algebra packages, that mainly work
with parse-trees.

In optimization, it is not uncommon for objectives and constraints to be defined using procedures that involve
loops. TomSym is built to handle these efficiently. If a function is defined using many intermediate steps, then
tomSym will keep track of those steps in an optimized procedure description. For example, consider the code:

toms x

y = x*x;

z = sin(y)+cos(y);

In the tomSym object z, there is now a procedure, which looks something like:

46

temp = x*x;

result = cos(temp)+sin(temp);

Note: It is not necessary to use the intermediate symbol y. TomSym, automatically detects duplicated expressions,
so the code sin(x*x)+cos(x*x) would result in the same optimized procedure for z.

On the other hand, the same corresponding code using the symbolic toolbox:

syms x

y = x*x;

z = sin(y)+cos(y);

results in an object z that contains cos(x2) + sin(x2), resulting in a double evaluation of x2.

This may seem like a small difference in this simplified example, but in real-life applications, the difference can be
significant.

Numeric stability:

For example, consider the following code, which computes the Legendre polynomials up to the 100th order in
tomSym (The calculation takes about two seconds on a modern computer).

toms x

p{1}=1;

p{2}=x;

for i=1:99

p{i+2} = ((2*i+1)*x.*p{i+1}-i*p{i})./(i+1);

end

Replacing ”toms” by ”syms” on the first line should cause the same polynomials to be computed using Mathwork’s
Symbolic Toolbox. But after a few minutes, when only about 30 polynomials have been computed, the program
crashes as it fails to allocate more memory. This is because the expression grows exponentially in size. To
circumvent the problem, the expression must be algebraically simplified after each step. The following code
succeeds in computing the 100 polynomials using the symbolic toolbox.

syms x

p{1}=1;

p{2}=x;

for i=1:99

p{i+2} = simplify(((2*i+1)*x.*p{i+1}-i*p{i})./(i+1));

end

However, the simplification changes the way in which the polynomial is computed. This is clearly illustrated if we
insert x = 1 into the 100th order polynomial. This is accomplished by using the command subs(p101,x,1) for both
the tomSym and the Symbolic Toolbox expressions. TomSym returns the result 1.0000, which is correct. The
symbolic toolbox, on the other hand, returns 2.6759e+ 020, which is off by 20 orders of magnitude. The reason is
that the ”simplified” symbolic expressions involves subtracting very large numbers. Note: It is of course possible to
get correct results from the Symbolic Toolbox using exact arithmetic instead of machine-precision floating-point,
but at the cost of much slower evaluation.

47

In tomSym, there are also simplifications, for example identifying identical sub-trees, or multiplication by zero,
but the simplifications are not as extensive, and care is taken to avoid simplifications that can lead to truncation
errors. Thus, an expression computed using tomSym should be exactly as stable (or unstable) as the algorithm
used to generate it.

Another example:

The following code, iteratively defines q as a function of the tomSym symbol x, and computes its derivative:

toms x

q=x;

for i=1:4

q = x*cos(q+2)*cos(q);

end

derivative(q,x)

This yields the following tomSym procedure:

tempC3 = x+2;

tempC4 = cos(tempC3);

tempC5 = x*tempC4;

tempC10 = cos(x);

tempC12 = tempC10*(tempC4-x*sin(tempC3))-tempC5*sin(x);

tempC13 = tempC5*tempC10;

tempC16 = tempC13+2;

tempC17 = cos(tempC16);

tempC18 = x*tempC17;

tempC24 = cos(tempC13);

tempC26 = tempC24*(tempC17-x*(sin(tempC16)*tempC12))-tempC18*(sin(tempC13)*tempC12);

tempC27 = tempC18*tempC24;

tempC30 = tempC27+2;

tempC31 = cos(tempC30);

tempC32 = x*tempC31;

tempC38 = cos(tempC27);

tempC40 = tempC38*(tempC31-x*(sin(tempC30)*tempC26))-tempC32*(sin(tempC27)*tempC26);

tempC41 = tempC32*tempC38;

tempC44 = tempC41+2;

tempC45 = cos(tempC44);

out = cos(tempC41)*(tempC45-x*(sin(tempC44)*tempC40))-(x*tempC45)*(sin(tempC41)*tempC40);

Now, complete the same task using the symbolic toolbox:

syms x

q=x;

for i=1:4

q = x*cos(q+2)*cos(q);

end

diff(q,x)

48

This yields the following symbolic expression:

cos(x*cos(x*cos(cos(x+2)*x*cos(x)+2)*cos(cos(x+2)*x*cos(x))+2)*cos(x*cos(cos(x+2)*x*cos(x)+2)*...

cos(cos(x+2)*x*cos(x)))+2)*cos(x*cos(x*cos(cos(x+2)*x*cos(x)+2)*cos(cos(x+2)*x*cos(x))+2)*cos(x*...

cos(cos(x+2)*x*cos(x)+2)*cos(cos(x+2)*x*cos(x))))-x*sin(x*cos(x*cos(cos(x+2)*x*cos(x)+2)*cos(...

...

and 23 more lines of code.

And this example only had four iterations of the loop. Increasing the number of iterations, the Symbolic toolbox
expressions quickly becomes unmanageable, while the tomSym procedure only grows linearly.

4.3.10 Problems and error messages

• Warning: Directory c:\Temp\tp563415 could not be removed (or similar). When tomSym is used
to automatically create m-code it places the code in a temporary directory given by Matlab’s tempname
function. Sometimes Matlab chooses a name that already exists, which results in this error message (The
temporary directory is cleared of old files regularly by most modern operating systems. Otherwise the
temporary Matlab files can easily be removed manually).

• Attempting to call SCRIPT as a function (or similar). Due to a bug in the Matlab syntax, the
parser cannot know if f(x) is a function call or the x:th element of the vector f. Hence, it has to guess. The
Matlab parser does not understand that toms creates variables, so it will get confused if one of the names is
previously used by a function or script (For example, ”cs” is a script in the systems identification toolbox).
Declaring toms cs and then indexing cs(1) will work at the Matlab prompt, but not in a script. The bug can
be circumvented by assigning something to each variable before calling toms.

4.3.11 Example

A TomSym model is to a great extent independent upon the problem type, i.e. a linear, nonlinear or mixed-integer
nonlinear model would be modeled with about the same commands. The following example illustrates how to
construct and solve a MINLP problem using TomSym.

Name=’minlp1Demo - Kocis/Grossman.’;

toms 2x1 x

toms 3x1 integer y

objective = [2 3 1.5 2 -0.5]*[x;y];

constraints = { ...

x(1) >= 0, ...

x(2) >= 1e-8, ...

x <= 1e8, ...

0 <= y <=1, ...

[1 0 1 0 0]*[x;y] <= 1.6, ...

1.333*x(2) + y(2) <= 3, ...

[-1 -1 1]*y <= 0, ...

49

x(1)^2+y(1) == 1.25, ...

sqrt(x(2)^3)+1.5*y(2) == 3, ...

};

guess = struct(’x’,ones(size(x)),’y’,ones(size(y)));

options = struct;

options.name = Name;

Prob = sym2prob(’minlp’,objective,constraints,guess,options);

Prob.DUNDEE.optPar(20) = 1;

Result = tomRun(’minlpBB’,Prob,2);

The TomSym engine automatically completes the separation of simple bounds, linear and nonlinear constraints.

50

5 Solving Linear, Quadratic and Integer Programming Problems

This section describes how to define and solve linear and quadratic programming problems, and mixed-integer
linear programs using TOMLAB. Several examples are given on how to proceed, depending on if a quick solution
is wanted, or more advanced tests are needed. TOMLAB is also compatible with MathWorks Optimization TB.
See Appendix E for more information and test examples.

The test examples and output files are part of the standard distribution of TOMLAB, available in directory
usersguide, and all tests can be run by the user. There is a file RunAllTests that goes through and runs all tests
for this section.

Also see the files lpDemo.m, qpDemo.m, and mipDemo.m, in the directory examples, where in each file a set of
simple examples are defined. The examples may be ran by giving the corresponding file name, which displays a
menu, or by running the general TOMLAB help routine tomHelp.m.

5.1 Linear Programming Problems

The general formulation in TOMLAB for a linear programming problem is

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(12)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 . Equality constraints are defined by setting the lower
bound equal to the upper bound, i.e. for constraint i: bL(i) = bU (i).

To illustrate the solution of LPs consider the simple linear programming test problem

min
x1,x2

f(x1, x2) = −7x1 − 5x2

s/t x1 + 2x2 ≤ 6
4x1 + x2 ≤ 12
x1, x2 ≥ 0

(13)

named LP Example.

The following statements define this problem in Matlab

File: tomlab/usersguide/lpExample.m

Name = ’lptest’;

c = [-7 -5]’; % Coefficients in linear objective function

A = [1 2

4 1]; % Matrix defining linear constraints

b_U = [6 12]’; % Upper bounds on the linear inequalities

x_L = [0 0]’; % Lower bounds on x

% x_min and x_max are only needed if doing plots

x_min = [0 0]’;

x_max = [10 10]’;

51

% b_L, x_U and x_0 have default values and need not be defined.

% It is possible to call lpAssign with empty [] arguments instead

b_L = [-inf -inf]’;

x_U = [];

x_0 = [];

5.1.1 A Quick Linear Programming Solution

The quickest way to solve this problem is to define the following Matlab statements using the TOMLAB format:

File: tomlab/usersguide/lpTest1.m

lpExample;

Prob = lpAssign(c, A, b_L, b_U, x_L, x_U, x_0, ’lpExample’);

Result = tomRun(’lpSimplex’, Prob, 1);

lpAssign is used to define the standard Prob structure, which TOMLAB always uses to store all information about
a problem. The three last parameters could be left out. The upper bounds will default be Inf, and the problem
name is only used in the printout in PrintResult to make the output nicer to read. If x 0, the initial value, is left
out, an initial point is found by lpSimplex solving a feasible point (Phase I) linear programming problem. In this
test the given x 0 is empty, so a Phase I problem must be solved. The solution of this problem gives the following
output to the screen

File: tomlab/usersguide/lpTest1.out

===== * * * === * * *

TOMLAB /SOL + /CGO + /Xpress MEX + /CPLEX Parallel 2-CPU + 21 more - Tomlab Optimizat

===

Problem: --- 1: lpExample f_k -26.571428571428569000

Solver: lpSimplex. EXIT=0.

Simplex method. Minimum reduced cost.

Optimal solution found

FuncEv 3 Iter 3

CPU time: 0.046800 sec. Elapsed time: 0.019000 sec.

Having defined the Prob structure is it easy to call any solver that can handle linear programming problems,

Result = tomRun(’qpSolve’, Prob, 1);

Even a nonlinear solver may be used.

Result = tomRun(’nlpSolve’,Prob, 3);

All TOMLAB solvers may either be called directly, or by using the driver routine tomRun, as in this case.

52

5.2 Quadratic Programming Problems

The general formulation in TOMLAB for a quadratic programming problem is

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(14)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 . Equality constraints are defined by setting the
lower bound equal to the upper bound, i.e. for constraint i: bL(i) = bU (i). Fixed variables are handled the same
way.

To illustrate the solution of QPs consider the simple quadratic programming test problem

min
x

f(x) = 4x2
1 + 1x1x2 + 4x2

2 + 3x1 − 4x2

s/t x1 + x2 ≤ 5
x1 − x2 = 0
x1 ≥ 0
x2 ≥ 0,

(15)

named QP Example. The following statements define this problem in Matlab.

File: tomlab/usersguide/qpExample.m

Name = ’QP Example’; % File qpExample.m

F = [8 1 % Matrix F in 1/2 * x’ * F * x + c’ * x

1 8];

c = [3 -4]’; % Vector c in 1/2 * x’ * F * x + c’ * x

A = [1 1 % Constraint matrix

1 -1];

b_L = [-inf 0]’; % Lower bounds on the linear constraints

b_U = [5 0]’; % Upper bounds on the linear constraints

x_L = [0 0]’; % Lower bounds on the variables

x_U = [inf inf]’; % Upper bounds on the variables

x_0 = [0 1]’; % Starting point

x_min = [-1 -1]; % Plot region lower bound parameters

x_max = [6 6]; % Plot region upper bound parameters

5.2.1 A Quick Quadratic Programming solution

The quickest way to solve this problem is to define the following Matlab statements using the TOMLAB format:

File: tomlab/usersguide/qpTest1.m

qpExample;

Prob = qpAssign(F, c, A, b_L, b_U, x_L, x_U, x_0, ’qpExample’);

53

Result = tomRun(’qpSolve’, Prob, 1);

The solution of this problem gives the following output to the screen.

File: tomlab/usersguide/qpTest1.out

===== * * * === * * *

TOMLAB /SOL + /CGO + /Xpress MEX + /CPLEX Parallel 2-CPU + 21 more - Tomlab Optimizat

===

Problem: --- 1: qpExample f_k -0.027777777777777790

Solver: qpSolve. EXIT=0. INFORM=1.

Active set strategy

Optimal point found

First order multipliers >= 0

Iter 4

CPU time: 0.046800 sec. Elapsed time: 0.037000 sec.

qpAssign is used to define the standard Prob structure, which TOMLAB always uses to store all information about
a problem. The three last parameters could be left out. The upper bounds will default be Inf, and the problem
name is only used in the printout in PrintResult to make the output nicer to read. If x 0, the initial value, is left
out, a initial point is found by qpSolve solving a feasible point (Phase I) linear programming problem calling the
TOMLAB lpSimplex solver. In fact, the output shows that the given x0 = (0,−1)T was rejected because it was
infeasible, and instead a Phase I solution lead to the initial point x0 = (0, 0)T .

54

5.3 Mixed-Integer Programming Problems

This section describes how to solve mixed-integer programming problems efficiently using TOMLAB. To illustrate
the solution of MIPs consider the simple knapsack 0/1 test problem Weingartner 1, which has 28 binary variables
and two knapsacks. The problem is defined

min
x

cTx

s/t
0 ≤ x ≤ 1,

Ax = b,

(16)

where b = (600, 600)T ,

c = −(1898 440 22507 270 14148 3100 4650 30800 615 4975 1160 4225 510 11880
479 440 490 330 110 560 24355 2885 11748 4550 750 3720 1950 10500)T

and the A matrix is
45 0 85 150 65 95 30 0 170 0 40 25 20 0 0 25 0 0 25 0
165 0 85 0 0 0 0 100
30 20 125 5 80 25 35 73 12 15 15 40 5 10 10 12 10 9 0 20
60 40 50 36 49 40 19 150


The following statements define this problem in Matlab using the TOMLAB format:

File: tomlab/usersguide/mipExample.m

Name=’Weingartner 1 - 2/28 0-1 knapsack’;

% Problem formulated as a minimum problem

A = [45 0 85 150 65 95 30 0 170 0 ...

40 25 20 0 0 25 0 0 25 0 ...

165 0 85 0 0 0 0 100 ; ...

30 20 125 5 80 25 35 73 12 15 ...

15 40 5 10 10 12 10 9 0 20 ...

60 40 50 36 49 40 19 150];

b_U = [600;600]; % 2 knapsack capacities

c = [1898 440 22507 270 14148 3100 4650 30800 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 560 ...

24355 2885 11748 4550 750 3720 1950 10500]’; % 28 weights

% Make problem on standard form for mipSolve

[m,n] = size(A);

A = [A eye(m,m)];

c = [-c;zeros(m,1)]; % Change sign to make a minimum problem

[mm nn] = size(A);

x_L = zeros(nn,1);

x_U = [ones(n,1);b_U];

x_0 = [zeros(n,1);b_U];

fprintf(’Knapsack problem. Variables %d. Knapsacks %d\n’,n,m);

55

fprintf(’Making standard form with %d variables\n’,nn);

% All original variables should be integer, but also slacks in this case

IntVars = nn; % Could also be set as: IntVars=1:nn; or IntVars=ones(nn,1);

x_min = x_L; x_max = x_U; f_Low = -1E7; % f_Low <= f_optimal must hold

n = length(c);

b_L = b_U;

f_opt = -141278;

The quickest way to solve this problem is to define the following Matlab statements:

File: tomlab/usersguide/mipTest1.m

mipExample;

nProblem = 7; % Use the same problem number as in mip_prob.m

fIP = []; % Do not use any prior knowledge

xIP = []; % Do not use any prior knowledge

setupFile = []; % Just define the Prob structure, not any permanent setup file

x_opt = []; % The optimal integer solution is not known

VarWeight = []; % No variable priorities, largest fractional part will be used

KNAPSACK = 0; % First run without the knapsack heuristic

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth (Default Depth First)

Prob.optParam.MaxIter = 5000; % Must increase iterations from default 500

Prob.optParam.IterPrint = 0;

Prob.PriLev = 1;

Result = tomRun(’mipSolve’, Prob, 0);

% --

% Add priorities on the variables

% --

VarWeight = c;

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.VarWeight=c;

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Prob.optParam.MaxIter = 5000; % Must increase number of iterations

56

Prob.optParam.IterPrint = 0;

Prob.PriLev = 1;

Result = tomRun(’mipSolve’, Prob, 0);

% --

% Use the knapsack heuristic, but not priorities

% --

KNAPSACK = 1; VarWeight = [];

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.KNAPSACK=1;

% Prob.MIP.VarWeight=[];

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, ...

nProblem, IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Prob.optParam.IterPrint = 0;

Prob.PriLev = 1;

Result = tomRun(’mipSolve’, Prob, 0);

% --

% Now use both the knapsack heuristic and priorities

% --

VarWeight = c; KNAPSACK = 1;

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.KNAPSACK=1;

% Prob.MIP.VarWeight=c;

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Prob.optParam.IterPrint = 0;

Prob.PriLev = 1;

Result = tomRun(’mipSolve’, Prob, 0);

To make it easier to see all variable settings, the first lines define the needed variables. Several of them are
just empty arrays, and could be directly set as empty in the call to mipAssign. mipAssign is used to define the
standard Prob structure, which TOMLAB always uses to store all information about a problem. After mipAssign
has defined the structure Prob it is then easy to set or change fields in the structure. The solver mipSolve is using
three different strategies to search the branch-and-bound tree. The default is the Depth first strategy, which is
also the result if setting the field Solver.Alg as zero. Setting the field as one gives the Breadth first strategy and
setting it as two gives the Depth first, then breadth search strategy. In the example our choice is the last strategy.
The number of iterations might be many, thus the maximal number of iterations must be increased, the field
optParam.MaxIter.

57

Tests show two ways to improve the convergence of MIP problems. One is to define a priority order in which
the different non-integer variables are selected as variables to branch on. The field MIP.VarWeight is used to
set priority numbers for each variable. Note that the lower the number, the higher the priority. In our test case
the coefficients of the objective function is used as priority weights. The other way to improve convergence is to
use a heuristic. For binary variables a simple knapsack heuristic is implemented in mipSolve. Setting the field
MIP.KNAPSACK as true instructs mipSolve to use the heuristic.

Running the four different tests on the knapsack problem gives the following output to the screen

File: tomlab/usersguide/mipTest1.out

mipTest1

Knapsack problem. Variables 28. Knapsacks 2

Branch and bound. Depth First, then Breadth.

--- Branch & Bound converged! Iterations (nodes visited) = 714 Total LP Iterations = 713

Optimal Objective function = -141278.0000000000000000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

B: -1

Branch & bound. Depth First, then Breadth. Priority weights.

--- Branch & Bound converged! Iterations (nodes visited) = 470 Total LP Iterations = 469

Optimal Objective function = -141278.0000000000000000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

B: -1

Branch and bound. Depth First, then Breadth. Knapsack Heuristic.

Found new BEST Knapsack. Nodes left 0. Nodes deleted 0.

Best IP function value -139508.0000000000000000

Found new BEST Knapsack. Nodes left 1. Nodes deleted 0.

Best IP function value -140768.0000000000000000

Found new BEST Knapsack. Nodes left 4. Nodes deleted 0.

Best IP function value -141278.0000000000000000

--- Branch & Bound converged! Iterations (nodes visited) = 96 Total LP Iterations = 95

Optimal Objective function = -141278.0000000000000000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

B: 1 1 -1 1 -1 -1 -1 -1 1 -1 0 -1 -1 -1 1 1 1 1 -1 1 -1 0 -1 -1 1 -1 -1 1

Branch & bound. Depth First, then Breadth. Knapsack heuristic. Priority weights.

Found new BEST Knapsack. Nodes left 0. Nodes deleted 0.

Best IP function value -139508.0000000000000000

Found new BEST Knapsack. Nodes left 1. Nodes deleted 0.

Best IP function value -140768.0000000000000000

Found new BEST Knapsack. Nodes left 4. Nodes deleted 0.

58

Best IP function value -141278.0000000000000000

--- Branch & Bound converged! Iterations (nodes visited) = 94 Total LP Iterations = 93

Optimal Objective function = -141278.0000000000000000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

B: 1 1 -1 1 -1 -1 -1 -1 1 -1 0 -1 -1 -1 1 1 1 1 -1 1 -1 0 -1 -1 1 -1 -1 1

diary off

Note that there is a large difference in the number of iterations if the additional heuristic and priorities are used.
Similar results are obtained if running the other two tree search strategies.

59

6 Solving Unconstrained and Constrained Optimization Problems

This section describes how to define and solve unconstrained and constrained optimization problems. Several
examples are given on how to proceed, depending on if a quick solution is wanted, or more advanced runs are
needed. See Appendix E for more information on your external solvers.

All demonstration examples that are using the TOMLAB format are collected in the directory examples. It is also
possible to run each example separately. The examples relevant to this section are ucDemo and conDemo. The
full path to these files are always given in the text. Throughout this section the test problem Rosenbrock’s banana,

min
x

f(x) = α
(
x2 − x2

1

)2 + (1− x1)2

s/t
−10 ≤ x1 ≤ 2
−10 ≤ x2 ≤ 2

(17)

is used to illustrate the solution of unconstrained problems. The standard value is α = 100. In this formulation
simple bounds are added on the variables, and also constraints in illustrative purpose. This problem is called
RB BANANA in the following descriptions to avoid mixing it up with problems already defined in the problem
definition files.

6.1 Defining the Problem in Matlab m-files

TOMLAB demands that the general nonlinear problem is defined in Matlab m-files, and not given as an input text
string. A file defining the function to be optimized must always be supplied. For linear constraints the constraint
coefficient matrix and the right hand side vector are given directly. Nonlinear constraints are defined in a separate
file. First order derivatives and second order derivatives, if available, are stored in separate files, both function
derivatives and constraint derivatives.

TOMLAB is compatible with MathWorks Optimization TB, which in various ways demands both functions, deriva-
tives and constraints to be returned by the same function. TOMLAB handle all this by use of interface routines,
hidden for the user.

It is generally recommended to use the TOMLAB format instead, because having defined the files in this format,
all MathWorks Optimization TB solvers are accessible through the TOMLAB multi-solver driver routines.

The rest of this section shows how to make the m-files for the cases of unconstrained and constrained optimization.
In Section 6.2 and onwards similar m-files are used to solve unconstrained optimization using the TOMLAB format.

The most simple way to write the m-file to compute the function value is shown for the example in (17) assuming
α = 100:

File: tomlab/usersguide/rbbs f.m

% rbbs_f - function value for Constrained Rosenbrocks Banana

%

% function f = rbbs_f(x)

function f = rbbs_f(x)

f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Running TOMLAB it is recommended to use a more general format for the m-files, adding one extra parameter,

60

the Prob problem definition structure described in detail in Appendix A. TOMLAB will handle the simpler format
also, but the more advanced features of TOMLAB are not possible to use.

If using this extra parameter, then any information needed in the low-level function computation routine may be
sent as fields in this structure. For single parameter values, like the above α parameter in the example, the field
Prob.user is recommended.

Using the above convention, then the new m-file for the example in (17) is defined as

File: tomlab/usersguide/rbb f.m

% rbb_f - function value for Rosenbrocks Banana, Problem RB BANANA

%

% function f = rbb_f(x, Prob)

function f = rbb_f(x, Prob)

alpha = Prob.user.alpha;

f = alpha*(x(2)-x(1)^2)^2 + (1-x(1))^2;

The value in the field Prob.user is the α value. It is defined before calling the solver by explicit setting the Prob
structure. In a similar way the gradient routine is defined as

File: tomlab/usersguide/rbb g.m

% rbb_g - gradient vector for Rosenbrocks Banana, Problem RB BANANA

%

% function g = rbb_g(x, Prob)

function g = rbb_g(x, Prob)

alpha = Prob.user.alpha;

g = [-4*alpha*x(1)*(x(2)-x(1)^2)-2*(1-x(1)); 2*alpha*(x(2)-x(1)^2)];

If the gradient routine is not supplied, TOMLAB will use finite differences (or automatic differentiation) if the
gradient vector is needed for the particular solver. In this case it is also easy to compute the Hessian matrix, which
gives the following code

File: tomlab/usersguide/rbb H.m

% rbb_H - Hessian matrix for Rosenbrocks Banana, Problem RB BANANA

%

% function H = crbb_H(x, Prob)

function H = rbb_H(x, Prob)

alpha = Prob.user.alpha;

61

H = [12*alpha*x(1)^2-4*alpha*x(2)+2 , -4*alpha*x(1);

-4*alpha*x(1) , 2*alpha];

If the Hessian routine is not supplied, TOMLAB will use finite differences (or automatic differentiation) if the
Hessian matrix is needed for the particular solver. Often a positive-definite approximation of the Hessian matrix
is estimated during the optimization , and the second derivative routine is then not used.

If using the constraints defined for the example in (17) then a constraint routine needs to defined for the single
nonlinear constraint, in this case

File: tomlab/usersguide/rbb c.m

% rbb_c - nonlinear constraint vector for Rosenbrocks Banana, Problem RB BANANA

%

% function c = rbb_c(x, Prob)

function cx = rbb_c(x, Prob)

cx = -x(1)^2 - x(2);

The constraint Jacobian matrix is also of interest and is defined as

File: tomlab/usersguide/rbb dc.m

% rbb_dc - nonlinear constraint gradient matrix

% for Rosenbrocks Banana, Problem RB BANANA

%

% function dc = crbb_dc(x, Prob)

function dc = rbb_dc(x, Prob)

% One row for each constraint, one column for each variable.

dc = [-2*x(1),-1];

If the constraint Jacobian routine is not supplied, TOMLAB will use finite differences (or automatic differentiation)
to estimate the constraint Jacobian matrix if it is needed for the particular solver.

The solver nlpSolve is also using the second derivatives of the constraint vector. The result is returned as a
weighted sum of the second derivative matrices with respect to each constraint vector element, the weights being
the Lagrange multipliers supplied as input to the routine. For the example problem the routine is defined as

File: tomlab/usersguide/rbb d2c.m

% rbb_d2c - The second part of the Hessian to the Lagrangian function for the

% nonlinear constraints for Rosenbrocks Banana, Problem RB BANANA, i.e.

%

% lam’ * d2c(x)

%

62

% in

%

% L(x,lam) = f(x) - lam’ * c(x)

% d2L(x,lam) = d2f(x) - lam’ * d2c(x) = H(x) - lam’ * d2c(x)

%

% function d2c=crbb_d2c(x, lam, Prob)

function d2c=rbb_d2c(x, lam, Prob)

% The only nonzero element in the second derivative matrix for the single

% constraint is the (1,1) element, which is a constant -2.

d2c = lam(1)*[-2 0; 0 0];

6.1.1 Communication between user routines

It is often the case that mathematical expressions that occur in the function computation also is part of the
gradient and Hessian computation. If these operations are costly it is natural to avoid recomputing these and
reuse them when computing the gradient and Hessian.

The function routine is always called before the gradient routine in TOMLAB, and the gradient routine is always
called before the Hessian routine. The constraint routine is similarly called before the computation of the constraint
gradient matrix. However, the TOM solvers call the function before the constraint routine, but the SOL solvers
do the reverse.

Thus it is safe to use global variables to communicate information from the function routine to the gradient and
Hessian, and similarly from the constraint routine to the constraint gradient routine. Any non-conflicting name
could be used as global variable, see Table 154 in Appendix D to find out which names are in use. However, the
recommendation is to always use a predefined global variable named US A for this communication. TOMLAB is
designed to handle recursive calls, and any use of new global variables may cause conflicts. The variable US A
(and also US B) is automatically saved in a stack, and any level of recursions may safely be used. The user is free
to use US A both as variable, and as a structure. If much information is to be communicated, defining US A as a
structure makes it possible to send any amount of information between the user routines.

In the examples directory the constrained optimization example in conDemo is using the defined functions con1 f,
con1 g and con1 H. They include an example of communicating one exponential expression between the routines.

The lsDemo example file in the examples directory communicates two exponential expressions between ls1 r and
ls1 J with the use of US A and US B. In ls1 r the main part is

...

global US_A

t = Prob.LS.t(:);

% Exponential computations takes time, and may be done once, and

% reused when computing the Jacobian

US_A = exp(-x(1)*t);

US_B = exp(-x(2)*t);

63

r = K*x(1)*(US_B - US_A) / (x(3)*(x(1)-x(2))) - Prob.LS.y;

In ls1 J then US A is used

...

global US_A

% Pick up the globally saved exponential computations

e1 = US_A;

e2 = US_B;

% Compute the three columns in the Jacobian, one for each of variable

J = a * [t.*e1+(e2-e1)*(1-1/b), -t.*e2+(e2-e1)/b, (e1-e2)/x(3)];

For more discussions on global variables and the use of recursive calls in TOMLAB, see Appendix D.

In the following sections it is described how to setup problems in TOMLAB and use the defined m-files. First
comes the simplest way, to use the TOMLAB format.

6.2 Unconstrained Optimization Problems

The use of the TOMLAB format is best illustrated by examples

The following is the first example in the ucDemo demonstration file. It shows an example of making a call to
conAssign to create a structure in the TOMLAB format, and solve the problem with a call to ucSolve.

% ---

function uc1Demo

% ---

format compact

fprintf(’===\n’);

fprintf(’Rosenbrocks banana with explicit f(x), g(x) and H(x)\n’);

fprintf(’===\n’);

Name = ’RB Banana’;

x_0 = [-1.2 1]’; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

fLowBnd = 0; % Lower bound on function.

% Generate the problem structure using the TOMLAB format (short call)

Prob = conAssign(’uc1_f’, ’uc1_g’, ’uc1_H’, [], x_L, x_U, Name, ...

x_0, [], fLowBnd);

64

Result = tomRun(’ucSolve’, Prob, 1);

In its more general form conAssign is used to define constrained problems. It also takes as input the nonzero
pattern of the Hessian matrix, stored in the matrix HessPattern. In this case all elements of the Hessian matrix
are nonzero, and either HessPattern is set as empty or as a matrix with all ones. Also the parameter pSepFunc
should be set. It defines if the objective function is partially separable, see Section 14.5. Setting this parameter
empty (the default), then this property is not used. In the above example the call would be

...

HessPattern = ones(2,2); % The pattern of nonzeros

pSepFunc = []; % No partial separability used

% conAssign is used to generate the TOMLAB problem structure

Prob = conAssign(’uc1_f’, ’uc1_g’, ’uc1_H’, HessPattern, ...

x_L, x_U, Name, x_0, pSepFunc, fLowBnd);

...

Also see the other examples in ucDemo on how to solve the problem, when gradients routines are not present, and
numerical differentiation must be used. An example on how to solve a sequence of problems is also presented.

If the gradient is not possible to define one just sets the corresponding gradient function name empty.

The example uc3Demo in file ucDemo show how to solve a sequence of problems in TOMLAB, in this case changing
the steepness parameter α in (17). It is important to point out that it is only necessary to define the Prob structure
once and then just change the varying parameters, in this case the α value. The α value is sent to the user routines
using the field user in the Prob structure. Any field in the Prob structure could be used that is not conflicting with
the predefined fields. In this example the a vector of Result structures are saved for later preprocessing.

% ---

function uc3Demo - Sequence of Rosenbrocks banana functions

% ---

% conAssign is used to generate the TQ problem structure

% Prob = conAssign(f,g,H, HessPattern, x_L, x_U, Name, x_0, pSepFunc, fLowBnd);

Prob = conAssign(’uc3_f’,[],[],[],[-10;-10], [2;2], [-1.2;1], ’RB Banana’,[],0)

% The different steepness parameters to be tried

Steep = [100 500 1000 10000];

for i = 1:4

Prob.user.alpha = Steep(i);

Result(i) = tomRun(’ucSolve’, Prob, 1);

end

65

6.3 Direct Call to an Optimization Routine

When wanting to solve a problem by a direct call to an optimization routine there are two possible ways of doing
it. The difference is in the way the problem dependent parameters are defined. The most natural way is to use a
Init File, like the predefined TOMLAB Init Files � prob (e.g. uc prob if the problem is of the type unconstrained)
to define those parameters. The other way is to call the routine conAssign. In this subsection, examples of two
different approaches are given.

First, solve the problem RB BANANA in (17) as an unconstrained problem. In this case, define the problem in
the files ucnew prob, ucnew f, ucnew g and ucnew H. Using the problem definition files in the working directory
solve the problem and print the result by the following calls.

File: tomlab/usersguide/ucnewSolve1.m

probFile = ’ucnew_prob’; % Problem definition file.

P = 18; % Problem number for the added RB Banana.

Prob = probInit(probFile, P); % Setup Prob structure.

Result = tomRun(’ucSolve’, Prob, 1);

Now, solve the same problem as in the example above but define the parameters x 0, x L and x L by calling the
routine conAssign. Note that in this case the file ucnew prob is not used, only the files ucnew f and ucnew g. The
file ucnew H is not needed because a quasi-Newton BFGS algorithm is used.

File: tomlab/usersguide/ucnewSolve2.m

x_0 = [-1.2;1]; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

Prob = conAssign(’ucnew_f’,’ucnew_g’, [], [], x_L, x_U,...

’ucNew’, x_0);

Prob.P = 18; % Problem number.

Prob.Solver.Alg=1; % Use quasi-Newton BFGS

Prob.user.uP = 100; % Set alpha parameter

Result = tomRun(’ucSolve’,Prob,1);

6.4 Constrained Optimization Problems

Study the following constrained exponential problem, Exponential problem III,

min
x

f(x) = exp(x1)(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

s/t

−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10
0 ≤ x1 + x2 ≤ 0
1.5 ≤ −x1x2 + x1 + x2

−10 ≤ x1x2

. (18)

The first two constraints are simple bounds, the third is a linear equality constraint, because lower and upper
bounds are the same. The last two constraints are nonlinear inequality constraints. To solve the problem, define
the following statements, available as con1Demo in file conDemo.

66

Name = ’Exponential problem III’;

A = [1 1]; % One linear constraint

b_L = 0; % Lower bound on linear constraint

b_U = 0; % b_L == b_U implies equality

c_L = [1.5;-10] % Two nonlinear inequality constraints

c_U = []; % Empty means Inf (default) for the two constraints

x_0 = [-5;5]; % Initial value for x

x_L = [-10;-10]; % Lower bounds on x

x_U = [10;10]; % Upper bounds on x

fLowBnd = 0; % A lower bound on the optimal function value

x_min = [-2;-2]; % Used for plotting, lower bounds

x_max = [4;4]; % Used for plotting, upper bounds

x_opt=[-3.162278, 3.162278; -1.224745, 1.224745]; % Two stationary points

f_opt=[1.156627; 1.8951];

HessPattern = []; % All elements in Hessian are nonzero.

ConsPattern = []; % All elements in the constraint Jacobian are nonzero.

pSepFunc = []; % The function f is not defined as separable

% Generate the problem structure using the TOMLAB format

Prob = conAssign(’con1_f’, ’con1_g’, ’con1_H’, HessPattern, x_L, x_U, ...

Name, x_0, pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’,...

[], ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Result = tomRun(’conSolve’,Prob);

PrintResult(Result);

The following example, con2Demo in file conDemo, illustrates numerical estimates of the gradient and constrained
Jacobian matrix. Only the statements different from the previous example is given. Note that the gradient routine
is not given at all, but the constraint Jacobian routine is given. Setting Prob.ConsDiff greater than zero will
overrule the use of the constraint Jacobian routine. The solver conSolve is in this case called directly.

% Generate the problem structure using the TOMLAB format

Prob = conAssign(’con1_f’, [], [], HessPattern, x_L, x_U, Name, x_0, ...

pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’, [], ...

ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Prob.NumDiff = 1; % Use standard numerical differences

Prob.ConsDiff = 5; % Use the complex variable method to estimate derivatives

Prob.Solver.Alg = 0; % Use default algorithm in conSolve

Result = tomRun(’conSolve’, Prob, 1);

The third example, con3Demo in file conDemo, shows how to solve the same problem for a number of different
initial values on x. The initial values are stored in the matrix X0, and in each loop step Prob.x 0 is set to one of the
columns in X0. In a similar way any of the values in the Prob structure may be changed in a loop step, if e.g. the

67

loop is part of a control loop. The Prob structure only needs to be defined once. The different initial points reveal
that this problem is nasty, and that several points fulfill the convergence criteria. Only the statements different
from the previous example is given. A different solver is called dependent on which TOMLAB version is used.

X0 = [-1 -5 1 0 -5 ;

1 7 -1 0 5];

% Generate the problem structure using the TOMLAB format

Prob = conAssign(’con1_f’, ’con1_g’, ’con1_H’, HessPattern, x_L, x_U, Name, ...

X0(:,1), pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’,...

[], ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 0;

TomV = tomlabVersion;

for i = 1:size(X0,2)

Prob.x_0 = X0(:,i);

if TomV(1:1) ~= ’M’

% Users of v3.0 may instead call MINOS (or SNOPT, NPSOL in v3.0 /SOL)

Result = tomRun(’minos’,Prob, 2);

else

Result = tomRun(’conSolve’,Prob, 2);

end

end

The constrained optimization solvers all have proven global convergence to a local minimum. If the problem is not
convex, then it is always difficult to assure that a global minimum has been reached. One way to make it more
likely that the global minimum is found is to optimize very many times with different initial values. The fifth
example, con5Demo in file conDemo illustrates this approach by solving the exponential problem 50 times with
randomly generated initial points.

If the number of variables are not that many, say fifteen, another approach is to use a global optimization solver
like glcSolve to crunch the problem and search for the global minimum. If letting it run long enough, it is very
likely to find the global minimum, but maybe not with high precision. To run glcSolve the problem must be
box-bounded, and the advise is to try to squeeze the size of the box down as much as possible. The sixth example,
con6Demo in file conDemo, illustrates a call to glcSolve. It is very simple to do this call if the problem has been
defined in the TOMLAB format. The statements needed are the following

Prob.optParam.MaxFunc = 5000; % Define maximal number of function evaluations

Result = tomRun(’glcSolve’,Prob,2);

A more clever approach, using warm starts and successive checks on the best function value obtained, is discussed
in Section 7. It is also better to use glcAssign and not conAssign if the intension is to use global optimization.

68

6.5 Efficient use of the TOMLAB solvers

To follow the iterations in the TOMLAB Base Module solvers, it is useful to set the IterPrint parameter as true.
This gives one line of information for each iteration. This parameter is part of the optParam subfield:

Prob.optParam.IterPrint = 1;

Note that ucSolve implements a whole set of methods for unconstrained optimization. If the user explicitly wants
Newtons method to be used, utilizing second order information, then set

Prob.Solver.Alg=1; % Use Newtons Method

But ucSolve will switch to the default BFGS method if no routine has been given to return the Hessian matrix.
If the user still wants to run Newtons method, then the Hessian routine must be defined and return an empty
Hessian. That triggers a numerical estimation of the Hessian. Do help ucSolve to see the different algorithmic
options and other comments on how to run the solver.

Both ucSolve and conSolve use line search based methods. The parameter σ influences the accuracy of the line
search each step. The default value is

Prob.LineParam.sigma = 0.9; % Inaccurate line search

However, using the conjugate gradient methods in ucSolve, they benefit from a more accurate line search

Prob.LineParam.sigma = 0.01; % Default accurate line search for C-G methods

as do quasi-Newton DFP methods (default σ = 0.2). The test for the last two cases are made for σ = 0.9. If the
user really wishes these methods to use σ = 0.9, the value must be set slightly different to fool the test:

Prob.LineParam.sigma = 0.9001; % Avoid the default value for C-G methods

The choice of line search interpolation method is also important, a cubic or quadratic interpolation. The default
is to use cubic interpolation.

Prob.LineParam.LineAlg = 1; % 0 = quadratic, 1 = cubic

69

7 Solving Global Optimization Problems

Global Optimization deals with optimization problems that might have more than one local minimum. To find the
global minimum out of a set of local minimum demands other types of methods than for the problem of finding
local minimum. The TOMLAB routines for global optimization are based on using only function or constraint
values, and no derivative information. Two different types are defined, Box-bounded global optimization glb and
global mixed-integer nonlinear programming glc. For the second case, still the problem should be box-bounded.

All demonstration examples that are using the TOMLAB format are collected in the directory examples. Running
the menu program tomMenu, it is possible to run all demonstration examples. It is also possible to run each
example separately. The examples relevant to this section are glbDemo and glcDemo.

7.1 Box-Bounded Global Optimization Problems

Box-bounded global optimization problems are simple to define, only one function routine is needed, because the
global optimization routines in TOMLAB does not utilize information about derivatives. To define the Shekel 5
test problem in a routine glb1 f, the following statements are needed

function f = glb1_f(x, Prob)

A = [4 4 4 4; 1 1 1 1; 8 8 8 8; 6 6 6 6; 3 7 3 7]’;

f=0; c = [.1 .2 .2 .4 .4]’;

for i = 1:5

z = x-A(:,i);

f = f - 1/(z’*z + c(i)); % Shekel 5

end

To solve the Shekel 5 test problem define the following statements, available as glb1Demo in glbDemo.

function glb1Demo

Name = ’Shekel 5’;

x_L = [0 0 0 0]’; % Lower bounds in the box

x_U = [10 10 10 10]’; % Upper bounds in the box

% Generate the problem structure using the TOMLAB format (short call)

Prob = glcAssign(’glb1_f’, x_L, x_U, Name);

Result = tomRun(’glbSolve’, Prob, 1); % Solve using the default of 200 iterations

If the user knows the optimal function value or some good approximation, it could be set as a target for the
optimization, and the solver will stop if the target value is achieved within a relative tolerance. For the Shekel 5
problem, the optimal function value is known and could be set as target value with the following statements.

Prob.optParam.fGoal = -10.1532; % The optimal value set as target

Prob.optParam.eps_f = 0.01; % Convergence tolerance one percent

Convergence will occur if the function value sampled is within one percent of the optimal function value.

70

Without additional knowledge about the problem, like the function value at the optimum, there is no convergence
criteria to be used. The global optimization routines continues to sample points until the maximal number of
function evaluations or the maximum number of iteration cycles are reached. In practice, it is therefore important
to be able to do warm starts, starting once again without having to recompute the past history of iterations and
function evaluations. Before doing a new warm start, the user can evaluate the results and determine if to continue
or not. If the best function value has not changed for long it is a good chance that there are no better function
value to be found.

In TOMLAB warm starts are automatically handled, the only thing the user needs to do is to set one flag,
Prob.WarmStart, as true. The solver glbSolve defines a binary mat-file called glbSave.mat to store the information
needed for a warm start. It is important to avoid running other problems with this solver when doing warm starts.
The warm start information would then be overwritten. The example glb3Demo in glbDemo shows how to do
warm starts. The number of iterations per call is set very low to be able to follow the process.

Name = ’Shekel 5’;

x_L = [0 0 0 0]’;

x_U = [10 10 10 10]’;

% Generate the problem structure using the TOMLAB format (short call)

Prob = glcAssign(’glb1_f’, x_L, x_U, Name);

Prob.optParam.MaxIter = 5; % Do only five iterations per call

Result = tomRun(’glbSolve’,Prob,2); pause(1)

Prob.WarmStart = 1; % Set the flag for warm start

for i = 1:6 % Do 6 warm starts

Result = tomRun(’glbSolve’,Prob,2); pause(1)

end

The example glb4Demo in glbDemo illustrates how to send parameter values down to the function routine from
the calling routine. Change the Shekel 5 test problem definition so that A and c are given as input to the function
routine

function f = glb4_f(x, Prob)

% A and c info are sent using Prob structure

f = 0; A = Prob.user.A; c = Prob.user.c;

for i = 1:5

z = x-A(:,i);

f = f - 1/(z’*z + c(i)); % Shekel 5

end

Then the following statements solve the Shekel 5 test problem.

Name = ’Shekel 5’;

x_L = [0 0 0 0]’;

x_U = [10 10 10 10]’;

% Generate the problem structure using the TOMLAB format (short call)

Prob = glcAssign(’glb4_f’, x_L, x_U, Name);

71

% Add information to be sent to glb4_f. Used in f(x) computation

Prob.user.A = [4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7]’;

Prob.user.c = [.1 .2 .2 .4 .4]’;

Result = tomRun(’glbSolve’,Prob,2);

7.2 Global Mixed-Integer Nonlinear Problems

To solve global mixed-integer nonlinear programming problems with the TOMLAB format, only two routines need
to be defined, one routine that defines the function and one that defines the constraint vector. No derivative
information is utilized by the TOMLAB solvers. To define the Floudas-Pardalos 3.3 test problem, one routine
glc1 f

function f = fp3_3f(x, Prob)

f = -25*(x(1)-2)^2-(x(2)-2)^2-(x(3)-1)^2-(x(4)-4)^2-(x(5)-1)^2-(x(6)-4)^2;

and one routine glc1 c

function c = fp3_3c(x, Prob)

c = [(x(3)-3)^2+x(4); (x(5)-3)^2+x(6)]; % Two nonlinear constraints (QP)

is needed. Below is the example glc1Demo in glcDemo that shows how to solve this problem doing ten warm
starts. The warm starts are automatically handled, the only thing the user needs to do is to set one flag as
true, Prob.WarmStart. The solver glcSolve defines a binary mat-file called glcSave.mat to store the information
needed for the warm start. It is important to avoid running other problems with glcSolve when doing warm starts.
Otherwise the warm start information will be overwritten with the new problem. The original Floudas-Pardalos
3.3 test problem, has no upper bounds on x1 and x2, but such bounds are implicit from the third linear constraint,
x1 +x2 ≤ 6. This constraint, together with the simple bounds x1 ≥ 0 and x2 ≥ 0 immediately leads to x1 ≤ 6 and
x2 ≤ 6. Using these inequalities a finite box-bounded problem can be defined.

Name = ’Floudas-Pardalos 3.3’; % This example is number 16 in glc_prob.m

x_L = [0 0 1 0 1 0]’; % Lower bounds on x

A = [1 -3 0 0 0 0

-1 1 0 0 0 0

1 1 0 0 0 0]; % Linear equations

b_L = [-inf -inf 2]’; % Upper bounds for linear equations

b_U = [2 2 6]’; % Lower bounds for linear equations

x_U = [6 6 5 6 5 10]’; % Upper bounds after x(1),x(2) values inserted

c_L = [4 4]’; % Lower bounds on two nonlinear constraints

c_U = []; % Upper bounds are infinity for nonlinear constraints

x_opt = [5 1 5 0 5 10]’; % Optimal x value

f_opt = -310; % Optimal f(x) value

x_min = x_L; x_max = x_U; % Plotting bounds

% Set the rest of the arguments as empty

IntVars = []; VarWeight = [];

72

fIP = []; xIP = []; fLowBnd = []; x_0 = [];

%IntVars = [1:5]; % Indices of the variables that should be integer valued

Prob = glcAssign(’glc1_f’, x_L, x_U, Name, A, b_L, b_U, ’glc1_c’, ...

c_L, c_U, x_0, IntVars, VarWeight, ...

fIP, xIP, fLowBnd, x_min, x_max, f_opt, x_opt);

% Increase the default max number of function evaluations in glcSolve

Prob.optParam.MaxFunc = 500;

Result = tomRun(’glcSolve’, Prob, 3);

Prob.WarmStart = 1;

% Do 10 restarts, call driver tomRun, PriLev = 2 gives call to PrintResult

for i=1:10

Result = tomRun(’glcSolve’,Prob,2);

end

73

8 Solving Least Squares and Parameter Estimation Problems

This section describes how to define and solve different types of linear and nonlinear least squares and parameter
estimation problems. Several examples are given on how to proceed, depending on if a quick solution is wanted, or
more advanced tests are needed. TOMLAB is also compatible with MathWorks Optimization TB. See Appendix
E for more information and test examples.

All demonstration examples that are using the TOMLAB format are collected in the directory examples. The
examples relevant to this section are lsDemo and llsDemo. The full path to these files are always given in the text.

Section 8.5 (page 81) contains information on solving extreme large-scale ls problems with Tlsqr.

8.1 Linear Least Squares Problems

This section shows examples how to define and solve linear least squares problems using the TOMLAB format. As
a first illustration, the example lls1Demo in file llsDemo shows how to fit a linear least squares model with linear
constraints to given data. This test problem is taken from the Users Guide of LSSOL [29].

Name=’LSSOL test example’;

% In TOMLAB it is best to use Inf and -Inf, not big numbers.

n = 9; % Number of unknown parameters

x_L = [-2 -2 -Inf, -2*ones(1,6)]’;

x_U = 2*ones(n,1);

A = [ones(1,8) 4; 1:4,-2,1 1 1 1; 1 -1 1 -1, ones(1,5)];

b_L = [2 -Inf -4]’;

b_U = [Inf -2 -2]’;

y = ones(10,1);

C = [ones(1,n); 1 2 1 1 1 1 2 0 0; 1 1 3 1 1 1 -1 -1 -3; ...

1 1 1 4 1 1 1 1 1;1 1 1 3 1 1 1 1 1;1 1 2 1 1 0 0 0 -1; ...

1 1 1 1 0 1 1 1 1;1 1 1 0 1 1 1 1 1;1 1 0 1 1 1 2 2 3; ...

1 0 1 1 1 1 0 2 2];

x_0 = 1./[1:n]’;

t = []; % No time set for y(t) (used for plotting)

weightY = []; % No weighting

weightType = []; % No weighting type set

x_min = []; % No lower bound for plotting

x_max = []; % No upper bound for plotting

Prob = llsAssign(C, y, x_L, x_U, Name, x_0, t, weightType, weightY, ...

A, b_L, b_U, x_min, x_max);

Result = tomRun(’lsei’,Prob,2);

74

It is trivial to change the solver in the call to tomRun to a nonlinear least squares solver, e.g. clsSolve, or a general
nonlinear programming solver.

8.2 Linear Least Squares Problems using the SOL Solver LSSOL

The example lls2Demo in file llsDemo shows how to fit a linear least squares model with linear constraints to given
data using a direct call to the SOL solver LSSOL. The test problem is taken from the Users Guide of LSSOL [29].

% Note that when calling the LSSOL MEX interface directly, avoid using

% Inf and -Inf. Instead use big numbers that indicate Inf.

% The standard for the MEX interfaces is 1E20 and -1E20, respectively.

n = 9; % There are nine unknown parameters, and 10 equations

x_L = [-2 -2 -1E20, -2*ones(1,6)]’;

x_U = 2*ones(n,1);

A = [ones(1,8) 4; 1:4,-2,1 1 1 1; 1 -1 1 -1, ones(1,5)];

b_L = [2 -1E20 -4]’;

b_U = [1E20 -2 -2]’;

% Must put lower and upper bounds on variables and constraints together

bl = [x_L;b_L];

bu = [x_U;b_U];

H = [ones(1,n); 1 2 1 1 1 1 2 0 0; 1 1 3 1 1 1 -1 -1 -3; ...

1 1 1 4 1 1 1 1 1;1 1 1 3 1 1 1 1 1;1 1 2 1 1 0 0 0 -1; ...

1 1 1 1 0 1 1 1 1;1 1 1 0 1 1 1 1 1;1 1 0 1 1 1 2 2 3; ...

1 0 1 1 1 1 0 2 2];

y = ones(10,1);

x_0 = 1./[1:n]’;

% Set empty indicating default values for most variables

c = []; % No linear coefficients, they are for LP/QP

Warm = []; % No warm start

iState = []; % No warm start

Upper = []; % C is not factorized

kx = []; % No warm start

SpecsFile = []; % No parameter settings in a SPECS file

PriLev = []; % PriLev is not really used in LSSOL

ProbName = []; % ProbName is not really used in LSSOL

optPar(1) = 50; % Set print level at maximum

PrintFile = ’lssol.txt’; % Print result on the file with name lssol.txt

z0 = (y-H*x_0);

f0 = 0.5*z0’*z0;

fprintf(’Initial function value %f\n’,f0);

75

[x, Inform, iState, cLamda, Iter, fObj, r, kx] = ...

lssol(A, bl, bu, c, x_0, optPar, H, y, Warm, ...

iState, Upper, kx, SpecsFile, PrintFile, PriLev, ProbName);

% We could equally well call with the following shorter call:

% [x, Inform, iState, cLamda, Iter, fObj, r, kx] = ...

% lssol(A, bl, bu, c, x, optPar, H, y);

z = (y-H*x);

f = 0.5*z’*z;

fprintf(’Optimal function value %f\n’,f);

8.3 Nonlinear Least Squares Problems

This section shows examples how to define and solve nonlinear least squares problems using the TOMLAB format.
As a first illustration, the example ls1Demo in file lsDemo shows how to fit a nonlinear model of exponential type
with three unknown parameters to experimental data. This problem, Gisela, is also defined as problem three in
ls prob. A weighting parameter K is sent to the residual and Jacobian routine using the Prob structure. The
solver clsSolve is called directly. Note that the user only defines the routine to compute the residual vector and the
Jacobian matrix of derivatives. TOMLAB has special routines ls f, ls g and ls H that computes the nonlinear least
squares objective function value, given the residuals, as well as the gradient and the approximative Hessian, see
Table 39. The residual routine for this problem is defined in file ls1 r in the directory example with the statements

function r = ls_r(x, Prob)

% Compute residuals to nonlinear least squares problem Gisela

% US_A is the standard TOMLAB global parameter to be used in the

% communication between the residual and the Jacobian routine

global US_A

% The extra weight parameter K is sent as part of the structure

K = Prob.user.K;

t = Prob.LS.t(:); % Pick up the time points

% Exponential expressions to be later used when computing the Jacobian

US_A.e1 = exp(-x(1)*t); US_A.e2 = exp(-x(2)*t);

r = K*x(1)*(US_A.e2 - US_A.e1) / (x(3)*(x(1)-x(2))) - Prob.LS.y;

Note that this example also shows how to communicate information between the residual and the Jacobian routine.
It is best to use any of the predefined global variables US A and US B, because then there will be no conflicts with
respect to global variables if recursive calls are used. In this example the global variable US A is used as structure
array storing two vectors with exponential expressions. The Jacobian routine for this problem is defined in the
file ls1 J in the directory example. The global variable US A is accessed to obtain the exponential expressions, see
the statements below.

76

function J = ls1_J(x, Prob)

% Computes the Jacobian to least squares problem Gisela. J(i,j) is dr_i/d_x_j

% Parameter K is input in the structure Prob

a = Prob.user.K * x(1)/(x(3)*(x(1)-x(2)));

b = x(1)-x(2);

t = Prob.LS.t;

% Pick up the globally saved exponential computations

global US_A

e1 = US_A.e1; e2 = US_A.e2;

% Compute the three columns in the Jacobian, one for each of variable

J = a * [t.*e1+(e2-e1)*(1-1/b), -t.*e2+(e2-e1)/b, (e1-e2)/x(3)];

The following statements solve the Gisela problem.

% ---

function ls1Demo - Nonlinear parameter estimation with 3 unknowns

% ---

Name=’Gisela’;

% Time values

t = [0.25; 0.5; 0.75; 1; 1.5; 2; 3; 4; 6; 8; 12; 24; 32; 48; 54; 72; 80;...

96; 121; 144; 168; 192; 216; 246; 276; 324; 348; 386];

% Observations

y = [30.5; 44; 43; 41.5; 38.6; 38.6; 39; 41; 37; 37; 24; 32; 29; 23; 21;...

19; 17; 14; 9.5; 8.5; 7; 6; 6; 4.5; 3.6; 3; 2.2; 1.6];

x_0 = [6.8729,0.0108,0.1248]’; % Initial values for unknown x

% Generate the problem structure using the TOMLAB format (short call)

% Prob = clsAssign(r, J, JacPattern, x_L, x_U, Name, x_0, ...

% y, t, weightType, weightY, SepAlg, fLowBnd, ...

% A, b_L, b_U, c, dc, ConsPattern, c_L, c_U, ...

% x_min, x_max, f_opt, x_opt);

Prob = clsAssign(’ls1_r’, ’ls1_J’, [], [], [], Name, x_0, y, t);

% Weighting parameter K in model is sent to r and J computation using Prob

Prob.user.K = 5;

Result = tomRun(’clsSolve’, Prob, 2);

77

The second example ls2Demo in file lsDemo solves the same problem as ls1Demo, but using numerical differences to
compute the Jacobian matrix in each iteration. To make TOMLAB avoid using the Jacobian routine, the variable
Prob.NumDiff has to be set nonzero. Also in this example the flag Prob.optParam.IterPrint is set to enable one
line of printing for each iteration. The changed statements are

...

Prob.NumDiff = 1; % Use standard numerical differences

Prob.optParam.IterPrint = 1; % Print one line each iteration

Result = tomRun(’clsSolve’,Prob,2);

The third example ls3Demo in file lsDemo solves the same problem as ls1Demo, but six times for different values
of the parameter K in the range [3.8, 5.0]. It illustrates that it is not necessary to remake the problem structure
Prob for each optimization, but instead just change the parameters needed. The Result structure is saved as an
vector of structure arrays, to enable post analysis of the results. The changed statements are

for i=1:6

Prob.user.K = 3.8 + 0.2*i;

Result(i) = tomRun(’clsSolve’,Prob,2);

fprintf(’\nWEIGHT PARAMETER K is %9.3f\n\n\n’,Prob.user.K);

end

Table 39 describes the low level routines and the initialization routines needed for the predefined constrained
nonlinear least squares (cls) test problems. Similar routines are needed for the nonlinear least squares (ls) test
problems (here no constraint routines are needed).

Table 39: Constrained nonlinear least squares (cls) test problems.

Function Description
cls prob Initialization of cls test problems.
cls r Compute the residual vector ri(x), i = 1, ...,m. x ∈ Rn for cls test problems.
cls J Compute the Jacobian matrix Jij(x) = ∂ri/dxj , i = 1, ...,m, j = 1, ..., n for cls test

problems.
cls c Compute the vector of constraint functions c(x) for cls test problems.
cls dc Compute the matrix of constraint normals ∂c(x)/dx for cls test problems.
cls d2c Compute the second part of the second derivative of the Lagrangian function for cls test

problems.
ls f General routine to compute the objective function value f(x) = 1

2r(x)T r(x) for nonlinear
least squares type of problems.

ls g General routine to compute the gradient g(x) = J(x)T r(x) for nonlinear least squares
type of problems.

ls H General routine to compute the Hessian approximation H(x) = J(x)T ∗J(x) for nonlinear
least squares type of problems.

78

8.4 Fitting Sums of Exponentials to Empirical Data

In TOMLAB the problem of fitting sums of positively weighted exponential functions to empirical data may be
formulated either as a nonlinear least squares problem or a separable nonlinear least squares problem [66]. Several
empirical data series are predefined and artificial data series may also be generated. There are five different types
of exponential models with special treatment in TOMLAB, shown in Table 40. In research in cooperation with
Todd Walton, Vicksburg, USA, TOMLAB has been used to estimate parameters using maximum likelihood in
simulated Weibull distributions, and Gumbel and Gamma distributions with real data. TOMLAB has also been
useful for parameter estimation in stochastic hydrology using real-life data.

Table 40: Exponential models treated in TOMLAB.

f(t) =
p∑
i

αie
−βit, αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p∑
i

αi(1− e−βit), αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p∑
i

tαie
−βit, αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p∑
i

(tαi − γi)e−βit, αi, γi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p∑
i

tαie
−βi(t−γi), αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

Algorithms to find starting values for different number of exponential terms are implemented. Test results show
that these initial value algorithms are very close to the true solution for equidistant problems and fairly good
for non-equidistant problems, see the thesis by Petersson [61]. Good initial values are extremely important when
solving real life exponential fitting problems, because they are so ill-conditioned. Table 41 shows the relevant
routines.

Table 41: Exponential fitting test problems.

Function Description
expAssign Assign exponential fitting problem.
exp ArtP Generate artificial exponential sum problems.
expInit Find starting values for the exponential parameters λ.
expSolve Solve exponential fitting problems.
exp prob Defines a exponential fitting type of problem, with data series (t, y). The file includes

data from several different empirical test series.
Helax prob Defines 335 medical research problems supplied by Helax AB, Uppsala, Sweden, where

an exponential model is fitted to data. The actual data series (t, y) are stored on one file
each, i.e. 335 data files, 8MB large, and are not distributed. A sample of five similar files
are part of exp prob.

exp r Compute the residual vector ri(x), i = 1, ...,m. x ∈ Rn
exp J Compute the Jacobian matrix ∂ri/dxj , i = 1, ...,m, j = 1, ..., n.
exp d2r Compute the 2nd part of the second derivative for the nonlinear least squares exponential

fitting problem.
exp c Compute the constraints λ1 < λ2 < ... on the exponential parameters λi, i = 1, ..., p.
exp dc Compute matrix of constraint normals for constrained exponential fitting problem.

79

Table 41: Exponential fitting test problems, continued

Function Description
exp d2c Compute second part of second derivative matrix of the Lagrangian function for con-

strained exponential fitting problem. This is a zero matrix, because the constraints are
linear.

exp q Find starting values for exponential parameters λi, i = 1, ..., p.
exp p Find optimal number of exponential terms, p.

The algorithmic development implemented in TOMLAB is further discussed in [49]. An overview of the field is
also given in this reference.

80

8.5 Large Scale LS problems with Tlsqr

The Tlsqr MEX solver provides special parameters for advanced memory handling, enabling the user to solve
extremely large linear least squares problems.

We’ll take the problem of solving Ax = b in the least squares sense as a prototype problem for this section. Here,
A ∈ Rm×n is a dense or sparse matrix and b ∈ Rm.

Controlling memory allocation in Tlsqr

The normal mode of operation of Tlsqr is that memory for the A matrix is allocated and deallocated each time
the solver is called. In a real-life situation with a very large A and where the solver is called repeatedly, this may
become inefficient and even cause problems getting memory because of memory fragmenting.

The Tlsqr solver provides a parameter Alloc, given as the second element of the first input parameter to control
the memory handling. The possible values of Alloc and their meanings are given in Table 42.

Table 42: Alloc values for Tlsqr
Alloc (m(2)) Meaning

0 Normal operation: allocate – solve – deallocate
1 Only allocate, no results returned
2 Allocate and solve, no deallocate
3 Only solve, no allocate/deallocate
4 Solve and deallocate
5 Deallocate only, no results returned

An example of the calling sequence is given below.

>> m = 60000; n = 1000; d = 0.01; % Size and density of A

>> A = sprand(m,n,d); % Sparse random matrix

>> b = ones(m,1); % Right hand side

>> whos A

Name Size Bytes Class

A 60000x500 3584784 sparse array

Grand total is 298565 elements using 3584784 bytes

% ===

% Simple standard call to Tlsqr, Alloc is set to default 0 if m is scalar

>> x=Tlsqr(m,n,A,[],[],b);

% ===

% To solve repeatedly with e.g. the same A but different b,

% the user may do:

81

% Indicate to Tlsqr to allocate and solve the problem

>> m(2) = 2

m =

60000 2

>> x = Tlsqr(m,n,A,[],[],b); % First solution

% Indicate to Tlsqr that memory is already allocated,

% and that no deallocation should occur on exit

>> m(2) = 3

m =

60000 3

% Loop 100 times, calling Tlsqr each time - without re-allocation of memory

>> for k=1:100

>> b = (...); % E.g. alter the right hand side each time

>> x = Tlsqr(m,n,A,[],[],b); % Call Tlsqr, now with m(2)=3

>> end

% Final call, with m(2) = 4: Solve and deallocate

>> m(2) = 4

m =

60000 4

>> x=Tlsqr(m,n,A,[],[],b);

% Alternatively, to just deallocate, the user could do

>> m(2) = 5;

>> Tlsqr(m,n,A,[],[],b); % Nothing is returned

Further Memory Control: The maxneA Parameter

If the number of non-zero elements in a sparse A matrix increases in the middle of a Tlsqr-calling loop, the initially
allocated space will not be sufficient. One solution is that the user checks this prior to calling Tlsqr and reallocating
if necessary. The other solution is to set m(3) to an upper limit (maxneA) of the number of nonzero elements in
A in the first allocation call. For example:

>> m = [60000 1 1E6]

m =

60000 1 1000000

82

will initiate a Tlsqr session, allocating sufficient memory to allow A matrices with up to 1.000.000 nonzeros. If the
allocated memory is still insufficient, Tlsqr will try to reallocate enough space for the operation to continue.

Using Global Variables with Tlsqr and Tlsqrglob.m

For cases where it is not possible to send the A matrix to Tlsqr because it is simply too large, the user may choose
to use the tomlab/mex/Tlsqrglob.m routine.

This function, which more often than not needs to be customized to the application in mind, should provide the
following functionality:

function y = Tlsqrglob(mode, m, n, x, Aname, rw)

global A

if mode==1

y = A*x;

else

y = A’*x;

end

The purpose is to provide the possibility to define a global variable A and perform the multiplication without
transferring this potentially very large matrix to the MEX function Tlsqr.

If several matrices are involved, for example if A = [A1;A2], this approach can be used to eliminate the need to
explicitly repeatedly form the composite matrix A during a run. Tlsqrglob.m should then be (copied and) modified
as:

function y = Tlsqrglob(mode, m, n, x, Aname, rw)

global A1 A2

if mode==1

y = A1*x;

y = [y ; A2*x];

else

M = size(A1,1);

y = A1’ * x(1:M) + ...

A2’ * x(M+1:end);

end

To use the global approach, Tlsqr must be called with the name of the global multiplication routine, for example:

[x, ...] = Tlsqr(m,n,’Tlsqrglob’,...);

83

9 Multi Layer Optimization

TOMLAB supports optimization with any level of recursion assuming that a MEX interface is not permanently
allocated in memory. For example, SNOPT cannot use SNOPT as a sub-solver however, it is possible with a solver
using a QP MEX solver internally as the MEX solver finishes on each run. The sub optimization problems can be
defined as constraints or objectives.

In order to use a sub-solver, a special driver routine tomSolve is needed. The universal driver routine tomRun goes
through several steps before initializing the solution process, so only a pre-check on the sub problem should be
done.

The following steps should be followed when setting up a multi layer optimization problem.

• Create a TOMLAB problem using the appropriate assign routine. For example, Prob = conAssign(...)

• Create the sub problem in the same manner, Prob2 = conAssign(...). Then check that the problem is
correctly setup by executing, Prob = ProbCheck(Prob, Solver, solvType, probType);

• The subproblem should be included in the main problem in the ’user’ field, Prob.user.Prob2 = Prob2.

• Call the universal driver routine, tomRun. Result = tomRun(’snopt’, Prob, 1).

• In the routine that executes the sub-optimization extract the subproblem, Prob2 = Prob.user.Prob2 and
supply it to tomSolve

• Before calling tomSolve, parameters depending on the decision variables, x, from the outer problem should
be set in Prob2. For example lower and upper bounds as well as user parameters could be modified.

When doing multi layer optimization the user can still define the derivatives for known parts of the problem.
Prob.CheckNaN should be set to obtain derivatives for subproblems.

84

10 tomHelp - The Help Program

tomHelp is a graphical interface for quick help on all problem types defined in TOMLAB Ṫhe interface is started
by entering tomHelp in the MATLAB command prompt. The menu system will be displayed as in Figure 4.

Figure 4: tomHelp start menu.

If a specific problem category is selected then a new menu is displayed. Text help in the MATLAB command
window is displayed by choosing help from the interface. It is recommended that the individual demo files are
viewed to get an understanding about the specific problem. The files can be used as a starting point for defining
problem in the TOMLAB format.

The llsDemo menu is illustrated below in Figure 5

Figure 5: llsDemo menu.

85

11 TOMLAB Solver Reference

Detailed descriptions of the TOMLAB solvers, driver routines and some utilities are given in the following sections.
Also see the M-file help for each solver. All solvers except for the TOMLAB Base Module are described in separate
manuals.

11.1 TOMLAB Base Module

For a description of solvers called using the MEX-file interface, see the M-file help, e.g. for the MINOS solver
minosTL.m. For more details, see the User’s Guide for the particular solver.

11.1.1 clsSolve

Purpose
Solves dense and sparse nonlinear least squares optimization problems with linear inequality and equality con-
straints and simple bounds on the variables.

clsSolve solves problems of the form

min
x

f(x) = 1
2r(x)T r(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ Rn, r(x) ∈ RN , A ∈ Rm1×n and bL, bU ∈ Rm1 .

Calling Syntax
Result = clsSolve(Prob, varargin)
Result = tomRun(’clsSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Solver.Alg Solver algorithm to be run:
0: Gives default, the Fletcher - Xu hybrid method;
1: Fletcher - Xu hybrid method; Gauss-Newton/BFGS.
2: Al-Baali - Fletcher hybrid method; Gauss-Newton/BFGS.
3: Huschens method. SIAM J. Optimization. Vol 4, No 1, pp 108-129 jan 1994.
4: The Gauss-Newton method.
5: Wang, Li, Qi Structured MBFGS method.
6: Li-Fukushima MBFGS method.
7: Broydens method.

86

Prob Problem description structure. The following fields are used:, continued

Recommendations: Alg=5 is theoretically best, and seems best in practice as
well. Alg=1 and Alg=2 behave very similar, and are robust methods. Alg=4
may be good for ill-conditioned problems. Alg=3 and Alg=6 may sometimes
fail. Alg=7 tries to minimize Jacobian evaluations, but might need more resid-
ual evaluations. Also fails more often that other algorithms. Suitable when
analytic Jacobian is missing and evaluations of the Jacobian is costly. The
problem should not be too ill-conditioned.

Solver.Method Method to solve linear system:
0: QR with pivoting (both sparse and dense).
1: SVD (dense).
2: The inversion routine (inv) in Matlab (Uses QR).
3: Explicit computation of pseudoinverse, using pinv(Jk).

Search method technique (if Prob.LargeScale = 1, then Method = 0 always):
Prob.Solver.Method = 0 Sparse iterative QR using Tlsqr.

LargeScale If = 1, then sparse iterative QR using Tlsqr is used to find search directions

x 0 Starting point.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
A Constraint matrix for linear constraints.

c L Lower bounds on the nonlinear constraints.
c U Upper bounds on the nonlinear constraints.

f Low A lower bound on the optimal function value, see LineParam.fLowBnd below.

SolverQP Name of the solver used for QP subproblems. If empty, the default solver is
used. See GetSolver.m and tomSolve.m.

PriLevOpt Print Level.
optParam Structure with special fields for optimization parameters, see Table 141. Fields

used are: bTol, eps absf, eps g, eps Rank, eps x, IterPrint, MaxIter, PreSolve,
size f, size x, xTol, wait, and QN InitMatrix (Initial Quasi-Newton matrix, if
not empty, otherwise use identity matrix).

LineParam Structure with line search parameters. Special fields used:
LineAlg If Alg = 7

0 = Fletcher quadratic interpolation line search
3 = Fletcher cubic interpolation line search
otherwise Armijo-Goldstein line search (LineAlg == 2)

87

Prob Problem description structure. The following fields are used:, continued

If Alg! = 7
0 = Fletcher quadratic interpolation line search
1 = Fletcher cubic interpolation line search
2 = Armijo-Goldstein line search
otherwise Fletcher quadratic interpolation line search (LineAlg == 0)

If Fletcher, see help LineSearch for the LineParam parameters used. Most
important is the accuracy in the line search: sigma - Line search accuracy
tolerance, default 0.9.

If LineAlg == 2, then the following parameters are used
agFac Armijo Goldsten reduction factor, default 0.1
sigma Line search accuracy tolerance, default 0.9

fLowBnd A lower bound on the global optimum of f(x). NLLS problems always
have f(x) values >= 0 The user might also give lower bound estimate in
Prob.f Low clsSolve computes LineParam.fLowBnd as: LineParam.fLowBnd
= max(0,Prob.f Low,Prob.LineParam.fLowBnd) fLow = LineParam.fLowBnd
is used in convergence tests.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
v k Lagrange multipliers (not used).
f k Function value at optimum.
g k Gradient value at optimum.

x 0 Starting point.
f 0 Function value at start.

r k Residual at optimum.
J k Jacobian matrix at optimum.

xState State of each variable, described in Table 150.
bState State of each linear constraint, described in Table 151.

Iter Number of iterations.
ExitFlag Flag giving exit status. 0 if convergence, otherwise error. See Inform.
Inform Binary code telling type of convergence:

1: Iteration points are close.

88

Result Structure with result from optimization. The following fields are changed:, continued

2: Projected gradient small.
3: Iteration points are close and projected gradient small.
4: Function value close to 0.
5: Iteration points are close and function value close to 0.
6: Projected gradient small and function value close to 0.
7: Iteration points are close, projected gradient small and function value close
to 0.
8: Relative function value reduction low for LowIts = 10 iterations.
11: Relative f(x) reduction low for LowIts iter. Close Iters.
16: Small Relative f(x) reduction.
17: Close iteration points, Small relative f(x) reduction.
18: Small gradient, Small relative f(x) reduction.
32: Local minimum with all variables on bounds.
99: The residual is independent of x. The Jacobian is 0.
101: Maximum number of iterations reached.
102: Function value below given estimate.
104: x k not feasible, constraint violated.
105: The residual is empty, no NLLS problem.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The solver clsSolve includes seven optimization methods for nonlinear least squares problems: the Gauss-Newton
method, the Al-Baali-Fletcher [3] and the Fletcher-Xu [19] hybrid method, the Huschens TSSM method [50] and
three more. If rank problem occur, the solver is using subspace minimization. The line search is performed using
the routine LineSearch which is a modified version of an algorithm by Fletcher [20]. Bound constraints are partly
treated as described in Gill, Murray and Wright [28]. clsSolve treats linear equality and inequality constraints
using an active set strategy and a null space method.

M-files Used
ResultDef.m, preSolve.m, qpSolve.m, tomSolve.m, LineSearch.m, ProbCheck.m, secUpdat.m, iniSolve.m, endSolve.m

See Also
conSolve, nlpSolve, sTrustr

Limitations
When using the LargeScale option, the number of residuals may not be less than 10 since the sqr2 algorithm may
run into problems if used on problems that are not really large-scale.

Warnings
Since no second order derivative information is used, clsSolve may not be able to determine the type of stationary
point converged to.

89

11.1.2 conSolve

Purpose
Solve general constrained nonlinear optimization problems.

conSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

Calling Syntax
Result = conSolve(Prob, varargin)
Result = tomRun(’conSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Solver.Alg Choice of algorithm. Also affects how derivatives are obtained.
See following fields and the table on page 92.
0,1,2: Schittkowski SQP.
3,4: Han-Powell SQP.

x 0 Starting point.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
A Constraint matrix for linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

NumDiff How to obtain derivatives (gradient, Hessian).
ConsDiff How to obtain the constraint derivative matrix.

SolverQP Name of the solver used for QP subproblems. If empty, the default solver is
used. See GetSolver.m and tomSolve.m.

f Low A lower bound on the optimal function value, see LineParam.fLowBnd below.
Used in convergence tests, f k(x k) <= f Low. Only a feasible point x k is
accepted.

90

Prob Problem description structure. The following fields are used:, continued

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.g Name of m-file computing the gradient vector g(x).
FUNCS.H Name of m-file computing the Hessian matrix H(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).
FUNCS.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.

PriLevOpt Print level.

optParam Structure with optimization parameters, see Table 141. Fields that are used:
bTol, cTol, eps absf, eps g, eps x, eps Rank, IterPrint, MaxIter, QN InitMatrix,
size f, size x, xTol and wait.

LineParam Structure with line search parameters. See Table 140.

fLowBnd A lower bound on the global optimum of f(x). The user might also give
lower bound estimate in Prob.f Low conSolve computes LineParam.fLowBnd
as: LineParam.fLowBnd = max(Prob.f Low,Prob.LineParam.fLowBnd).

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
v k Lagrange multipliers.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.

x 0 Starting point.
f 0 Function value at start.

c k Value of constraints at optimum.
cJac Constraint Jacobian at optimum.

xState State of each variable, described in Table 150 .
bState State of each linear constraint, described in Table 151.
cState State of each nonlinear constraint.

Iter Number of iterations.
ExitFlag Flag giving exit status.
ExitText Text string giving ExitFlag and Inform information.
Inform Code telling type of convergence:

1: Iteration points are close.

91

Result Structure with result from optimization. The following fields are changed:, continued

2: Small search direction.
3: Iteration points are close and Small search direction.
4: Gradient of merit function small.
5: Iteration points are close and gradient of merit function small.
6: Small search direction and gradient of merit function small.
7: Iteration points are close, small search direction and gradient of merit func-
tion small.
8: Small search direction p and constraints satisfied.
101: Maximum number of iterations reached.
102: Function value below given estimate.
103: Iteration points are close, but constraints not fulfilled. Too large penalty
weights to be able to continue. Problem is maybe infeasible.
104: Search direction is zero and infeasible constraints. The problem is very
likely infeasible.
105: Merit function is infinity.
106: Penalty weights too high.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The routine conSolve implements two SQP algorithms for general constrained minimization problems. One imple-
mentation, Solver.Alg = 0, 1, 2, is based on the SQP algorithm by Schittkowski with Augmented Lagrangian merit
function described in [69]. The other, Solver.Alg = 3, 4, is an implementation of the Han-Powell SQP method.

The Hessian in the QP subproblems are determined in one of several ways, dependent on the input parameters.
The following table shows how the algorithm and Hessian method is selected.

92

Solver.Alg NumDiff AutoDiff isempty(FUNCS.H) Hessian computation Algorithm
0 0 0 0 Analytic Hessian Schittkowski SQP
0 any any any BFGS Schittkowski SQP
1 0 0 0 Analytic Hessian Schittkowski SQP
1 0 0 1 Numerical differences H Schittkowski SQP
1 > 0 0 any Numerical differences g,H Schittkowski SQP
1 < 0 0 any Numerical differences H Schittkowski SQP
1 any 1 any Automatic differentiation Schittkowski SQP
2 0 0 any BFGS Schittkowski SQP
2 = 0 0 any BFGS, numerical gradient g Schittkowski SQP
2 any 1 any BFGS, automatic diff gradient Schittkowski SQP
3 0 0 0 Analytic Hessian Han-Powell SQP
3 0 0 1 Numerical differences H Han-Powell SQP
3 > 0 0 any Numerical differences g,H Han-Powell SQP
3 < 0 0 any Numerical differences H Han-Powell SQP
3 any 1 any Automatic differentiation Han-Powell SQP
4 0 0 any BFGS Han-Powell SQP
4 = 0 0 any BFGS, numerical gradient g Han-Powell SQP
4 any 1 any BFGS, automatic diff gradient Han-Powell SQP

M-files Used
ResultDef.m, tomSolve.m, LineSearch.m, iniSolve.m, endSolve.m, ProbCheck.m.

See Also
nlpSolve, sTrustr

93

11.1.3 cutPlane

Purpose
Solve mixed integer linear programming problems (MIP).

cutplane solves problems of the form

min
x

f(x) = cTx

subject to 0 ≤ x ≤ xU
Ax = b, xj ∈ N ∀j ∈I

where c, x, xU ∈ Rn, A ∈ Rm×n and b ∈ Rm. The variables x ∈ I, the index subset of 1, ..., n are restricted to be
integers.

Calling Syntax
Result = cutplane(Prob); or
Result = tomRun(’cutplane’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

c Constant vector.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables (assumed to be 0).
x U Upper bounds on the variables.

x 0 Starting point.

QP.B Active set B 0 at start:
B(i) = 1: Include variable x(i) in basic set.
B(i) = 0: Variable x(i) is set on it’s lower bound.
B(i) = −1: Variable x(i) is set on it’s upper bound.
B empty: lpSimplex solves Phase I LP to find a feasible point.

Solver.Method Variable selection rule to be used:
0: Minimum reduced cost. (default)
1: Bland’s anti-cycling rule.
2: Minimum reduced cost, Dantzig’s rule.

MIP.IntVars Which of the n variables are integers.

SolverLP Name of the solver used for initial LP subproblem.

94

Prob Problem description structure. The following fields are used:, continued

SolverDLP Name of the solver used for dual LP subproblems.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: MaxIter, PriLev, wait, eps f, eps Rank, xTol and bTol.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum, c.
v k Lagrange multipliers.
QP.B Optimal active set. See input variable QP.B.

xState State of each variable, described in Table 150 .

x 0 Starting point.
f 0 Function value at start.

Iter Number of iterations.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
4: No feasible point x 0 found.

Inform If ExitF lag > 0, Inform = ExitF lag.
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The routine cutplane is an implementation of a cutting plane algorithm with Gomorov cuts. cutplane normally
uses the linear programming routines lpSimplex and DualSolve to solve relaxed subproblems. By changing the
setting of the structure fields Prob.Solver.SolverLP and Prob.Solver.SolverDLP, different sub-solvers are possible
to use.

cutplane can interpret Prob.MIP.IntVars in two different ways:

• Vector of length less than dimension of problem: the elements designate indices of integer variables, e.g.
IntV ars = [1 3 5] restricts x1, x3 and x5 to take integer values only.

• Vector of same length as c: non-zero values indicate integer variables, e.g. with five variables (x ∈ R5),
IntV ars = [1 1 0 1 1] demands all but x3 to take integer values.

95

M-files Used
lpSimplex.m, DualSolve.m

See Also
mipSolve, balas, lpsimp1, lpsimp2, lpdual, tomSolve.

96

11.1.4 DualSolve

Purpose
Solve linear programming problems when a dual feasible solution is available.

DualSolve solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
Ax = bU

where x, xL, xU ∈ Rn, c ∈ Rn, A ∈ Rm×n and bU ∈ Rm.

Finite upper bounds on x are added as extra inequality constraints. Finite nonzero lower bounds on x are added
as extra inequality constraints. Fixed variables are treated explicitly. Adding slack variables and making necessary
sign changes gives the problem in the standard form

min
x

fP (x) = cTx

s/t Âx = b

x ≥ 0

and the following dual problem is solved,

max
y

fD(y) = bT y

s/t ÂT y ≤ c

y urs

with x, c ∈ Rn, A ∈ Rm̂×n and b, y ∈ Rm.

Calling Syntax
[Result] = DualSolve(Prob)

Description of Inputs

Prob Problem description structure. The following fields are used:

QP.c Constant vector.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point, must be dual feasible.
y 0 Dual parameters (Lagrangian multipliers) at x 0.

QP.B Active set B 0 at start:

97

Prob Problem description structure. The following fields are used:, continued

B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

Solver.Alg Variable selection rule to be used:
0: Minimum reduced cost (default).
1: Bland’s anti-cycling rule.
2: Minimum reduced cost. Dantzig’s rule.

PriLevOpt Print Level.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: MaxIter, wait, eps f, eps Rank and xTol.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal primal solution x.
f k Function value at optimum.
v k Optimal dual parameters. Lagrange multipliers for linear constraints.

x 0 Starting point.

Iter Number of iterations.
QP.B Optimal active set.
ExitFlag Exit flag:

0: Optimal solution found.
1: Maximal number of iterations reached. No primal feasible solution found.
2: Infeasible Dual problem.
4: Illegal step length due to numerical difficulties. Should not occur.
6: No dual feasible starting point found.
7: Illegal step length due to numerical difficulties.
8: Convergence because fk >= QP.DualLimit.
9: xL(i) > xU (i) + xTol for some i. No solution exists.

Solver Solver used.
SolverAlgorithm Solver algo-

rithm used.

c Constant vector in standard form formulation.
A Constraint matrix for linear constraints in standard form.
b Right hand side in standard form.

98

Description
When a dual feasible solution is available, the dual simplex method is possible to use. DualSolve implements this
method using the algorithm in [35, pages 105-106]. There are three rules available for variable selection. Bland’s
cycling prevention rule is the choice if fear of cycling exist. The other two are variants of minimum reduced cost
variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each step
(the default choice).

M-files Used
cpTransf.m

See Also
lpSimplex

99

11.1.5 expSolve

Purpose
Solve exponential fitting problems for given number of terms p.

Calling Syntax
Prob = expAssign(...);
Result = expSolve(Prob, PriLev); or
Result = tomRun(’expSolve’, PriLev);

Description of Inputs

Prob Problem created with expAssign.
PriLev Print level in tomRun call.

Prob.SolverL2 Name of solver to use. If empty, TOMLAB selects dependent on license.

Description of Outputs

Result TOMLAB Result structure as returned by solver selected by input argument Solver.
LS Statistical information about the solution. See Table 153, page 239.

Global Parameters Used

Description
expSolve solves a cls (constrained least squares) problem for exponential fitting formulates by expAssign. The
problem is solved with a suitable or given cls solver.

The aim is to provide a quicker interface to exponential fitting, automating the process of setting up the problem
structure and getting statistical data.

M-files Used
GetSolver, expInit, StatLS and expAssign

100

Examples
Assume that the Matlab vectors t, y contain the following data:

ti 0 1.00 2.00 4.00 6.00 8.00 10.00 15.00 20.00
yi 905.10 620.36 270.17 154.68 106.74 80.92 69.98 62.50 56.29

To set up and solve the problem of fitting the data to a two-term exponential model

f(t) = α1e
−β1t + α2e

−β2t,

give the following commands:

>> p = 2; % Two terms

>> Name = ’Simple two-term exp fit’; % Problem name, can be anything

>> wType = 0; % No weighting

>> SepAlg = 0; % Separable problem

>> Prob = expAssign(p,Name,t,y,wType,[],SepAlg);

>> Result = tomRun(’expSolve’,Prob,1);

>> x = Result.x_k’

x =

0.01 0.58 72.38 851.68

The x vector contains the parameters as x = [β1, β2, α1, α2] so the solution may be visualized with

>> plot(t,y,’-*’, t,x(3)*exp(-t*x(1)) + x(4)*exp(-t*x(2)));

101

Figure 6: Results of fitting experimental data to two-term exponential model. Solid line: final model,
dash-dot: data.

11.1.6 glbDirect

Purpose
Solve box-bounded global optimization problems.

glbDirect solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where f ∈ R and x, xL, xU ∈ Rn.

glbDirect is a Fortran MEX implementation of glbSolve.

Calling Syntax
Result = glbDirectTL(Prob,varargin)
Result = tomRun(’glbDirect’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.

Name Name of the problem. Used for security if doing warm start.
FUNCS.f Name of m-file computing the objective function f(x).

102

Prob Problem description structure. The following fields are used:, continued

PriLevOpt Print Level. 0 = Silent. 1 = Errors. 2 = Termination message and warm start
info. 3 = Option summary.

WarmStart If true, > 0, glbDirect reads the output from the last run from
Prob.glbDirect.WarmStartInto if it exists. If it doesn’t exist, glbDirect attempts
to open and read warm start data from mat-file glbDirectSave.mat. glbDirect
uses this warm start information to continue from the last run.

optParam Structure in Prob, Prob.optParam. Defines optimization parameters. Fields
used:

IterPrint Print iteration log every IterPrint iteration. Set to 0 for no iteration log. PriLev
must be set to at least 1 to have iteration log to be printed.

MaxIter Maximal number of iterations, default 200.
MaxFunc Maximal number of function evaluations, default 10000 (roughly).
EpsGlob Global/local weight parameter, default 1E-4.
fGoal Goal for function value, if empty not used.
eps f Relative accuracy for function value, fTol == epsf . Stop if abs(f − fGoal)

<= abs(fGoal) ∗ fTol , if fGoal = 0. Stop if abs(f − fGoal) <= fTol , if
fGoal == 0.

eps x Convergence tolerance in x. All possible rectangles are less than this tolerance
(scaled to (0,1)). See the output field maxTri.

glbDirect Structure in Prob, Prob.glbDirect. Solver specific.
options Structure with options. These options have precedence over all other options

in the Prob struct. Available options are:

PRILEV: Equivalent to Prob.PrilevOpt. Default: 0
MAXFUNC: Eq. to Prob.optParam.MaxFunc. Default: 10000
MAXITER: Eq. to Prob.optParam.MaxIter. Default: 200
PARALLEL: Set to 1 in order to have glbDirect to call Prob.FUNCS.f with a
matrix x of points to let the user function compute function values in parallel.
Default: 0
WARMSTART: Eq. to Prob.WarmStart. Default: 0
ITERPRINT: Eq. to Prob.optParam.IterPrint. Default: 0
FUNTOL: Eq. to Prob.optParam.eps f. Default: 1e-2
VARTOL: Eq. to Prob.optParam.eps x. Default: 1e-13
GLWEIGHT: Eq. to Prob.optParam.EpsGlob. Default: 1e-4

WarmStartInfo
Structure with WarmStartInfo. Use WarmDefDIRECT.m to define it.

Description of Outputs

103

Result Structure with result from optimization. The following fields are changed:

x k Matrix with optimal points as columns.
f k Function value at optimum.

Iter Number of iterations.
FuncEv Number function evaluations.
ExitText Text string giving ExitFlag and Inform information.
ExitFlag Exit code.

0 = Normal termination, max number of iterations /func.evals reached.
1 = Some bound, lower or upper is missing.
2 = Some bound is inf, must be finite.
4 = Numerical trouble determining optimal rectangle, empty set and cannot
continue.

Inform Inform code.
1 = Function value f is less than fGoal.
2 = Absolute function value f is less than fTol, only if fGoal = 0 or Relative error
in function value f is less than fTol, i.e. abs(f − fGoal)/abs(fGoal) <= fTol.
3 = Maximum number of iterations done.
4 = Maximum number of function evaluations done.
91= Numerical trouble, did not find element in list.
92= Numerical trouble, No rectangle to work on.
99= Other error, see ExitFlag.

glbDirect Substructure for glbDirect specific result data.

nextIterFunc If optimization algorithm was stopped because of maximum number of function
evaluations reached, this is the number of function evaluations required to
complete the next iteration.

maxTri Maximum size of any triangles.

WarmStartInfo
Structure containing warm start data. Could be used to continue optimization
where glbDirect stopped.

To make a warm start possible, glbDirect saves the following information in
the structure Result.glbDirect.WarmStartInfo and file
glbDirectSave.mat (for internal solver use only):

points Matrix with all rectangle centerpoints, in [0,1]-space.
dRect Vector with distances from centerpoint to the vertices.
fPoints Vector with function values.
nIter Number of iterations.
lRect Matrix with all rectangle side lengths in each dimension.
Name Name of the problem. Used for security if doing warm start.
dMin Row vector of minimum function value for each distance.
ds Row vector of all different distances, sorted.
glbfMin Best function value found at a feasible point.

104

Result Structure with result from optimization. The following fields are changed:, continued

iMin The index in D which has lowest function value, i.e. the rectangle which mini-
mizes (F−glbfMin+E)./D where E = max(EpsGlob∗abs(glbfMin), 1E−8).

ign Rectangles to be ignored in the rect. selection procedure.

Description
The global optimization routine glbDirect is an implementation of the DIRECT algorithm presented in [14]. The
algorithm in glbDirect is a Fortran MEX implementation of the algorithm in glbSolve. DIRECT is a modification
of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant. Since no such
constant is used, there is no natural way of defining convergence (except when the optimal function value is
known). Therefore glbDirect runs a predefined number of iterations and considers the best function value found
as the optimal one. It is possible for the user to restart glbDirect with the final status of all parameters from
the previous run, a so called warm start. Assume that a run has been made with glbDirect on a certain problem
for 50 iterations. Then a run of e.g. 40 iterations more should give the same result as if the run had been using
90 iterations in the first place. To do a warm start of glbDirect a flag Prob.WarmStart should be set to one and
WarmDefDIRECT run. Then glbDirect is using output previously obtained to make the restart. The m-file glbSolve
also includes the subfunction conhull (in MEX) which is an implementation of the algorithm GRAHAMHULL in
[65, page 108] with the modifications proposed on page 109. conhull is used to identify all points lying on the
convex hull defined by a set of points in the plane.

M-files Used
iniSolve.m, endSolve.m glbSolve.m.

105

11.1.7 glbSolve

Purpose
Solve box-bounded global optimization problems.

glbSolve solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where f ∈ R and x, xL, xU ∈ Rn.

Calling Syntax
Result = glbSolve(Prob,varargin)
Result = tomRun(’glbSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.

Name Name of the problem. Used for security if doing warm start.
FUNCS.f Name of m-file computing the objective function f(x).

PriLevOpt Print Level. 0 = silent. 1 = some printing. 2 = print each iteration.

WarmStart If true, > 0, glbSolve reads the output from the last run from the mat-file
glbSave.mat, and continues from the last run.

MaxCPU Maximal CPU Time (in seconds) to be used.

optParam Structure in Prob, Prob.optParam. Defines optimization parameters. Fields
used:

IterPrint Print iteration #, # of evaluated points and best f(x) each iteration.
MaxIter Maximal number of iterations, default max(5000, n ∗ 1000).
MaxFunc Maximal number of function evaluations, default max(10000, n ∗ 2000).
EpsGlob Global/local weight parameter, default 1E-4.
fGoal Goal for function value, if empty not used.
eps f Relative accuracy for function value, fTol == epsf . Stop if abs(f − fGoal)

<= abs(fGoal) ∗ fTol , if fGoal = 0. Stop if abs(f − fGoal) <= fTol , if
fGoal == 0.

If warm start is chosen, the following fields saved to glbSave.mat are also used
and contains information from the previous run:

106

Prob Problem description structure. The following fields are used:, continued

C Matrix with all rectangle centerpoints, in [0,1]-space.
D Vector with distances from centerpoint to the vertices.
DMin Row vector of minimum function value for each distance.
DSort Row vector of all different distances, sorted.
E Computed tolerance in rectangle selection.
F Vector with function values.
L Matrix with all rectangle side lengths in each dimension.
Name Name of the problem. Used for security if doing warm start.
glbfMin Best function value found at a feasible point.
iMin The index in D which has lowest function value, i.e. the rectangle which mini-

mizes (F−glbfMin+E)./D where E = max(EpsGlob∗abs(glbfMin), 1E−8).

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with all points giving the function value f k.
f k Function value at optimum.

Iter Number of iterations.
FuncEv Number function evaluations.
maxTri Maximum size of any triangle.
ExitText Text string giving ExitFlag and Inform information.
ExitFlag Exit code.

0 = Normal termination, max number of iterations /func.evals reached.
1 = Some bound, lower or upper is missing.
2 = Some bound is inf, must be finite.
4 = Numerical trouble determining optimal rectangle, empty set and cannot
continue.

Inform Inform code.
0 = Normal Exit.
1 = Function value f is less than fGoal.
2 = Absolute function value f is less than fTol, only if fGoal = 0 or Relative error
in function value f is less than fTol, i.e. abs(f − fGoal)/abs(fGoal) <= fTol.
9 = Max CPU Time reached.

Solver Solver used, ’glbSolve’.

Description
The global optimization routine glbSolve is an implementation of the DIRECT algorithm presented in [14]. DIRECT

is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant.
Since no such constant is used, there is no natural way of defining convergence (except when the optimal function
value is known). Therefore glbSolve runs a predefined number of iterations and considers the best function value

107

found as the optimal one. It is possible for the user to restart glbSolve with the final status of all parameters from
the previous run, a so called warm start Assume that a run has been made with glbSolve on a certain problem for
50 iterations. Then a run of e.g. 40 iterations more should give the same result as if the run had been using 90
iterations in the first place. To do a warm start of glbSolve a flag Prob.WarmStart should be set to one. Then
glbSolve is using output previously written to the file glbSave.mat to make the restart. The m-file glbSolve also
includes the subfunction conhull (in MEX) which is an implementation of the algorithm GRAHAMHULL in [65,
page 108] with the modifications proposed on page 109. conhull is used to identify all points lying on the convex
hull defined by a set of points in the plane.

M-files Used
iniSolve.m, endSolve.m

108

11.1.8 glcCluster

Purpose
Solve general constrained mixed-integer global optimization problems using a hybrid algorithm.

glcCluster solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi ∈ N ∀i ∈ I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

The variables x ∈ I, the index subset of 1, ..., n are restricted to be integers.

Calling Syntax
Result = glcCluster(Prob, maxFunc1, maxFunc2, maxFunc3, ProbL)
Result = tomRun(’glcCluster’, Prob, PriLev) (driver call)

Description of Inputs

Prob Problem description structure. The following fields are used:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).

PriLevOpt Print level. 0=Silent. 1=Some output from each glcCluster phase. 2=More
output from each phase. 3=Further minor output from each phase. 6=Use
PrintResult(,1) to print summary from each global and local run. 7 = Use
PrintResult(,2) to print summary from each global and local run. 8 = Use
PrintResult(,3) to print summary from each global and local run.

WarmStart If true, > 0, glcCluster warm starts the DIRECT solver. The DIRECT solver
will utilize all points sampled in last run, from one or two calls, dependent on
the success in last run. Note: The DIRECT solver may not be changed if doing
WarmStart mat-file glcFastSave.mat, and continues from the last run.

109

Prob Problem description structure. The following fields are used:, continued

Name Name of the problem. glcCluster uses the warmstart capability in glcFast and
needs the name for security reasons.

GO Structure in Prob, Prob.GO. Fields used:
maxFunc1 Number of function evaluations in 1st call to glcFast. Should be odd number

(automatically corrected). Default 100 ∗ dim(x) + 1.
maxFunc2 Number of function evaluations in 2nd call to glcFast.
maxFunc3 If glcFast is not feasible after maxFunc1 function evaluations, it will be repeat-

edly called (warm start) doing maxFunc1 function evaluations until maxFunc3
function evaluations reached.

ProbL Structure to be used in the local search. By default the same problem structure
as in the global search is used, Prob (see below). Using a second structure is
important if optimal continuous variables may take values on bounds. glcFast
used for the global search only converges to the simple bounds in the limit,
and therefore the simple bounds may be relaxed a bit in the global search.
Also, if the global search has difficulty fulfilling equality constraints exactly,
the lower and upper bounds may be slightly relaxed. But being exact in the
local search. Note that the local search is using derivatives, and can utilize given
analytic derivatives. Otherwise the local solver is using numerical derivatives
or automatic differentiation. If routines to provide derivatives are given in
ProbL, they are used. If only one structure Prob is given, glcCluster uses the
derivative routines given in the this structure.

localSolver Optionally change local solver used (’snopt’ or ’npsol’ etc.).

DIRECT DIRECT subsolver, either glcSolve or glcFast (default).

localTry Maximal number of local searches from cluster points. If <= 0, glcCluster
stops after clustering. Default 100.

maxDistmin The minimal number used for clustering, default 0.05.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: PriLev, cTol, IterPrint, MaxIter, MaxFunc,
EpsGlob, fGoal, eps f, eps x.

MIP.IntVars Structure in Prob, Prob.MIP. If empty, all variables are assumed non-integer
(LP problem). If length(IntV ars) > 1 ==> length(IntV ars) == length(c)
should hold. Then IntV ars(i) == 1 ==> x(i) integer. IntV ars(i) ==
0 ==> x(i) real. If length(IntV ars) < n, IntVars is assumed to be a set
of indices. It is advised to number the integer values as the first variables,
before the continuous. The tree search will then be done more efficiently.

varargin Other parameters directly sent to low level routines.

110

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.

Iter Number of iterations.
FuncEv Number function evaluations.
maxTri Maximum size of any triangle.
ExitText Text string giving ExitFlag and Inform information.

Cluster Subfield with clustering information
x k Matrix with best cluster points.
f k Row vector with f(x) values for each column in Cluster.x k.
maxDist maxDist used for clustering.
minDist vector of all minimal distances between points.

Description
The routine glcCluster implements an extended version of DIRECT, see [52], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcCluster is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcCluster with the final
status of all parameters from the previous run, a so called warm start Assume that a run has been made with
glcCluster on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more
should give the same result as if the run had been using 700 function evaluations in the first place. To do a warm
start of glcCluster a flag Prob.WarmStart should be set to one. Then glcCluster is using output previously written
to the file glcSave.mat to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m, glcFast.m

111

11.1.9 glcDirect

Purpose
Solve global mixed-integer nonlinear programming problems.

glcDirect solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi integer i ∈ I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

The variables x ∈ I, the index subset of 1, ..., n are restricted to be integers. Recommendation: Put the integers
as the first variables. Put low range integers before large range integers. Linear constraints are specially treated.
Equality constraints are added as penalties to the objective. Weights are computed automatically, assuming f(x)
scaled to be roughly 1 at optimum. Otherwise scale f(x).

glcDirect is a Fortran MEX implementation of glcSolve.

Calling Syntax
Result = glcDirectTL(Prob,varargin)
Result = tomRun(’glcDirect’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Name Problem name. Used for safety when doing warm starts.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).

A Linear constraints matrix.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
x L Lower bounds for x, must be finite to restrict the search space.
x U Upper bounds for x, must be finite to restrict the search space.

PriLevOpt Print Level. This controls both regular printing from glcDirect and the amount
of iteration log information to print.
0 = Silent. 1 = Warnings and errors printed. Iteration log on iterations im-
proving function value. 2 = Iteration log on all iterations. 3 = Log for each
function evaluation. 4 = Print list of parameter settings.

112

Prob Problem description structure. The following fields are used:, continued

See optParam.IterPrint for more information on iteration log printing.

WarmStart If true, > 0, glcDirect reads the output from the last run from
Prob.glcDirect.WarmStartInfo if it exists. If it doesn’t exist, glcDirect attempts
to open and read warm start data from mat-file glcDirectSave.mat. glcDirect
uses this warm start information to continue from the last run.

MaxCPU Maximum CPU Time (in seconds) to be used.

MIP Structure in Prob, Prob.MIP.
Intvars If empty, all variables are assumed non-integer (LP problem) If length(IntVars)

> 1 ==> length(IntVars) == length(c) should hold Then IntVars(i) ==
1 ==> x(i) integer. IntVars(i) == 0 ==> x(i) real If length(IntVars) <
n, IntVars is assumed to be a set of indices. It is advised to number the integer
values as the first variables, before the continuous. The tree search will then
be done more efficiently.

fIP An upper bound on the optimal f(x) value. If empty, set as Inf.

xIP The x-values giving the fIP value. If fIP empty and xIP given, fIP will be
computed if xIP nonempty, its feasibility is checked

glcDirect Structure with DIRECT algorithm specific parameters. Fields used:

fcALL =0 (Default). If linear constraints cannot be feasible anywhere inside rectangle,
skip f(x) and c(x) computation for middle point.
=1 Always compute f(x) and c(x), even if linear constraints are not feasible
anywhere in rectangle. Do not update rates of change for the constraints.
=2 Always compute f(x) and c(x), even if linear constraints are not feasible
anywhere in rectangle. Update rates of change constraints.

useRoC =1 (Default). Use original Rate of Change (RoC) for constraints to weight the
constraint violations in selecting which rectangle divide.
=0 Avoid RoC, giving equal weights to all constraint violations. Suggested if
difficulty to find feasible points. For problems where linear constraints have
been added among the nonlinear (NOT RECOMMENDED; AVOID!!!), then
option useRoc=0 has been successful, whereas useRoC completely fails.
=2 Avoid RoC for linear constraints, giving weight one to these constraint
violations, whereas the nonlinear constraints use RoC.
=3 Use RoC for nonlinear constraints, but linear constraints are not used to
determine which rectangle to use.

BRANCH =0 Divide rectangle by selecting the longest side, if ties use the lowest index.
This is the Jones DIRECT paper strategy.

113

Prob Problem description structure. The following fields are used:, continued

=1 First branch the integer variables, selecting the variable with the least
splits. If all integer variables are split, split on the continuous variables as in
BRANCH=0. DEFAULT! Normally much more efficient than =0 for mixed-
integer problems.
=2 First branch the integer variables with 1,2 or 3 possible values, e.g [0,1],[0,2]
variables, selecting the variable with least splits. Then branch the other integer
variables, selecting the variable with the least splits. If all integer variables are
split, split on the continuous variables as in BRANCH=0.
=3 Like =2, but use priorities on the variables, similar to mipSolve, see
Prob.MIP.VarWeight.

RECTIE When minimizing the measure to find which new rectangle to try to get feasible,
there are often ties, several rectangles have the same minimum. RECTIE = 0
or 1 seems reasonable choices. Rectangles with low index are often larger then
the rectangles with higher index. Selecting one of each type could help, but
often =0 is fastest.
=0 Use the rectangle with value a, with lowest index (original).
=1 (Default): Use 1 of the smallest and 1 of largest rectangles.
=2 Use the last rectangle with the same value a, not the 1st.
=3 Use one of the smallest rectangles with same value a.
=4 Use all rectangles with the same value a, not just the 1st.

EqConFac Weight factor for equality constraints when adding to objective function f(x)
(Default value 10). The weight is computed as EqConFac/”right or left hand
side constant value”, e.g. if the constraint is Ax <= b, the weight is EqCon-
Fac/b If DIRECT just is pushing down the f(x) value instead of fulfilling the
equality constraints, increase EqConFac.

AxFeas Set nonzero to make glcDirect skip f(x) evaluations, when the linear constraints
are infeasible, and still no feasible point has been found. The default is 0. Value
1 demands fcALL == 0. This option could save some time if f(x) is a bit costly,
however overall performance could on some problems be dramatically worse.

fEqual All points with function values within tolerance fEqual are considered to be
global minima and returned. Default 1E-10.

LinWeight RateOfChange = LinWeight ∗ ||a(i, :)|| for linear constraints. Balance be-
tween linear and nonlinear constraints. Default 0.1. The higher value, the less
influence from linear constraints.

alpha Exponential forgetting factor in RoC computation, default 0.9.

AvIter How many values to use in startup of RoC computation before switching to
exponential smoothing with forgetting factor alpha. Default 50.

114

Prob Problem description structure. The following fields are used:, continued

optParam Structure with special fields for optimization parameters, see Table 141 on page
229.
Fields used by glcDirect are: IterPrint, bTol, cTol, MaxIter, MaxFunc, EpsGlob,
fGoal, eps f, eps x.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.

Iter Number of iterations.
FuncEv Number function evaluations.
maxTri Maximum size of any triangle.
ExitText Text string giving ExitFlag and Inform information.
ExitFlag 0 = Normal termination, max number of iterations func.evals reached.

2 = Some upper bounds below lower bounds.
4 = Numerical trouble, and cannot continue.
7 = Reached maxFunc or maxIter, NOT feasible.
8 = Empty domain for integer variables.
10= Input errors.

Inform 1 = Function value f is less than fGoal.
2 = Absolute function value f is less than fTol, only if fGoal = 0 or Relative
error in function value f is less than fTol, i.e. abs(f-fGoal)/abs(fGoal) <= fTol.
3 = Maximum number of iterations done.
4 = Maximum number of function evaluations done.
5 = Maximum number of function evaluations would most likely be too many
in the next iteration, save warm start info, stop.
6 = Maximum number of function evaluations would most likely be too many
in the next iteration, because 2 ∗ sLen >= maxFDim - nFunc, save warm start
info, stop.
7 = Space is dense.
8 = Either space is dense, or MIP is dense.
10= No progress in this run, return solution from previous one.
91= Infeasible.
92= No rectangles to work on.
93= sLen = 0, no feasible integer solution exists.
94= All variables are fixed.
95= There exist free constraints.

115

Result Structure with result from optimization. The following fields are changed:, continued

glcDirect Substructure for glcDirect specific result data.

convFlag Converge status flag from solver.

WarmStartInfo
Structure with warm start information. Use WarmDefDIRECT to reuse this
information in another run.

glcDirectSave.matTo make a warm start possible, glcDirect saves the following information in
the structure Result.glcDirect.WarmStartInfo and file glcDirectSave.mat (for
internal solver use only):

C Matrix with all rectangle centerpoints, in [0,1]-space.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
G Matrix with constraint values for each point.
Iter Number of iterations.
Name Name of the problem. Used for security if doing warm start.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
Tr Tr(i) is the number of times rectangle i has been trisected.
fMinIdx Indices of the currently best points.
fMinEQ sum(abs(infeasibilities)) for minimum points, 0 if no equalities.
glcfMin Best function value found at a feasible point.
feasible Flag indicating if a feasible point has been found.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
roc Rate of change s, for each constraint.
s0 Sum of observed rate of change s0 in the objective.
t t(i) is the total number of splits along dimension i.

Description
The routine glcDirect implements an extended version of DIRECT, see [52], that handles problems with both
nonlinear and integer constraints. The algorithm in glcDirect is a Fortran MEX implementation of the algorithm
in glcSolve.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcDirect is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcDirect with the final
status of all parameters from the previous run, a so called warm start. Assume that a run has been made with
glcDirect on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more
should give the same result as if the run had been using 700 function evaluations in the first place. To do a warm
start of glcDirect a flag Prob.WarmStart should be set to one. Then glcDirect will use output previously written
to the file glcDirectSave.mat (or the warm start structure) to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

116

M-files Used
iniSolve.m, endSolve.m and glcSolve.m.

Warnings
A significant portion of glcDirect is coded in Fortran MEX format. If the solver is aborted, it may have allocated
memory for the computations which is not returned. This may lead to unpredictable behavior if glcDirect is started
again. To reduce the risk of trouble, do “clear mex” if a run has been aborted.

117

11.1.10 glcSolve

Purpose
Solve general constrained mixed-integer global optimization problems.

glcSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi integer i ∈ I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

The variables x ∈ I, the index subset of 1, ..., n are restricted to be integers. Recommendation: Put the integers
as the first variables. Put low range integers before large range integers. Linear constraints are specially treated.
Equality constraints are added as penalties to the objective. Weights are computed automatically, assuming f(x)
scaled to be roughly 1 at optimum. Otherwise scale f(x).

Calling Syntax
Result = glcSolve(Prob,varargin)
Result = tomRun(’glcSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

MIP Structure in Prob, Prob.MIP.
Intvars If empty, all variables are assumed non-integer (LP problem) If length(IntVars)

> 1 ==> length(IntVars) == length(c) should hold Then IntVars(i) ==
1 ==> x(i) integer. IntVars(i) == 0 ==> x(i) real If length(IntVars) <
n, IntVars is assumed to be a set of indices. It is advised to number the integer
values as the first variables, before the continuous. The tree search will then
be done more efficiently.

fIP An upper bound on the optimal f(x) value. If empty, set as Inf.

xIP The x-values giving the fIP value. If fIP empty and xIP given, fIP will be
computed if xIP nonempty, its feasibility is checked

118

Prob Problem description structure. The following fields are used:, continued

x L Lower bounds for x, must be given to restrict the search space. Any lower
bounds that are inf are changed to -10000.

x U Upper bounds for x, must be given to restrict the search space. Any upper
bounds that are inf are changed to 10000.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).

Name Name of the problem. Used for security if doing warm start.

PriLevOpt Print level. 0 = silent. 1 = some printing. 2 = print each iteration.

WarmStart If true (> 0), glcSolve reads the output from the last run from the mat-file
glcSave.mat, and continues from the last run. NOTE: All rectangles that are
fathomed in the previous run are deleted. This saves space and computational
time and enables solving larger problems and more function evaluations to be
done.

MaxCPU Maximal CPU Time (in seconds) to be used.

glcDirect Structure with DIRECT algorithm specific parameters. Fields used:

fcALL =0 (Default). If linear constraints cannot be feasible anywhere inside rectangle,
skip f(x) and c(x) computation for middle point.
=1 Always compute f(x) and c(x), even if linear constraints are not feasible
anywhere in rectangle. Do not update rates of change for the constraints.
=2 Always compute f(x) and c(x), even if linear constraints are not feasible
anywhere in rectangle. Update rates of change constraints.

useRoC =1 (Default). Use original Rate of Change (RoC) for constraints to weight the
constraint violations in selecting which rectangle divide.
=0 Avoid RoC, giving equal weights to all constraint violations. Suggested if
difficulty to find feasible points. For problems where linear constraints have
been added among the nonlinear (NOT RECOMMENDED; AVOID!!!), then
option useRoc=0 has been successful, whereas useRoC completely fails.
=2 Avoid RoC for linear constraints, giving weight one to these constraint
violations, whereas the nonlinear constraints use RoC.
=3 Use RoC for nonlinear constraints, but linear constraints are not used to
determine which rectangle to use.

BRANCH =0 Divide rectangle by selecting the longest side, if ties use the lowest index.
This is the Jones DIRECT paper strategy.

119

Prob Problem description structure. The following fields are used:, continued

=1 First branch the integer variables, selecting the variable with the least
splits. If all integer variables are split, split on the continuous variables as in
BRANCH=0. DEFAULT! Normally much more efficient than =0 for mixed-
integer problems.
=2 First branch the integer variables with 1,2 or 3 possible values, e.g [0,1],[0,2]
variables, selecting the variable with least splits. Then branch the other integer
variables, selecting the variable with the least splits. If all integer variables are
split, split on the continuous variables as in BRANCH=0.
=3 Like =2, but use priorities on the variables, similar to mipSolve, see
Prob.MIP.VarWeight.

RECTIE When minimizing the measure to find which new rectangle to try to get feasible,
there are often ties, several rectangles have the same minimum. RECTIE = 0
or 1 seems reasonable choices. Rectangles with low index are often larger then
the rectangles with higher index. Selecting one of each type could help, but
often =0 is fastest.
=0 Use the rectangle with value a, with lowest index (original).
=1 (Default): Use 1 of the smallest and 1 of largest rectangles.
=2 Use the last rectangle with the same value a, not the 1st.
=3 Use one of the smallest rectangles with same value a.
=4 Use all rectangles with the same value a, not just the 1st.

EqConFac Weight factor for equality constraints when adding to objective function f(x)
(Default value 10). The weight is computed as EqConFac/”right or left hand
side constant value”, e.g. if the constraint is Ax <= b, the weight is EqCon-
Fac/b If DIRECT just is pushing down the f(x) value instead of fulfilling the
equality constraints, increase EqConFac.

AxFeas Set nonzero to make glcSolve skip f(x) evaluations, when the linear constraints
are infeasible, and still no feasible point has been found. The default is 0.
Value 1 demands fcALL == 0. This option could save some time if f(x) is a
bit costly, however overall performance could on some problems be dramatically
worse.

fEqual All points with function values within tolerance fEqual are considered to be
global minima and returned. Default 1E-10.

LinWeight RateOfChange = LinWeight ∗ ||a(i, :)|| for linear constraints. Balance be-
tween linear and nonlinear constraints. Default 0.1. The higher value, the less
influence from linear constraints.

alpha Exponential forgetting factor in RoC computation, default 0.9.

AvIter How many values to use in startup of RoC computation before switching to
exponential smoothing with forgetting factor alpha. Default 50.

120

Prob Problem description structure. The following fields are used:, continued

If WarmStart is chosen, the following fields in glcSave.mat are also used
and contains information from the previous run:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
G Matrix with constraint values for each point.
Name Name of the problem. Used for security if doing warm start.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
fMinEQ sum(abs(infeasibilities)) for minimum points, 0 if no equalities.
fMinIdx Indices of the currently best points.
feasible Flag indicating if a feasible point has been found.
glcfmin Best function value found at a feasible point.
iL iL(i, j) is the lower bound for rectangle j in integer dimension I(i).
iU iU(i, j) is the upper bound for rectangle j in integer dimension I(i).
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
s s(j) is the sum of observed rates of change for constraint j.
s 0 s 0 is used as s(0).
t t(i) is the total number of splits along dimension i.
SubRes Additional output from nlp f, if suboptimization done.

optParam Structure with special fields for optimization parameters, see Table 141 on page
229.
Fields used by glcSolve are: IterPrint, bTol, cTol, MaxIter (default
max(5000, n∗1000)), MaxFunc (default max(10000, n∗2000)), EpsGlob, fGoal,
eps f, eps x.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.

glcSave.mat Special file containing:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
G Matrix with constraint values for each point.

121

Result Structure with result from optimization. The following fields are changed:, continued

Name Name of the problem. Used for security if doing warm start.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
fMinEQ sum(abs(infeasibilities)) for minimum points, 0 if no equalities.
fMinIdx Indices of the currently best points.
feasible Flag indicating if a feasible point has been found.
glcf min Best function value found at a feasible point.
iL iL(i, j) is the lower bound for rectangle j in integer dimension I(i).
iU iU(i, j) is the upper bound for rectangle j in integer dimension I(i).
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
s s(j) is the sum of observed rates of change for constraint j.
s 0 s 0 is used as s(0).
t t(i) is the total number of splits along dimension i.

Iter Number of iterations.
FuncEv Number function evaluations.
maxTri Maximum size of any triangle.
ExitText Text string giving ExitFlag and Inform information.
ExitFlag 0 - Reached maxFunc or maxIter. 2 - Some upper bounds below lower bounds.

7 - Reached maxFunc or maxIter, NOT feasible. 8 - Empty domain for integer
variables.

Inform 1 = Function value f is less than fGoal. 2 = Absolute function value f is less
than fTol, only if fGoal = 0 or Relative error in function value f is less than
fTol, i.e. abs(f-fGoal)/abs(fGoal) <= fTol. 3 = Maximum number of iterations
done. 4 = Maximum number of function evaluations done. 9 = Max CPU Time
reached. 91= Infeasible. 99= Input error, see ExitFlag.

Description
The routine glcSolve implements an extended version of DIRECT, see [52], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcSolve is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcSolve with the final status
of all parameters from the previous run, a so called warm start Assume that a run has been made with glcSolve
on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more should give
the same result as if the run had been using 700 function evaluations in the first place. To do a warm start of
glcSolve a flag Prob.WarmStart should be set to one. Then glcSolve is using output previously written to the file
glcSave.mat to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m

122

11.1.11 infLinSolve

Purpose

Finds a linearly constrained minimax solution of a function of several variables with the use of any suitable
TOMLAB solver. The decision variables may be binary or integer.

infLinSolve solves problems of the type:

min
x

maxDx

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ Rn, bL, bU ∈ Rm1 , A ∈ Rm1×n and D ∈ Rm2×n. The variables x ∈ I, the index subset of 1, ..., n
are restricted to be integers. The different objectives are stored in D row-wise.

Calling Syntax
Result=infLinSolve(Prob,PriLev)

Description of Inputs

Prob Structure Prob. Prob must be defined. Best is to use Prob = lp/mipAssign(.....), if using
the TQ format. Prob.QP.D matrix should then be set to the rows (Prob.QP.c ignored).

PriLev Print level in infLinSolve.
= 0 Silent except for error messages.
> 0 Print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 Standard output from PrintResult (default).

Extra fields used in Prob:

SolverInf Name of the TOMLAB solver. Valid names are: cplex, minos, snopt, xa and more. See
SolverList(’lp’); or SolverList(’mip’);

QP.D The rows with the different objectives.

f Low Lower bound on the objective (optional).

f Upp Upper bound on the objective (optional).

Description of Outputs

Result Structure with results from optimization. Output depends on the solver used.

123

The fields x k, f k, x 0, xState, bState, v k are transformed back to match the original prob-
lem.

The output in Result.Prob is the result after infLinSolve transformed the problem, i.e. the
altered Prob structure

Description
The linear minimax problem is solved in infLinSolve by rewriting the problem as a linear optimization problem.
One additional variable z ∈ R, stored as xn+1 is added and the problem is rewritten as:

min
x
z

subject to xL ≤ (x1, x2, . . . , xn)T ≤ xU
−∞ ≤ z ≤ ∞
bL ≤ Ax ≤ bU
−∞ ≤ Dx− ze ≤ 0

where e ∈ RN , e(i) = 1 ∀i.

To handle cases where a row in D*x is taken the absolute value of: minmax|D ∗x|, expand the problem with extra
residuals with the opposite sign: [D ∗ x;−D ∗ x].

See Also
lpAssign.

124

11.1.12 infSolve

Purpose
Find a constrained minimax solution with the use of any suitable TOMLAB solver.

infSolve solves problems of the type:

min
x

max r(x)

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, r(x) ∈ RN , c(x), cL, cU ∈ Rm1 , bL, bU ∈ Rm2 and A ∈ Rm2×n.

Calling Syntax
Result=infSolve(Prob,PriLev)

Description of Inputs

Prob Problem description structure. Should be created in the cls format. infSolve uses two special
fields in Prob:

SolverInf Name of solver used to solve the transformed problem.
Valid choices are conSolve, nlpSolve, sTrustr and clsSolve.
If TOMLAB /SOL is installed: minos, snopt, npopt.

InfType 1 - constrained formulation (default).
2 - LS penalty approach (experimental).

The remaining fields of Prob should be defined as required by the selected subsolver.

PriLev Print level in infSolve.
= 0 Silent except for error messages.
> 0 Print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 Standard output from PrintResult (default).

Description of Outputs

Result Structure with results from optimization. Output depends on the solver used.

The fields x k, r k, J k, c k, cJac, x 0, xState, cState, v k are transformed back to match the
original problem.

g k is calculated as J kT · r k.

125

The output in Result.Prob is the result after infSolve transformed the problem, i.e. the
altered Prob structure

Description
The minimax problem is solved in infSolve by rewriting the problem as a general constrained optimization problem.
One additional variable z ∈ R, stored as xn+1 is added and the problem is rewritten as:

min
x
z

subject to xL ≤ (x1, x2, . . . , xn)T ≤ xU
−∞ ≤ z ≤ ∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
−∞ ≤ r(x)− ze ≤ 0

where e ∈ RN , e(i) = 1 ∀i.

To handle cases where an element ri(x) in r(x) appears in absolute value: min max |ri(x)|, expand the problem
with extra residuals with the opposite sign: [ri(x);−ri(x)]

Examples
minimaxDemo.m.

See Also
clsAssign.

126

11.1.13 linRatSolve

Purpose

Finds a linearly constrained solution of a function of the ratio of two linear functions with the use of any suitable
TOMLAB solver. Binary and integer variables are not supported.

linRatSolve solves problems of the type:

min
x

(c1x)
(c2x)

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where c1, c2, x, xL, xU ∈ Rn, bL, bU ∈ Rm1 and A ∈ Rm1×n.

Calling Syntax
Result=linRatSolve(Prob,PriLev)

Description of Inputs

Prob Structure Prob. Prob must be defined. Best is to use Prob = lpAssign(.....), if using the
TQ format. Prob.QP.c1/c2 matrices should then be set (Prob.QP.c ignored).

PriLev Print level in linRatSolve.
= 0 Silent except for error messages.
> 0 Print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 Standard output from PrintResult (default).

Extra fields used in Prob:

SolverRat Name of the TOMLAB solver. Valid names are: cplex, minos, snopt, xa and more. See
SolverList(’lp’);

QP.c1 The numerator in the objective.

QP.c2 The denominator in the objective.

z1 L Lower bound for z1 (default 1e-5). See description below

Description of Outputs

Result Structure with results from optimization. Output depends on the solver used.

127

The fields x k, f k, x 0, xState, bState, v k are transformed back to match the original prob-
lem.

The output in Result.Prob is the result after linRatSolve transformed the problem, i.e. the
altered Prob structure

Description

The linear ratio problem is solved by linRatSolve by rewriting the problem as a linear constrained optimization
problem. n+1 variables z1 and z2(2:n+1) are needed, stored as x(1:n+1). The n original variables are removed so
one more variable exists in the final problem.

z1 = 1/(c2x)
z2 = xz1

z1(c1x) = (c1z1x) = c1z2

The problem then becomes:

min
x
c1z2

subject to z1L ≤ z1 ≤ ∞
1 ≤ c2z2 ≤ 1
0 ≤ Az2− z1beq ≤ 0
−∞ ≤ Az2− z1bU ≤ 0
−∞ ≤ −Az2 + z1bL ≤ 0

0 ≤ A1z2− z1xeq ≤ 0
−∞ ≤ A1z2− z1xU ≤ 0
−∞ ≤ −A1z2 + z1xL ≤ 0

where A1 ∈ RN , A1 = speye(N).

OBSERVE the denominator c2x must always be positive. It is normally a good a idea to run the problem with
both signs (multiply each side by -1).

See Also
lpAssign.

128

11.1.14 lpSimplex

Purpose
Solve general linear programming problems.

lpSimplex solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ Rn, c ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm.

Calling Syntax
Result = lpSimplex(Prob) or
Result = tomRun(’lpSimplex’, Prob, 1);

Description of Inputs

Prob Problem description structure. The following fields are used:

QP.c Constant vector.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.

Solver.Alg Variable selection rule to be used:
0: Minimum reduced cost.
1: Bland’s rule (default).
2: Minimum reduced cost. Dantzig’s rule.

QP.B Active set B 0 at start:
B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: MaxIter, PriLev, wait, eps f, eps Rank, xTol and bTol.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.

129

Result Structure with result from optimization. The following fields are changed:, continued

f k Function value at optimum.
g k Gradient value at optimum, c.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in Table 150.

ExitFlag 0: Optimal solution found.
1: Maximal number of iterations reached.
2: Unbounded feasible region.
5: Too many active variables in given initial point.
6: No feasible point found with Phase 1.
10: Errors in input parameters.
11: Illegal initial x as input.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Iter Number of iterations.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
The routine lpSimplex implements an active set strategy (Simplex method) for Linear Programming using an
additional set of slack variables for the linear constraints. If the given starting point is not feasible then a Phase I
objective is used until a feasible point is found.

M-files Used
ResultDef.m

See Also
qpSolve

130

11.1.15 L1Solve

Purpose
Find a constrained L1 solution of a function of several variables with the use of any suitable nonlinear TOMLAB
solver.

L1Solve solves problems of the type:

min
x

∑
i |ri(x)|

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, r(x) ∈ RN , c(x), cL, cU ∈ Rm1 , bL, bU ∈ Rm2 and A ∈ Rm2×n.

Calling Syntax
Result = L1Solve(Prob,PriLev)

Description of Inputs

Prob Problem description structure. Prob should be created in the cls constrained nonlinear format.

L1Solve uses one special field in Prob:
SolverL1 Name of the TOMLAB solver used to solve the augmented general nonlinear

problem generated by L1Solve.

Any other fields are passed along to the solver specified by Prob.SolverL1. In particular:

A Linear constraint matrix.
b L Lower bounds on variables.
b U Upper bounds on variables.

c L Lower bounds for nonlinear constraints.
c U Upper bounds for nonlinear constraints..

x L Lower bounds on variables.
x U Upper bounds on variables.

x 0 Starting point.

ConsPattern Nonzero patterns of constraint and residual Jacobians.
JacPattern Prob.LS.y must have the correct residual length if JacPattern is empty but

ConsPattern is not.
L1Solve will create the new patterns for the sub-solver using the information
supplied in these two fields.

PriLev Print level in L1Solve.

131

Prob Problem description structure. Prob should be created in the cls constrained nonlinear format, continued

= 0 silent except for error messages.
> 0 print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 standard output from PrintResult.

Description of Outputs

Result Structure with results from optimization. Fields changed depends on which solver was used
for the extended problem.

The fields x k, r k, J k, c k, cJac, x 0, xState, cState, v k, are transformed back to the
format of the original L1 problem. g k is calculated as J kT · r k. The returned problem
structure Result.Prob is the result after L1Solve transformed the problem, i.e. the altered
Prob structure.

Description

L1Solve solves the L1 problem by reformulating it as the general constrained optimization problem

min
x

∑
i(yi + zi)

subject to xL ≤ x ≤ xU
0 ≤ y ≤ ∞
0 ≤ z ≤ ∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
0 ≤ r(x) + y − z ≤ 0

A problem with N residuals is extended with 2N nonnegative variables y, z ∈ RN along with N equality constraints
ri(x) + yi − zi = 0.

See Also
infSolve

132

11.1.16 MILPSOLVE

Purpose
Solve mixed integer linear programming problems (MILP).

MILPSOLVE solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

xj ∈ N ∀j ∈I

where c, x, xL, xU ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm. The variables x ∈ I, the index subset of 1, ..., n are restricted
to be integers.

Calling Syntax
Result = tomRun(’MILPSOLVE’,Prob, 1); or
Prob = ProbCheck(Prob, ’MILPSOLVE’);
Result = milpsolveTL(Prob);
PrintResult(Result,1);

Description of Inputs

Prob Problem description structure. The following fields are used:

x L, x U Lower and upper bounds on variables. (Must be dense).
b L, b U Lower and upper bounds on linear constraints. (Must be dense).
A Linear constraint matrix. (Sparse or dense).
QP.c Linear objective function coefficients, size nx1.

BIG Definition of infinity. Default is 1e30.

LargeScale Defines if milpsolveTL will convert the A matrix to a sparse matrix or
not.
Largescale ! = 0 - sparse
LargeScale = 0 - dense
Default is to use the A matrix just as it is defined.

PriLevOpt Specifies the printlevel that will be used by MILPSOLVE.
0 (NONE) No outputs
1 (NEUTRAL) Only some specific debug messages in debug print rou-
tines are reported.
2 (CRITICAL) Only critical messages are reported. Hard errors like
instability, out of memory.
3 (SEVERE) Only severe messages are reported. Errors.
4 (IMPORTANT) Only important messages are reported. Warnings and
Errors.

133

Prob Problem description structure. The following fields are used:, continued

5 (NORMAL) Normal messages are reported.
6 (DETAILED) Detailed messages are reported. Like model size, con-
tinuing B&B improvements.
7 (FULL) All messages are reported. Useful for debugging purposes and
small models.

Default print level is 0, no outputs. PriLevOpt < 0 is interpreted as 0,
and larger than 7 is interpreted as 7.

MaxCPU Maximal CPU Time (in seconds) to be used by MILPSOLVE, stops with
best point found.

Fields used in Prob.MILPSOLVE (Structure with MILPSOLVE specific parameters)

ANTI DEGEN Binary vector. If empty, no anti-degeneracy handling is applied. If the
length (i) of the vector is less than 8 elements,only the i first modes are
considered. Also if i is longer than 8 elements, the elements after element
8 are ignored.

ANTI DEGEN specifies if special handling must be done to reduce de-
generacy/cycling while solving. Setting this flag can avoid cycling, but
can also increase numerical instability.

ANTIDEGEN FIXEDVARS ! = 0 Check if there are equality slacks
in the basis and try to drive them out in order to reduce chance of
degeneracy in Phase 1.
ANTIDEGEN COLUMNCHECK != 0
ANTIDEGEN STALLING != 0
ANTIDEGEN NUMFAILURE != 0
ANTIDEGEN LOSTFEAS != 0
ANTIDEGEN INFEASIBLE != 0
ANTIDEGEN DYNAMIC != 0
ANTIDEGEN DURINGBB != 0

basis If empty or erroneous, default basis is used. Default start base is the all
slack basis (the default simplex starting basis).

Prob.MILPSOLVE.basis stores the basic variables. If an element is less
then zero then it means on lower bound, else on upper bound. Element 0
of the array is unused. The default initial basis is bascolumn[x] = -x. By
MILPSOLVE convention, a basic variable is always on its lower bound,
meaning that basic variables is always represented with a minus sign.

When a restart is done, the basis vector must be assigned a correct
starting basis.

134

Prob Problem description structure. The following fields are used:, continued

BASIS CRASH The set basiscrash function specifies which basis crash mode MILP-
SOLVE will used.

When no base crash is done (the default), the initial basis from which
MILPSOLVE starts to solve the model is the basis containing all slack or
artificial variables that is automatically associates with each constraint.

When base crash is enabled, a heuristic ”crash procedure” is executed
before the first simplex iteration to quickly choose a basis matrix that
has fewer artificial variables. This procedure tends to reduce the num-
ber of iterations to optimality since a number of iterations are skipped.
MILPSOLVE starts iterating from this basis until optimality.

BASIS CRASH ! = 2 - No basis crash
BASIS CRASH = 2 - Most feasible basis

Default is no basis crash.

BB DEPTH LIMIT Sets the maximum branch-and-bound depth. This value makes sense
only if there are integer, semi-continuous or SOS variables in the model
so that the branch-and-bound algorithm is used to solve the model. The
branch-and-bound algorithm will not go deeper than this level. When
BB DEPTH LIMIT i set to 0 then there is no limit to the depth. The
default value is -50. A positive value means that the depth is absolute.
A negative value means a relative B&B depth. The ”order” of a MIP
problem is defined to be 2 times the number of binary variables plus
the number of SC and SOS variables. A relative value of -x results in a
maximum depth of x times the order of the MIP problem.

BB FLOOR FIRST Specifies which branch to take first in branch-and-bound algorithm. De-
fault value is 1.
BB FLOOR FIRST = 0 (BRANCH CEILING) Take ceiling branch first
BB FLOOR FIRST = 1 (BRANCH FLOOR) Take floor branch first
BB FLOOR FIRST = 2 (BRANCH AUTOMATIC) MILPSOLVE de-
cides which branch being taken first

BB RULE Specifies the branch-and-bound rule. Default value is 0.
BB RULE = 0 (NODE FIRSTSELECT) Select lowest indexed non-
integer column
BB RULE = 1 (NODE GAPSELECT) Selection based on distance from
the current bounds
BB RULE = 2 (NODE RANGESELECT) Selection based on the largest
current bound

135

Prob Problem description structure. The following fields are used:, continued

BB RULE = 3 (NODE FRACTIONSELECT) Selection based on largest
fractional value
BB RULE = 4 (NODE PSEUDOCOSTSELECT4) Simple, unweighted
pseudo-cost of a variable
BB RULE = 5 (NODE PSEUDONONINTSELECT) This is an ex-
tended pseudo-costing strategy based on minimizing the number of in-
teger infeasibilities.
BB RULE = 6 (NODE PSEUDORATIOSELECT) This is an extended
pseudo-costing strategy based on maximizing the normal pseudo-cost
divided by the number of infeasibilities. Effectively, it is similar to (the
reciprocal of) a cost/benefit ratio.
BB RULE = 7 (NODE USERSELECT)

BB RULE ADD Additional values for the BB RULE. BB RULE is a vector. If the length
i of the vector is less than 10 elements, only the i first modes are consid-
ered. Also if i is longer than 10 elements, the elements after element 10
is ignored.

BB RULE ADD(1) ! = 0 (NODE WEIGHTREVERSEMODE)
BB RULE ADD(2) ! = 0 (NODE BRANCHREVERSEMODE) In case
when get bb floorfirst is BRANCH AUTOMATIC, select the opposite
direction (lower/upper branch) that BRANCH AUTOMATIC had cho-
sen.
BB RULE ADD(3) ! = 0 (NODE GREEDYMODE)
BB RULE ADD(4) ! = 0 (NODE PSEUDOCOSTMODE)
BB RULE ADD(5) ! = 0 (NODE DEPTHFIRSTMODE) Select the
node that has already been selected before the number of times
BB RULE ADD(6) ! = 0 (NODE RANDOMIZEMODE)
BB RULE ADD(7) ! = 0 (NODE DYNAMICMODE) When
NODE DEPTHFIRSTMODE is selected, switch off this mode when a
first solution is found.
BB RULE ADD(8) ! = 0 (NODE RESTARTMODE)
BB RULE ADD(9) ! = 0 (NODE BREADTHFIRSTMODE) Select the
node that has been selected before the fewest number of times or not at
all BB RULE ADD(10) ! = 0 (NODE AUTOORDER)

BFP Defines which Basis Factorization Package that will be used by MILP-
SOLVE.
BFP = 0 : LUSOL
BFP = 1 : built in etaPHI from MILPSOLVE v3.2
BFP = 2 : Additional etaPHI
BFP = 3 : GLPK

Default BFP is LUSOL.

136

Prob Problem description structure. The following fields are used:, continued

BREAK AT FIRST Specifies if the branch-and-bound algorithm stops at the first found so-
lution (BREAK AT FIRST != 0) or not (BREAK AT FIRST = 0). De-
fault is not to stop at the first found solution.

BREAK AT VALUE Specifies if the branch-and-bound algorithm stops when the object value
is better than a given value. The default value is (-) infinity.

EPAGAP Specifies the absolute MIP gap tolerance for the branch and bound algo-
rithm. This tolerance is the difference between the best-found solution
yet and the current solution. If the difference is smaller than this toler-
ance then the solution (and all the sub-solutions) is rejected. The default
value is 1e-9.

EPGAP Specifies the relative MIP gap tolerance for the branch and bound algo-
rithm. The default value is 1e-9.

EPSB Specifies the value that is used as a tolerance for the Right Hand Side
(RHS) to determine whether a value should be considered as 0. The
default epsb value is 1.0e-10

EPSD Specifies the value that is used as a tolerance for reduced costs to deter-
mine whether a value should be considered as 0. The default epsd value
is 1e-9. If EPSD is empty, EPSD is read from Prob.optParam.eps f.

EPSEL Specifies the value that is used as a tolerance for rounding values to zero.
The default epsel value is 1e-12.

EPSINT Specifies the tolerance that is used to determine whether a floating-
point number is in fact an integer. The default value for epsint is 1e-7.
Changing this tolerance value can result in faster solving times, but the
solution is less integer.

EPSPERTURB Specifies the value that is used as perturbation scalar for degenerative
problems. The default epsperturb value is 1e-5.

EPSPIVOT Specifies the value that is used as a tolerance pivot element to determine
whether a value should be considered as 0. The default epspivot value
is 2e-7

IMPROVEMENT
LEVEL

Specifies the iterative improvement level.

IMPROVEMENT LEVEL = 0 (IMPROVE NONE) improve none
IMPROVEMENT LEVEL = 1 (IMPROVE FTRAN) improve FTRAN
IMPROVEMENT LEVEL = 2 (IMPROVE BTRAN) improve BTRAN

137

Prob Problem description structure. The following fields are used:, continued

IMPROVEMENT LEVEL = 3 (IMPROVE SOLVE) improve FTRAN
+ BTRAN.
IMPROVEMENT LEVEL = 4 (IMPROVE INVERSE) triggers auto-
matic
inverse accuracy control in the dual simplex, and when an error gap is
exceeded the basis is reinverted

Choice 1,2,3 should not be used with MILPSOLVE 5.1.1.3, because of
problems with the solver. Default is 0.

LoadFile File that contains the model. If LoadFile is a nonempty string which
corresponds to actual file, then the model is read from this file rather
than from the Prob struct.

LoadMode 1 - LP - MILPSOLVE LP format
2 - MPS - MPS format
3 - FMPS - Free MPS format

A default value for this field does not exist. Both LoadFile and Load-
Mode must be set if a problem will be loaded.

If there is something wrong with LoadMode or LoadFile, an error mes-
sage will be printed and MILPSOLVE will be terminated. Leave Load-
Mode and LoadFile empty if the problem not will be loaded from file.

LogFile Name of file to print MILPSOLVE log on.

MAXIMIZE If MAXIMIZE ! = 0, MILPSOLVE is set to maximize the objective
function, default is to minimize.

MAX PIVOT Sets the maximum number of pivots between a re-inversion of the matrix.
Default is 42.

NEG RANGE Specifies the negative value below which variables are split into a negative
and a positive part. This value must always be zero or negative. If a
positive value is specified, then 0 is taken. The default value is -1e6.

PRESOLVE Vector containing possible presolve options. If the length i of the vector
is less than 7 elements, only the i first modes are considered. Also if i is
longer than 7 elements, the elements after element 7 is ignored.

PRESOLVE(1) ! = 0 (PRESOLVE ROWS) Presolve rows
PRESOLVE(2) ! = 0 (PRESOLVE COLS) Presolve columns
PRESOLVE(3) ! = 0 (PRESOLVE LINDEP) Eliminate linearly depen-
dent rows

138

Prob Problem description structure. The following fields are used:, continued

PRESOLVE(4) ! = 0 (PRESOLVE SOS) Convert constraints to SOSes
(only SOS1 handled)
PRESOLVE(5) ! = 0 (PRESOLVE REDUCEMIP) If the phase 1 solu-
tion process finds that a constraint is redundant then this constraint is
deleted.
PRESOLVE(6) ! = 0 (PRESOLVE DUALS) Calculate duals
PRESOLVE(7) ! = 0 (PRESOLVE SENSDUALS) Calculate sensitivity
if there are integer variables

Default is not to do any presolve.

PRICING RULE The pricing rule can be one of the following rules.
PRICING RULE = 0 Select first (PRICER FIRSTINDEX)
PRICING RULE = 1 Select according to Dantzig (PRICER DANTZIG)
PRICING RULE = 2 Devex pricing from Paula Harris
(PRICER DEVEX)
PRICING RULE = 3 Steepest Edge (PRICER STEEPESTEDGE)

PRICING MODE Additional pricing settings, any combination of the modes below. This
is a binary vector. If the length i of the vector is less than 7 elements,
only the i first modes are considered. Also if i is longer than 7 elements,
the elements after element 7 is ignored.

PRICE PRIMALFALLBACK ! = 0 In case of Steepest Edge, fall back
to DEVEX in primal.
PRICE MULTIPLE ! = 0 Preliminary implementation of the multiple
pricing scheme. This means that attractive candidate entering columns
from one iteration may be used in the subsequent iteration, avoiding full
updating of reduced costs. In the current implementation, MILPSOLVE
only reuses the 2nd best entering column alternative.
PRICE PARTIAL ! = 0 Enable partial pricing
PRICE ADAPTIVE ! = 0 Temporarily use First Index if cycling is de-
tected
PRICE RANDOMIZE ! = 0 Adds a small randomization effect to the
selected pricer
PRICE LOOPLEFT ! = 0 Scan entering/leaving columns left rather
than right
PRICE LOOPALTERNATE ! = 0 Scan entering/leaving columns alter-
natingly left/right

Default basis is PRICER DEVEX combined with PRICE ADAPTIVE.

sa Struct containing information of the sensitivity analysis (SA) MILP-
SOLVE will perform.
sa.obj =! 0 Perform sensitivity analysis on the objective function

139

Prob Problem description structure. The following fields are used:, continued

sa.obj = 0 Do not perform sensitivity analysis on the objective function
sa.rhs =! 0 Perform sensitivity analysis on the right hand sides.
sa.rhs = 0 Do not perform sensitivity analysis on the right hand sides.

SaveFileAfter Name of a file to save the MILPSOLVE object after pre-
solve. The name must be of type string (char), Example:
Prob.MILPSOLVE.SaveFileAfter = ’save2’ If the type is not char Save-
FileBefore is set to save2.[file extension].

SaveFileBefore Name of a file to save the MILPSOLVE object before pre-
solve. The name must be of type string (char), Example:
Prob.MILPSOLVE.SaveFileBefore = ’save1’. If the type is not char
SaveFileBefore is set to save1.[file extension].

SaveMode 1 - LP - MILPSOLVE LP format
2 - MPS - MPS format
3 - FMPS - Free MPS format
If empty, the default format LP is used.

SCALE LIMIT Sets the relative scaling convergence criterion to the absolute value
of SCALE LIMIT for the active scaling mode. The integer part of
SCALE LIMIT specifies the maximum number of iterations. Default
is 5.

SCALING ALG Specifies which scaling algorithm will be used by MILPSOLVE.
0 No scaling algorithm
1 (SCALE EXTREME) Scale to convergence using largest absolute value
2 (SCALE RANGE) Scale based on the simple numerical range
3 (SCALE MEAN) Numerical range-based scaling
4 (SCALE GEOMETRIC) Geometric scaling
7 (SCALE CURTISREID) Curtis-reid scaling

Default is 0, no scaling algorithm.

SCALING ADD Vector containing possible additional scaling parameters. If the length (i)
of the vector is less than 7 elements, only the i first modes are considered.
Also if i is longer than 7 elements, the elements after element 7 is ignored.
SCALING ADD ! = 0 (SCALE QUADRATIC)
SCALING ADD ! = 0 (SCALE LOGARITHMIC) Scale to convergence
using logarithmic mean of all values
SCALING ADD ! = 0 (SCALE USERWEIGHT) User can specify
scalars
SCALING ADD ! = 0 (SCALE POWER2) also do Power scaling
SCALING ADD ! = 0 (SCALE EQUILIBRATE) Make sure that no
scaled number is above 1

140

Prob Problem description structure. The following fields are used:, continued

SCALING ADD ! = 0 (SCALE INTEGERS) Also scaling integer vari-
ables
SCALING ADD ! = 0 (SCALE DYNUPDATE) Dynamic update

Default is 0, no additional mode.

Settings SCALE DYNUPDATE is a way to make sure that scaling fac-
tors are recomputed. In that case, the scaling factors are recomputed
also when a restart is done.

SIMPLEX TYPE Sets the desired combination of primal and dual simplex algorithms.
5 (SIMPLEX PRIMAL PRIMAL) Phase1 Primal, Phase2 Primal
6 (SIMPLEX DUAL PRIMAL) Phase1 Dual, Phase2 Primal
9 (SIMPLEX PRIMAL DUAL) Phase1 Primal, Phase2 Dual
10 (SIMPLEX DUAL DUAL) Phase1 Dual, Phase2 Dual

Default is SIMPLEX DUAL PRIMAL (6).

SOLUTION LIMIT Sets the solution number that will be returned. This value is only consid-
ered if there are integer, semi-continuous or SOS variables in the model
so that the branch-and-bound algorithm is used. If there are more so-
lutions with the same objective value, then this number specifies which
solution must be returned. Default is 1.

sos List of structs containing data about Special Ordered Sets (SOS). See
below for further description.

Fields used in Prob.MIP (Structure with MIP specific parameters)

IntVars Defines which variables are integers, of general type I or binary type B
Variable indices should be in the range [1,...,n].

IntVars is a logical vector ==> x(find(IntV ars > 0)) are integers

IntVars is a vector of indices ==> x(IntV ars) are integers (if [], then no
integers of type I or B are defined) variables with x L=0 and x U=1, is
are set to binary. It is possible to combine integer and semi-continuous
type to obtain the semi-integer type.

fIP This parameter specifies the initial ”at least better than” guess for ob-
jective function. This is only used in the branch-and-bound algorithm
when integer variables exist in the model. All solutions with a worse
objective value than this value are immediately rejected. The default is
infinity.

141

Prob Problem description structure. The following fields are used:, continued

SC A vector with indices for variables of type semi-continuous (SC), a logical
vector or a scalar (see MIP.IntVars). A semi-continuous variable i takes
either the value 0 or some value in the range [x L(i), x U(i)]. It is possible
to combine integer and semi-continuous type to obtain the semi-integer
type.

sos1 List of structures defining the Special Ordered Sets of Order One (SOS1).
For SOS1 set k, sos1(k).var is a vector of indices for variables of type
SOS1 in set k, sos1(k).row is the priority of SOS k in the set of SOS1
and sos1(k).weight is a vector of the same length as sos1(k).var and it
describes the order MILPSOLVE will weight the variables in SOS1 set
k.

a low number of a row and a weight means high priority.

sos2 List of n structures defining the Special Ordered Sets (SOS) of Order
Two (SOS2). (see MIP.sos1)

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal solution (or some other solution if optimum could not
been found)

f k Optimal objective value.

v k [rc; duals]. If Reduced cost and dual variables are not available,
then v k is empty.

ExitFlag TOMLAB information parameter.
0 = Optimal solution found.
1 = Suboptimal solution or user abort.
2 = Unbounded solution.
3 = Numerical failure.
4 = Infeasible model.
10 = Out of memory.
11 = Branch and bound stopped.

ExitText Status text from MILPSOLVE.

Inform MILPSOLVE information parameter.
-2 = Out of memory.
0 = Optimal solution found.
1 = Suboptimal solution.

142

Result Structure with result from optimization. The following fields are changed:, continued

2 = Infeasible model.
3 = Unbounded solution.
4 = Degenerate solution.
5 = Numerical failure.
6 = User abort.
7 = Timeout.
10 = Branch and bound failed.
11 = Branch and bound stopped.
12 = Feasible branch and bound solution.
13 = No feasible branch and bound solution.
Other = Unknown status.

Iter The total number of nodes processed in the branch-and-bound
algorithm. Is only applicable if the model contains integer vari-
ables. In the case of an LP model Result.Iter contains the number
of iterations. This is however not documented.

MinorIter The total number of Branch-and-bound iterations. When the
problem is LP, MinorIter equals Result.Iter

MILPSOLVE.basis Optimal basis, on the format described above under
Prob.MILPSOLVE.basis.

MILPSOLVE.MaxLevel The deepest Branch-and-bound level of the last solution. Is only
applicable if the model contains integer variables.

MILPSOLVE.sa.objStatus 1 successful
0 SA not requested
-1 Error: error from MILPSOLVE
-3 no SA available

MILPSOLVE.sa.ObjLower An array that will contain the values of the lower limits on the
objective function.

MILPSOLVE.sa.ObjUpper An array that will contain the values of the upper limits on the
objective function.

MILPSOLVE.sa.RhsStatus see MILPSOLVE.sa.objStatus.

MILPSOLVE.sa.RhsLower An array that will contain the values of the lower limits on the
RHS.

MILPSOLVE.sa.RhsUpper An array that will contain the values of the upper limits on the
RHS.

143

Result Structure with result from optimization. The following fields are changed:, continued

xState State of each variable
0 - free variable,
1 - variable on lower bound,
2 - variable on upper bound,
3 - variable is fixed, lower bound = upper bound.

bState State of each linear constraint
0 - Inactive constraint,
1 - Linear constraint on lower bound,
2 - Linear constraint on upper bound,
3 - Linear equality constraint.

144

11.1.17 minlpSolve

Purpose
Branch & Bound algorithm for Mixed-Integer Nonlinear Programming (MINLP) with convex or nonconvex sub
problems using NLP relaxation (Formulated as minlp-IP).

The parameter Convex (see below) determines if to assume the NLP subproblems are convex or not.

minlpSolve depends on a suitable NLP solver.

minlpSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 . The variables x ∈ I, the index subset of
1, ..., n are restricted to be integers.

Calling Syntax
Result = tomRun(’minlpSolve’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

x L Lower bounds on x.
x U Upper bounds on x.
A The linear constraint matrix.
b L Lower bounds on linear constraints.
b U Upper bounds on linear constraints.
c L Lower bounds on nonlinear constraints.
c U Upper bounds on nonlinear constraints.

x 0 Starting point.

Convex If Convex==1, assume NLP problems are convex, and only one local NLP
solver call is used at each node. If Convex==0 (Default), multiMin is used to
do many calls to a local solver to determine the global minima at each node.
The global minimum with most components integer valued is chosen.

MaxCPU Maximal CPU Time (in seconds) to be used by minlpSolve, stops with best
point found

PriLev Print level in minlpSolve (default 1). Also see optParam.IterPrint

145

Prob Problem description structure. The following fields are used:, continued

PriLevOpt Print level in sub solvers (SNOPT and other NLP solvers):
=0 No output; >0 Convergence results
>1 Output every iteration, >2 Output each step in the NLP alg
For other NLP solvers, see the documentation for the solver

WarmStart If true, >0, minlpSolve reads the output from the last run from
Prob.minlpSolve, if it exists. If it doesn’t exist, minlpSolve attempts to open
and read warm start data from mat-file minlpSolveSave.mat. minlpSolve uses
the warm start information to continue from the last run. The mat-file minlp-
SolveSave.mat is saved every Prob.MIP.SaveFreq iteration.

SolverNLP Name of the solver used for NLP subproblems. If empty, the default solver is
found calling GetSolver(’con’,1); If TOMLAB /SOL installed, SNOPT is the
default solver. If SolverNLP is a SOL solver (SNOPT, MINOS or NPSOL),
the SOL.optPar and SOL.PrintFile is used: See help minosTL.m, npsolTL.m
or snoptTL.m for how to set these parameters

RandState If Convex == 0, RandState is sent to multiMin to initialize the random gen-
erator. RandState is used as follows:
If > 0, rand(’state’,RandState) is set to initialize the pseudo-random generator
if < 0, rand(’state’,sum(100*clock)) is set to give a new set of random values
each run
if RandState == 0, rand(’state’,) is not called. Default RandState = -1

MIP Structure in Prob, Prob.MIP. Defines integer optimization parameters. Fields
used:

IntVars If empty, all variables are assumed non-integer. If islogical(IntVars) (=all el-
ements are 0/1), then 1 = integer variable, 0 = continuous variable. If any
element >1, IntVars is the indices for integer variables.

VarWeight Weight for each variable in the variable selection phase. A lower value gives
higher priority. Setting Prob.MIP.VarWeight might improve convergence.

DualGap minlpSolve stops if the duality gap is less than DualGap. DualGap = 1, stop at
first integer solution e.g. DualGap = 0.01, stop if solution < 1% from optimal
solution.

fIP An upper bound on the IP value wanted. Makes it possible to cut branches
and avoid node computations. Used even if xIP not given.

xIP The x-values giving the fIP value, if a solution (xIP,fIP) is known.
NodeSel Node selection method in branch and bound

= 0 Depth First. Priority on nodes with more integer components
= 1 Breadth First. Priority on nodes with more integer components
= 2 Depth First. When integer solution found, use NodeSel = 1 (default)
= 3 Pure LIFO (Last in, first out) Depth First

146

Prob Problem description structure. The following fields are used:, continued

= 4 Pure FIFO (First in, first out) Breadth First
= 5 Pure LIFO Depth First. When integer solution found, use NodeSel 4

VarSel Variable selection method in branch and bound:
= 1 Use variable with most fractional value
= 2 Use gradient and distance to nearest integer value

KNAPSACK If = 1, use a knapsack heuristic. Default 0.

ROUNDH If = 1, use a rounding heuristic. Default 0.

SaveFreq Warm start info saved on minlpSolveSave.mat every SaveFreq iteration (default
-1, i.e. no warm start info is saved)

optParam Structure in Prob. Fields used in Prob.optParam, also in sub solvers:
MaxIter Maximal number of iterations, default 10000
IterPrint Print short information each iteration (PriLev > 0 ==> IterPrint = 1). Iter-

ation number: Depth in tree (symbol L[] - empty list, symbol Gap - Dual Gap
convergence), fNLP (Optimal f(x) current node), fIPMin (Best integer feasi-
ble f(x) found), LowBnd (Lower bound on optimal integer feasible f(x)), Dual
Gap in absolut value and percent, The length of the node list L, —L—, The
Inform and ExitFlag the solver returned at the current node, FuEv (Number
of function evaluations used by solver at current node), date/time stamp.

bTol Linear constraint violation convergence tolerance.
cTol Constraint violation convergence tolerance.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: Global optimal solution found, or integer solution with duality gap less than

user tolerance.
1: Maximal number of iterations reached.
2: Empty feasible set, no integer solution found.
4: No feasible point found running NLP relaxation.
5: Illegal x 0 found in NLP relaxation.
99: Maximal CPU Time used (cputime > Prob.MaxCPU).

Inform Code telling type of convergence, returned from subsolver.
ExitText Text string giving ExitFlag and Inform information.
DualGap Relative duality gap, max(0,fIPMin-fLB)/—fIPMin—, if fIPMin =0;

max(0,fIPMin-fLB) if fIPMin == 0. If fIPMin =0: Scale with 100, 100*Dual-
Gap, to get the percentage duality gap. For absolute value duality gap: scale
with fIPMin, fIPMin * DualGap

147

Result Structure with result from optimization. The following fields are changed:, continued

x k Solution.
v k Lagrange multipliers. Bounds, Linear and Nonlinear Constraints, n + mLin +

mNonLin.
f k Function value at optimum.
g k Gradient vector at optimum.

x 0 Starting point x 0.
f 0 Function value at start.
c k Constraint values at optimum.
cJac Constraint derivative values at optimum.

xState State of each variable, described in Table 150.
bState State of each constraint, described in Table 151.
cState State of each general constraint, described in Table 152.

Solver Solver used (’mipSolve’).
SolverAlgorithm Text description of solver algorithm used.
Prob Problem structure used.

minlpSolve A structure with warm start information. Use with WarmDefGLOBAL, see
example below.

Description
To make a restart (warm start), just set the warm start flag, and call minlpSolve once again:

Prob.WarmStart = 1;

Result = tomRun(’minlpSolve’, Prob, 2);

minlpSolve will read warm start information from the minlpSolveSave.mat file.

Another warm start (with same MaxFunc) is made by just calling tomRun again:

Result = tomRun(’minlpSolve’, Prob, 2);

To make a restart from the warm start information in the Result structure, make a call to WarmDefGLOBAL
before calling minlpSolve. WarmDefGLOBAL moves information from the Result structure to the Prob structure
and sets the warm start flag, Prob.WarmStart = 1;

Prob = WarmDefGLOBAL(’minlpSolve’, Prob, Result);

where Result is the result structure returned by the previous run. A warm start (with same MaxIter) is done by
just calling tomRun again:

Result = tomRun(’minlpSolve’, Prob, 2);

148

To make another warm start with new MaxIter 100, say, redefine MaxIter as:

Prob.optParam.MaxIter = 100;

Then repeat the two lines:

Prob = WarmDefGLOBAL(’minlpSolve’, Prob, Result);

Result = tomRun(’minlpSolve’, Prob, 2);

149

11.1.18 mipSolve

Purpose
Solve mixed integer linear programming problems (MIP).

mipSolve solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

xj ∈ N ∀j ∈I

where c, x, xL, xU ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm. The variables x ∈ I, the index subset of 1, ..., n are restricted
to be integers.

Starting with TOMLAB version 4.0, mipSolve accepts upper and lower bounds on the linear constraints like most
other TOMLAB solvers. Thus it is no longer necessary to use slack variables to handle inequality constraints.

Calling Syntax
Result = tomRun(’mipSolve’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

c The vector c in cTx.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints. If empty, Prob.b U is used.
b U Upper bounds on the linear constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

MaxCPU Maximal CPU Time (in seconds) to be used by mipSolve, stops with best point
found.

QP.B Active set B 0 at start:

B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

SolverLP Name of solver used for initial LP subproblem. Default solver is used if empty,
see GetSolver.m and tomSolve.m.

SolverDLP Name of solver used for the dual LP subproblems. Default solver is used if
empty, see GetSolver.m and tomSolve.m.

150

Prob Problem description structure. The following fields are used:, continued

PriLevOpt Print level in lpSimplex and DualSolve:
0: No output; > 0: Convergence result;
> 1: Output every iteration; > 2: Output each step in simplex algorithm.

PriLev Print level in mipSolve.
SOL.optPar Parameters for the SOL solvers, if they are used as subsolvers.
SOL.PrintFile Name of print file for SOL solvers, if they are used as subsolvers.
MIP Structure with fields for integer optimization The following fields are used:

IntVars The set of integer variables.
If empty, all variables are assumed non-integer (LP problem)

VarWeight Weight for each variable in the variable selection phase.
A lower value gives higher priority. Setting Prob.MIP.VarWeight = Prob.c
improves convergence for knapsack problems.

DualGap mipSolve stops if the duality gap is less than DualGap. To stop at the first
found integer solution, set DualGap =1.
For example, DualGap = 0.01 makes the algorithm stop if the solution is < 1%
from the optimal solution.

fIP An upper bound on the IP value wanted. Makes it possible to cut branches
and avoid node computations.

xIP The x-value giving the fIP value.
KNAPSACK If solving a knapsack problem, set to true (1) to use a knapsack heuristic.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: IterPrint, MaxIter, PriLev, wait, eps f and eps Rank.

Solver Structure with fields for algorithm choices:
Alg Node selection method:

0: Depth first
1: Breadth first
2: Depth first. When integer solution found, switch to Breadth.

method Rule to select new variables in DualSolve/lpSimplex:
0: Minimum reduced cost, sort variables increasing. (Default)
1: Bland’s rule (default).
2: Minimum reduced cost. Dantzig’s rule.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum, c.

151

Result Structure with result from optimization. The following fields are changed:, continued

v k Lagrange multipliers, [Constraints + lower + upper bounds].

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in Table 150, page 239.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.
QP.y Dual parameters y (also part of Result.v k.
p dx Search steps in x.
alphaV Step lengths for each search step.

ExitFlag 0: OK.
1: Maximal number of iterations reached.
2: Empty feasible set, no integer solution found.
3: Rank problems. Can not find any solution point.
4: No feasible point found running LP relaxation.
5: Illegal x 0 found in LP relaxation.
99: Maximal CPU Time used (cputime > Prob.MaxCPU).

Iter Number of iterations.
Solver Solver used (’mipSolve’).
SolverAlgorithm Text description of solver algorithm used.
Prob Problem structure used.

Description
The routine mipSolve is an implementation of a branch and bound algorithm from Nemhauser and Wolsey [58,
chap. 8.2]. mipSolve normally uses the linear programming routines lpSimplex and DualSolve to solve relaxed
subproblems. mipSolve calls the general interface routines SolveLP and SolveDLP. By changing the setting of the
structure fields Prob.Solver.SolverLP and Prob.Solver.SolverDLP, different sub-solvers are possible to use, see the
help for the interface routines.

Algorithm
See [58, chap. 8.2] and the code in mipSolve.m.

Examples
See exip39, exknap, expkorv.

M-files Used
lpSimplex.m, DualSolve.m, GetSolver.m, tomSolve.m

See Also
cutplane, balas, SolveLP, SolveDLP

152

11.1.19 multiMin

Purpose
multiMin solves general constrained mixed-integer global optimization problems. It tries to find all local minima
by a multi-start method using a suitable nonlinear programming subsolver.

multiMin solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi ∈ N ∀i ∈ I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

The variables x ∈ I, the index subset of 1, ..., n are restricted to be integers.

The integer components of every x 0 is rounded to the nearest integer value inside simple bounds, and these
components are fixed during the nonlinear local search.

If generating random points and there are linear constraints, multiMin checks feasibility with respect to the linear
constraints, and for each initial point tries 100 times to get linear feasibility before accepting the initial point.

Calling Syntax
Result = multiMin(Prob, xInit)
Result = tomRun(’multiMin’, Prob, PriLev) (driver call)

Description of Inputs

Prob Problem description structure. The following fields are used:

xInit Either, 1x1 number - The number of random initial points, default 10*Prob.N
dxm matrix - Every column is an initial point (of length d=Prob.N).
May also be set as Prob.xInit.

fCut If initial f(x 0) > fCut, no local optimization is done.

WarmStart If true, > 0, multiMin assumes the field multiMin defined with the output from
a previous run on the same problem. See the Output fields of Result.multiMin.
Use WarmDefGLOBAL to set the correct fields in the Prob structure. Nec-
essary fields are fOpt and xOpt. If any of the other fields are missing, the
corresponding variables are initialized to 0. These other fields are: localTry,
Iter, FuncEv, GradEv, HessEv, ConstrEv Inform (is set to zeros(length(fOpt,1)
if not defined).

In WarmDefGLOBAL the Result structure for the optimal run will be fed back
to multiMin as Prob.multiMin.ResOpt In case this field is not defined, and no
better point is found during the runs, a special call to the localSolver is used
to generate a proper Result structure.

153

Prob Problem description structure. The following fields are used:, continued

RandState If WarmStart and isscalar(xInit), RandState is used as follows: If > 0,
rand(’state’,RandState) is set to initialize the pseudo-random generator if < 0,
rand(’state’,sum(100*clock)) is set to give a new set of random values each run
if RandState == 0, rand(’state’,) is not called Default RandState = -1.

xEqTol Tolerance to test if new point x k already defined as optimum: norm(xk −
xOpt(:, i)) <= xEqTol ∗ max(1, norm(xk)) If test fulfilled x k is assumed to
be too close to xOpt(:,i) Default xEqTol = 1E-5

x L Lower bounds for each element in x. If generating random points, -inf elements
of x L are set to -10000.

x U Upper bounds for each element in x. If generating random points, inf elements
of x U are set to 10000.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

PriLevOpt 0 = silent.
1 = Display one row for each unique local minima found. The minima are
sorted, lowest value first (possibly the global minima)

The following 4 information values are displayed:
1. Order #
2. Function value f(x) at local minima
3. Point x at local minima. Only up to 10 values are displayed
4. Inform value returned from local Solver (normally 0)

2 = One row of output from each multiMin local optimization trial
The following 6 information values are displayed:
1. Step #
2. Text Old (previously found local minima), FAIL (solver failed to verify

local minima) or blank (solver success, new local minima found)
3. Inform value from local solver
4. f(x 0) - function value f(x 0) for initial x 0
5. f(x) - best f(x) value found in this local search
6. x - point for which best f(x) value was found in this local search. Only up

to 10 values are displayed.

3 = tomRun (PrintResult) output from every optimization, print level 1.

154

Prob Problem description structure. The following fields are used:, continued

4 = tomRun (PrintResult) output from every optimization, print level 2. For
constrained problems output of sum(—constr—) and information if optimal
point was accepted w.r.t. feasibility.
5 = tomRun (PrintResult) output from every optimization, print level 3.

GO Structure in Prob, Prob.GO. Fields used:

localSolver The local solver used to run all local optimizations. Default is the license
dependent output of GetSolver(’con’,1,0).

optParam Defines optimization parameters. Fields used:

fGoal Goal for function value f(x), if empty not used. If fGoal is reached, no further
local optimizations are done.

eps f Relative accuracy for function value, fTol == eps f. Stop if abs(f-fGoal) <=
abs(fGoal) * fTol , if fGoal = 0. Stop if abs(f-fGoal) <= fTol , if fGoal ==0.

bTol The local solver used to run all local optimizations. Default is the license
dependent output of GetSolver(’con’,1,0).

MIP.IntVars Structure in Prob, Prob.MIP. If empty, all variables are assumed non-integer
(LP problem). If length(IntV ars) > 1 ==> length(IntV ars) == length(c)
should hold. Then IntV ars(i) == 1 ==> x(i) integer. IntV ars(i) ==
0 ==> x(i) real. If length(IntV ars) < n, IntVars is assumed to be a set
of indices. It is advised to number the integer values as the first variables,
before the continuous. The tree search will then be done more efficiently.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

The following fields in Result are changed by multiMin before return:
ExitFlag = 0 normal output, of if fGoal set and found.

= 1 A solution reaching the user defined fGoal was not found
The Solver, SolverAlgorithm and ExitText fields are also reset.

A special field in Result is also returned, Result.multiMin:

xOpt Prob.N x k matrix with k distinct local optima, the test being norm(xk−xOpt(:
, i)) <= xEqTol ∗max(1, norm(xk)) that if fulfilled assumes x k to be to close
to xOpt(:,i)

fOpt The k function values in the local optima xOpt(:,i),i=1,...,k.

155

Result Structure with result from optimization. The following fields are changed:, continued

Inform The Inform value returned by the local solver when finding each of the local
optima xOpt(:,i); i=1,...,k. The Inform value can be used to judge the validity
of the local minimum reported.

localTry Total number of local searches.
Iter Total number of iterations.
FuncEv Total number of function evaluations.
GradEv Total number of gradient evaluations.
HessEv Total number of Hessian evaluations.
ConstrEv Total number of constraint function evaluations.
ExitText Text string giving ExitFlag and Inform information.

156

11.1.20 multiMINLP

Purpose
multiMINLP solves general constrained mixed-integer global nonlinear optimization problems.

It is aimed for problems where the number of integer combinations nMax is huge and relaxation of the integer
constraint is possible.

If no integer variables, multiMINLP calls multiMin. If nMax <= min(Prob.optParam.MaxFunc,5000), glcDirect
is used. Otherwise, multiMINLP first finds a set M of local minima calling multiMin with no integer restriction
on any variable. The best local minimum is selected. glcDirect is called to find the best integer feasible solution
fIP in a small area (< +- 2 units) around the best local minimum found.

The other local minima are pruned, if fOpt(i) > fIP, no integer feasible solution could be found close to this local
minimum i.

The area close to the remaining candidate local minima are searched one by one by calling glcDirect to find any
fIPi < fIP.

multiMINLP solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈I

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 . The variables x ∈ I, the index subset of
1, ..., n are restricted to be integers.

Calling Syntax
Result = tomRun(’multiMINLP’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

Prob is a structure, defined as to solve a standard MINLP problem. The Prob
structure is fed to the localSolver. See e.g. minlpAssign.
See multiMin and glcDirect for input to the subsolvers e.g. Prob.xInit is used
in multiMin (and fCut, RandState, xEQTol).

x L Lower bounds for each element in x. If generating random points, -inf elements
of x L are set to min(-L,xMin,x U-L) xMin is the minimum of the finite x L
values.

x U Upper bounds for each element in x. If generating random points, inf elements
of x U are set to max(L,xMax,x L+L) xMax is the maximum of the finite x U
values.

L is 100 for nonlinear least squares, otherwise 1000.

157

Prob Problem description structure. The following fields are used:, continued

b L Lower bounds on linear constraints.
b U Upper bounds on linear constraints.
A The linear constraint matrix.
c L Lower bounds on nonlinear constraints.
c U Upper bounds on nonlinear constraints.

PriLev Print Level:
0 = Silent
1 = Display 2 summary rows
2 = Display some extra summary rows
5 = Print level 1 in tomRun call
6 = Print level 2 in tomRun call
7 = Print level 3 in tomRun call

xInit Used in multiMin. See help for multiMin.

GO.localSolver The local solver used to run all local optimizations. Default is the license
dependent output of GetSolver(’con’,1,0).

optParam Structure in Prob, Prob.optParam. Defines optimization parameters. Fields
used:

MaxFunc Max number of function evaluations in each subproblem
fGoal Goal for function value f(x), if empty not used. If fGoal is reached, no further

local optimizations are done
eps f Relative accuracy for function value, fTol == eps f. Stop if abs(f-fGoal) <=

abs(fGoal) * fTol , if fGoal = 0. Stop if abs(f-fGoal) <= fTol , if fGoal ==0.
Default 1e-8.

bTol Linear constraint feasibility tolerance. Default 1e-6
cTol Nonlinear constraint feasibility tolerance. Default 1e-6

MIP Structure in Prob, Prob.MIP. Defines integer optimization parameters. Fields
used:

IntVars If empty, all variables are assumed non-integer. If islogical(IntVars) (=all el-
ements are 0/1), then 1 = integer variable, 0 = continuous variable. If any
element >1, IntVars is the indices for integer variables.

nMax Number of integer combinations possible, if empty multiMINLP computes
nMax.

Rfac Reduction factor for real variables in MINLP subproblem close to local multi-
MINLP minimum. Bounds set to x L = max(x L,x-Rfac*(x U-x L)) and x U
= min(x U,x+Rfac*(x U-x L)). Default 0.25.

Description of Outputs

158

Result Structure with result from optimization. The following fields are changed:

Result structure from the last good optimization step giving the best f(x) value,
the possible global MINLP minimum.

The following fields in Result are changed by multiMINLP before return:

ExitFlag = 0 normal output, of if fGoal set and found.
= 1 A solution reaching the user defined fGoal was not found.
= 2 Unbounded problem.
= 4 Infeasible problem.

The Solver, SolverAlgorithm and ExitText fields are also reset.

A special field in Result is also returned, Result.multiMINLP:

xOpt Prob.N x k matrix with k distinct local optima, the test being norm(x k-
xOpt(:,i)) <= xEqTol*max(1,norm(x k)) that if fulfilled assumes x k to be
to close to xOpt(:,i).

fOpt The k function values in the local optima xOpt(:,i),i=1,...,k.
Inform The Inform value returned by the local solver when finding each of the local

optima xOpt(:,i); i=1,...,k. The Inform value can be used to judge the validity
of the local minimum reported.

localTry Total number of local searches.
Iter Total number of iterations.
FuncEv Total number of function evaluations.
GradEv Total number of gradient evaluations.
HessEv Total number of Hessian evaluations.
ConstrEv Total number of constraint function evaluations.
ExitText Text string giving Inform information.

159

11.1.21 nlpSolve

Purpose
Solve general constrained nonlinear optimization problems.

nlpSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

Calling Syntax
Result = nlpSolve(Prob, varargin)
Result = tomRun(’nlpSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

PriLevOpt Print level: 0 Silent, 1 Final result, 2 Each iteration, short, 3 Each iteration,
more info, 4 Matrix update information.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.g Name of m-file computing the gradient vector g(x).
FUNCS.H Name of m-file computing the Hessian matrix H(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).
FUNCS.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.
FUNCS.d2c Name of m-file computing the second derivatives of the constraints, weighted

by an input Lagrange vector

NumDiff How to obtain derivatives (gradient, Hessian).
ConsDiff How to obtain the constraint derivative matrix.

160

Prob Problem description structure. The following fields are used:, continued

SolverQP Name of the solver used for QP subproblems. If empty, the default solver is
used. See GetSolver.m and tomSolve.m.

SolverFP Name of the solver used for FP subproblems. If empty, the default solver is
used. See GetSolver.m and tomSolve.m.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: eps g, eps x, MaxIter, wait, size x, method, IterPrint, xTol,
bTol, cTol, and QN InitMatrix.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
c k Value of constraints at optimum.
H k Hessian value at optimum.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

cJac Constraint Jacobian at optimum.

xState State of each variable, described in Table 150.
bState State of each linear constraint, described in Table 151.
cState State of each general constraint.

Inform Type of convergence.
ExitFlag Flag giving exit status.
ExitText 0: Convergence. Small step. Constraints fulfilled.

1: Infeasible problem?
2: Maximal number of iterations reached.
3: No progress in either function value or constraint reduction.

Inform 1: Iteration points are close.
2: Small search direction
3: Function value below given estimate. Restart with lower fLow if minimum
not reached.
4: Projected gradient small.

161

Result Structure with result from optimization. The following fields are changed:, continued

10: Karush-Kuhn-Tucker conditions fulfilled.

Iter Number of iterations.
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The routine nlpSolve implements the Filter SQP by Roger Fletcher and Sven Leyffer presented in the paper [21].

M-files Used
tomSolve.m, ProbCheck.m, iniSolve.m, endSolve.m

See Also
conSolve, sTrustr

162

11.1.22 pdcoTL

Purpose
pdcoTL solves linearly constrained convex nonlinear optimization problems of the kind

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

(19)

where f(x) is a convex nonlinear function, x, xL, xU ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm.

Calling Syntax
Result=tomRun(’pdco’,Prob,...);

Description of Inputs

Prob Problem description structure. The following fields are used:

x 0 Initial x vector, used if non-empty.
A The linear constraint matrix.
b L,b U Lower and upper bounds for the linear constraints.

PriLevOpt Print level in pdsco solver. If > 0: prints summary information.

SOL Structure with SOL special parameters:

pdco Options structure with fields as defined by pdcoSet.
d1 Primal regularization vector. Must be a positive vector (length n) or scalar, in

which case D1 = diag(d1) is used. Default: 10−4.
d2 Dual regularization vector. Must be a positive vector (length m) or a scalar

value, in which case D2 = diag(d2) is used. Default: 10−4.
y0 Initial dual parameters for linear constraints (default 0)
z0 Initial dual parameters for simple bounds (default 1/N)

xsize,zsize are used to scale (x, y, z). Good estimates should improve the per-
formance of the barrier method.

xsize Estimate of the biggest x at the solution. (default 1/N)
zsize Estimate of the biggest z at the solution. (default 1/N)

optParam Structure with optimization parameters. The following fields are used:

MaxIter Maximum number of iterations. (Prob.SOL.pdco.MaxIter).
MinorIter Maximum number of iterations in LSQR. (Prob.SOL.pdco.LSQRMaxIter).
eps x Accuracy for satisfying x1.∗z1 = 0, x2.z1 = 0, where z = z1−z2 and z1, z2 > 0.

(Prob.SOL.pdco.OptTol)
bTol Accuracy for satisfying Ax+D2r = b, AT y + z = ∇f(x) and x− x1 = bL, x+

x2 = bU , where x1, x2 > 0 (Prob.SOL.pdco.FeaTol)

163

Prob Problem description structure. The following fields are used:, continued

wait 0 - solve the problem with default internal parameters; 1 - pause: allows inter-
active resetting of parameters. (Prob.SOL.pdco.wait)

Description of Outputs

Result Structure with result from optimization. The following fields are set by pdcoTL

x k Solution vector
f k Function value at optimum
g k Gradient of the function at the solution
H k Hessian of the function at the solution, diagonal only

x 0 Initial solution vector
f 0 Function value at start, x = x 0

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (orignal bounds + constraints)

y k Lagrangian multipliers (for bounds + dual solution vector) The full [z; y] vec-
tor as returned from pdco, including slacks and extra linear constraints after
rewriting constraints: −inf < b L < A ∗ x < b U < inf ; non-inf lower AND
upper bounds

ExitFlag Tomlab Exit status from pdco MEX
Inform pdco information parameter: 0 = Solution found;

0 Solution found
1 Too many iterations
2 Linesearch failed too often

Iter Number of iterations
FuncEv Number of function evaluations
GradEv Number of gradient evaluations
HessEv Number of Hessian evaluations

Solver Name of the solver (’pdco’)
SolverAlgorithm Description of the solver

Description
pdco implements an primal-dual barrier method developed at Stanford Systems Optimization Laboratory (SOL).

164

The problem (19) is first reformulated into SOL PDCO form:

min
x

f(x)

s/t xL ≤ x ≤ xU
Ax = b

r unconstrained

The problem actually solved by pdco is

min
x,r

φ(x) + 1
2‖D1x‖2 + 1

2‖r‖
2

s/t xL ≤ x ≤ xU
Ax + D2r = b

whereD1 andD2 are positive-definite diagonal matrices defined from d1, d2 given in Prob.SOL.d1 and Prob.SOL.d2.

In particular, d2 indicates the accuracy required for satisfying each row of Ax = b. See pdco.m for a detailed
discussion of D1 and D2. Note that in pdco.m, the objective f(x) is denoted φ(x), bl == x L and bu == x U .

Examples
Problem 14 and 15 in tomlab/testprob/con prob.m.m are good examples of the use of pdcoTL.

M-files Used
pdcoSet.m, pdco.m, Tlsqrmat.m

See Also
pdscoTL.m

165

11.1.23 pdscoTL

Purpose
pdscoTL solves linearly constrained convex nonlinear optimization problems of the kind

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

(20)

where f(x) is a convex separable nonlinear function, x, xL, xU ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm.

Calling Syntax
Result=tomRun(’pdsco’,Prob,...);

Description of Inputs

Prob Problem description structure. The following fields are used:

x 0 Initial x vector, used if non-empty.
A The linear constraints coefficient matrix.
b L,b U Lower and upper bounds for the linear constraints.

HessPattern Non-zero pattern for the objective function. Only the diagonal is needed. De-
fault if empty is the unit matrix.

PriLevOpt Print level in pdsco solver. If > 0: prints summary information.

SOL Structure with SOL special parameters:
pdco Options structure with fields as defined by pdscoSet.

gamma Primal regularization parameter.
delta Dual regularization parameter.

y0 Initial dual parameters for linear constraints (default 0)

z0 Initial dual parameters for simple bounds (default 1/N)

xsize,zsize are used to scale (x, y, z). Good estimates should improve the per-
formance of the barrier method.

xsize Estimate of the biggest x at the solution. (default 1/N)

zsize Estimate of the biggest z at the solution. (default 1/N)

optParam Structure with optimization parameters. The following fields are used:
MaxIter Maximum number of iterations. (Prob.SOL.pdco.MaxIter).
MinorIter Maximum number of iterations in LSQR (Prob.SOL.pdco.LSQRMaxIter).

166

Prob Problem description structure. The following fields are used:, continued

eps x Accuracy for satisfying x. ∗ z = 0
bTol Accuracy for satisfying Ax+r = b, AT y+z = ∇f(x) and x−x1 = bL, x+x2 =

bU , where x1, x2 > 0. (Prob.SOL.pdco.FeaTol)
wait 0 - solve the problem with default internal parameters; 1 - pause: allows inter-

active resetting of parameters. (Prob.SOL.pdco.wait)

Description of Outputs

Result Structure with result from optimization. The following fields are set by pdscoTL:

x k Solution vector
f k Function value at optimum
g k Gradient of the function at the solution
H k Hessian of the function at the solution, diagonal only

x 0 Initial solution vector
f 0 Function value at start, x = x 0

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
== 3;

v k Lagrangian multipliers (orignal bounds + constraints)

y k Lagrangian multipliers (for bounds + dual solution vector) The full [z; y] vec-
tor as returned from pdsco, including slacks and extra linear constraints after
rewriting constraints: −inf < b L < A ∗ x < b U < inf ; non-inf lower AND
upper bounds

ExitFlag Tomlab Exit status from pdsco MEX
Inform pdsco information parameter: 0 = Solution found;

0 Solution found
1 Too many iterations
2 Linesearch failed too often

Iter Number of iterations
FuncEv Number of function evaluations
GradEv Number of gradient evaluations
HessEv Number of Hessian evaluations

Solver Name of the solver (’pdsco’)
SolverAlgorithm Description of the solver

167

Description
pdsco implements an primal-dual barrier method developed at Stanford Systems Optimization Laboratory (SOL).
The problem (20) is first reformulated into SOL PDSCO form:

min
x

f(x)

s/t x ≥ xU
Ax = b.

The problem actually solved by pdsco is

min
x,r

f(x) + 1
2‖γx‖

2 + 1
2‖r/δ‖

2

s/t x ≥ 0
Ax + r = b

r unconstrained

where γ is the primal regularization parameter, typically small but 0 is allowed. Furthermore, δ is the dual
regularization parameter, typically small or 1; must be strictly greater than zero.

With positive γ, δ the primal-dual solution (x, y, z) is bounded and unique.

See pdsco.m for a detailed discussion of γ and δ. Note that in pdsco.m, the objective f(x) is denoted φ(x),
bl == x L and bu == x U .

Examples
Problem 14 and 15 in tomlab/testprob/con prob.m are good examples of the use of pdscoTL.

M-files Used
pdscoSet.m, pdsco.m, Tlsqrmat.m

See Also
pdcoTL.m

168

11.1.24 qpSolve

Purpose
Solve general quadratic programming problems.

qpSolve solves problems of the form

min
x

f(x) = 1
2 (x)TFx+ cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ Rn, F ∈ Rn×n, c ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm.

Calling Syntax
Result = qpSolve(Prob) or
Result = tomRun(’qpSolve’, Prob, 1);

Description of Inputs

Prob Problem description structure. The following fields are used:

QP.F Constant matrix, the Hessian.
QP.c Constant vector.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: eps f, eps Rank, MaxIter, wait, bTol and PriLev.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
v k Lagrange multipliers.

169

Result Structure with result from optimization. The following fields are changed:, continued

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in Table 150 .

Iter Number of iterations.

ExitFlag 0: OK, see Inform for type of convergence.
2: Can not find feasible starting point x 0.
3: Rank problems. Can not find any solution point.
4: Unbounded solution.
10: Errors in input parameters.

Inform If ExitF lag > 0, Inform = ExitF lag, otherwise Inform show type of con-
vergence:
0: Unconstrained solution.
1: λ ≥ 0.
2: λ ≥ 0. No second order Lagrange mult. estimate available.
3: λ and 2nd order Lagr. mult. positive, problem is not negative definite.
4: Negative definite problem. 2nd order Lagr. mult. positive, but releasing
variables leads to the same working set.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
Implements an active set strategy for Quadratic Programming. For negative definite problems it computes eigen-
values and is using directions of negative curvature to proceed. To find an initial feasible point the Phase 1 LP
problem is solved calling lpSimplex. The routine is the standard QP solver used by nlpSolve, sTrustr and conSolve.

M-files Used
ResultDef.m, lpSimplex.m, tomSolve.m, iniSolve.m, endSolve.m

See Also
qpBiggs, qpe, qplm, nlpSolve, sTrustr and conSolve

170

11.1.25 slsSolve

Purpose
Find a Sparse Least Squares (sls) solution to a constrained least squares problem with the use of any suitable
TOMLAB NLP solver.

slsSolve solves problems of the type:

min
x

1
2r(x)T r(x)

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, r(x) ∈ Rm, A ∈ Rm1,n, bL, bU ∈ Rm1 and c(x), cL, cU ∈ Rm2 .

The use of slsSolve is mainly for large, sparse problems, where the structure in the Jacobians of the residuals and
the nonlinear constraints are utilized by a sparse NLP solver, e.g. SNOPT.

Calling Syntax
Result=slsSolve(Prob,PriLev)

Description of Inputs

Prob Problem description structure. Should be created in the cls format, preferably by calling
Prob=clsAssign(...) if using the TQ format.

slsSolve uses two special fields in Prob:

SolverL2 Text string with name of the NLP solver used for solving the reformulated
problem. Valid choices are conSolve, nlpSolve, sTrustr, clsSolve. Suitable SOL
solvers, if available: minos, snopt, npopt.

L2Type Set to 1 for standard constrained formulation. Currently this is the only allowed
choice.

All other fields should be set as expected by the nonlinear solver selected. In particular:

A Linear constraint matrix.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Upper bounds on the nonlinear constraints.
c U Lower bounds on the nonlinear constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

171

Prob Problem description structure. Should be created in the cls format, preferably by calling
Prob=clsAssign(...) if using the TQ format, continued

ConsPattern The nonzero pattern of the constraint Jacobian.
JacPattern The nonzero pattern of the residual Jacobian.

Note that Prob.LS.y must be of correct length if JacPattern is empty (but
ConsPattern is not). slsSolve will create the new Prob.ConsPattern to be used
by the nonlinear solver using the information in the supplied ConsPattern and
JacPattern.

PriLev Print level in slsSolve. Default value is 2.
0 Silent except for error messages.
> 1 Print summary information about problem transformation. slsSolve calls Print-

Result(Result,PriLev).
2 Standard output in PrintResult.

Description of Outputs

Result Structure with results from optimization. The contents of Result depend on which nonlinear solver was used to solved the reformulated problem.

slsSolve transforms the following fields of Result back to the format of the original problem:

x k Optimal point.
r k Residual at optimum.
J k Jacobian of residuals at optimum.
c k Nonlinear constraint vector at optimum.
v k Lagrange multipliers.
g k The gradient vector is calculated as J kT · r k.

cJac Jacobian of nonlinear constraints at optimum.

x 0 Starting point.

xState State of variables at optimum.
cState State of constraints at optimum.

Result.Prob The problem structure defining the reformulated problem.

Description
The constrained least squares problem is solved in slsSolve by rewriting the problem as a general constrained
optimization problem. A set of m (the number of residuals) extra variables z = (z1, z2, . . . , zm) are added at the
end of the vector of unknowns. The reformulated problem

min
x

1
2z
T z

subject to xL ≤ (x1, x2, . . . , xn) ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
0 ≤ r(x)− z ≤ 0

172

is then solved by the solver given by Prob.SolverL2.

Examples
slsDemo.m

M-files Used
iniSolve.m, GetSolver.m

173

11.1.26 sTrustr

Purpose
Solve optimization problems constrained by a convex feasible region.

sTrustr solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ Rn, c(x), cL, cU ∈ Rm1 , A ∈ Rm2×n and bL, bU ∈ Rm2 .

Calling Syntax
Result = sTrustr(Prob, varargin)

Description of Inputs

Prob Problem description structure. The following fields are used:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.g Name of m-file computing the gradient vector g(x).
FUNCS.H Name of m-file computing the Hessian matrix H(x).
FUNCS.c Name of m-file computing the vector of constraint functions c(x).
FUNCS.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.

optParam Structure with special fields for optimization parameters, see Table 141.
Fields used are: eps f, eps g, eps c, eps x, eps Rank, MaxIter, wait, size x, size f,
xTol, LowIts, PriLev, method and QN InitMatrix.

PartSep Structure with special fields for partially separable functions, see Table 142.

varargin Other parameters directly sent to low level routines.

Description of Outputs

174

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
c k Value of constraints at optimum.
H k Hessian value at optimum.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

cJac Constraint Jacobian at optimum.
xState State of each variable, described in Table 150.

Iter Number of iterations.
ExitFlag Flag giving exit status.
Inform Binary code telling type of convergence:

1: Iteration points are close.
2: Projected gradient small.
3: Iteration points are close and projected gradient small.
4: Relative function value reduction low for LowIts iterations.
5: Iteration points are close and relative function value reduction low for LowIts
iterations.
6: Projected gradient small and relative function value reduction low for LowIts
iterations.
7: Iteration points are close, projected gradient small and relative function
value reduction low for LowIts iterations.
8: Too small trust region.
9: Trust region small. Iteration points close.
10: Trust region and projected gradient small.
11: Trust region and projected gradient small, iterations close.
12: Trust region small, Relative f(x) reduction low.
13: Trust region small, Relative f(x) reduction low. Iteration points are close.
14: Trust region small, Relative f(x) reduction low. Projected gradient small.
15: Trust region small, Relative f(x) reduction low. Iteration points close,
Projected gradient small.
101: Maximum number of iterations reached.
102: Function value below given estimate.
103: Convergence to saddle point (eigenvalues computed).

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

175

Description
The routine sTrustr is a solver for general constrained optimization, which uses a structural trust region algorithm
combined with an initial trust region radius algorithm (itrr). The feasible region defined by the constraints must
be convex. The code is based on the algorithms in [13] and [67]. BFGS or DFP is used for the Quasi-Newton
update, if the analytical Hessian is not used. sTrustr calls internal routine itrr.

M-files Used
qpSolve.m, tomSolve.m, iniSolve.m, endSolve.m

See Also
conSolve, nlpSolve, clsSolve

176

11.1.27 Tfmin

Purpose
Minimize function of one variable. Find miniumum x in [x L, x U] for function Func within tolerance xTol. Solves
using Brents minimization algorithm. Reference: ”Computer Methods for Mathematical Computations”, Forsythe,
Malcolm, and Moler, Prentice-Hall, 1976.

Calling Syntax
[x, nFunc] = Tfmin(Func, x L, x U, xTol, Prob)

Description of Inputs

Variable Description

Func Function of x to be minimized. Func must be defined as:
f = Func(x) if no 5th argument Prob is given
or
f = Func(x, Prob) if 5th argument Prob is given.

x L Lower bound on x.
x U Upper bound on x.
xTol Tolerance on accuracy of minimum.
Prob Structure (or any Matlab variable) sent to Func. If many parameters are to be

sent to Func set them in Prob as a structure. Example for parameters a and
b:

Prob.user.a = a;
Prob.user.b = b;
[x, nFunc] = Tfmin(’myFunc’,0,1,1E-5,Prob);

In myFunc:

function f = myFunc(x, Prob)
a = Prob.user.a;
b = Prob.user.b;
f = ”matlab expression dependent of x, a and b”;

Description of Outputs

Variable Description

x Solution.
nFunc Number of calls to Func.

177

11.1.28 Tfzero

Purpose
Tfzero, TOMLAB fzero routine.

Find a zero for f(x) in the interval [xL, xU]. Tfzero searches for a zero of a function f(x) between the given
scalar values xL and xU until the width of the interval (xLow, xUpp) has collapsed to within a tolerance specified
by the stopping criterion, abs(xLow − xUpp) <= 2. ∗ (RelErr ∗ abs(xLow) + AbsErr). The method used is an
efficient combination of bisection and the secant rule and is due to T. J. Dekker.

Calling Syntax
[xLow, xUpp, ExitFlag] = Tfzero(x L, x U, Prob, x 0, RelErr, AbsErr)

Description of Inputs

Variable Description

x L Lower limit on the zero x to f(x).
x U Upper limit on the zero x to f(x).
Prob Structure, sent to Matlab routine ZeroFunc. The function name should be set

in Prob.FUNCS.f0. Only the function will be used, not the gradient.
x 0 An initial guess on the zero to f(x). If empty, x 0 is set as the middle point in

[x L, x U].

RelErr Relative error tolerance, default 1E-7.
AbsErr Absolute error tolerance, default 1E-14.

Description of Outputs

Variable Description

xLow Lower limit on the zero x to f(x).
xUpp Upper limit on the zero x to f(x).
ExitFlag Status flag 1,2,3,4,5.

1: xLow is within the requested tolerance of a zero. The interval (xLow, xUpp)
collapsed to the requested tolerance, the function changes sign in (xLow, xUpp),
and f(x) decreased in magnitude as (xLow, xUpp) collapsed.
2: f(xLow) = 0. However, the interval (xLow, xUpp) may not have collapsed
to the requested tolerance.
3: xLow may be near a singular point of f(x). The interval (xLow, xUpp)
collapsed to the requested tolerance and the function changes sign in (xLow,
xUpp), but f(x) increased in magnitude as (xLow, xUpp) collapsed, i.e.
abs(f(xLow)) > max(abs(f(xLow − IN)), abs(f(xUpp− IN))).
4: No change in sign of f(x) was found although the interval (xLow, xUpp)
collapsed to the requested tolerance. The user must examine this case and
decide whether xLow is near a local minimum of f(x), or xLow is near a zero
of even multiplicity, or neither of these.

178

Variable Description

5: Too many (> 500) function evaluations used.

179

11.1.29 ucSolve

Purpose
Solve unconstrained nonlinear optimization problems with simple bounds on the variables.

ucSolve solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where x, xL, xU ∈ Rn.

Calling Syntax
Result = ucSolve(Prob, varargin)

Description of Inputs

Prob Problem description structure. The following fields are used:

x L Lower bounds on the variables.
x U Upper bounds on the variables.

x 0 Starting point.

FUNCS.f Name of m-file computing the objective function f(x).
FUNCS.g Name of m-file computing the gradient vector g(x).
FUNCS.H Name of m-file computing the Hessian matrix H(x).

f Low Lower bound on function value.

Solver.Alg Solver algorithm to be run:
0: Gives default, either Newton or BFGS.
1: Newton with subspace minimization, using SVD.
2: Safeguarded BFGS with inverse Hessian updates (standard).
3: Safeguarded BFGS with Hessian updates.
4: Safeguarded DFP with inverse Hessian updates.
5: Safeguarded DFP with Hessian updates.
6: Fletcher-Reeves CG.
7: Polak-Ribiere CG.
8: Fletcher conjugate descent CG-method.

Solver.Method Method used to solve equation system:
0: SVD (default).
1: LU-decomposition.
2: LU-decomposition with pivoting.
3: Matlab built in QR.
4: Matlab inversion.
5: Explicit inverse.

180

Prob Problem description structure. The following fields are used:, continued

Solver.Method Restart or not for C-G method:
0: Use restart in CG-method each n:th step.
1: Use restart in CG-method each n:th step.

LineParam Structure with line search parameters, see routine LineSearch and Table 140.
optParam Structure with special fields for optimization parameters, see Table 141.

Fields used are: eps absf, eps f, eps g, eps x, eps Rank, MaxIter, wait, size x,
xTol, size f, LineSearch, LineAlg, xTol, IterPrint and QN InitMatrix.

PriLevOpt Print level.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
B k Quasi-Newton approximation of the Hessian at optimum.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in Table 150.

Iter Number of iterations.
ExitFlag 0 if convergence to local min. Otherwise errors.
Inform Binary code telling type of convergence:

1: Iteration points are close.
2: Projected gradient small.
4: Relative function value reduction low for LowIts iterations.
101: Maximum number of iterations reached.
102: Function value below given estimate.
104: Convergence to a saddle point.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The solver ucSolve includes several of the most popular search step methods for unconstrained optimization. The

181

search step methods included in ucSolve are: the Newton method, the quasi-Newton BFGS and DFP methods,
the Fletcher-Reeves and Polak-Ribiere conjugate-gradient method, and the Fletcher conjugate descent method.
The quasi-Newton methods may either update the inverse Hessian (standard) or the Hessian itself. The Newton
method and the quasi-Newton methods updating the Hessian are using a subspace minimization technique to
handle rank problems, see Lindström [53]. The quasi-Newton algorithms also use safe guarding techniques to
avoid rank problem in the updated matrix. The line search algorithm in the routine LineSearch is a modified
version of an algorithm by Fletcher [20]. Bound constraints are treated as described in Gill, Murray and Wright
[28].

The accuracy in the line search is critical for the performance of quasi-Newton BFGS and DFP methods and for
the CG methods. If the accuracy parameter Prob.LineParam.sigma is set to the default value 0.9, ucSolve changes
it automatically according to:

Prob.Solver.Alg Prob.LineParam.sigma
4,5 (DFP) 0.2
6,7,8 (CG) 0.01

M-files Used
ResultDef.m, LineSearch.m, iniSolve.m, tomSolve.m, endSolve.m

See Also
clsSolve

182

11.1.30 Additional solvers

Documentation for the following solvers is only available at http://tomopt.com and in the m-file help.

• goalSolve - For sparse multi-objective goal attainment problems, with linear and nonlinear constraints.

• Tlsqr - Solves large, sparse linear least squares problem, as well as unsymmetric linear systems.

• lsei - For linearly constrained least squares problem with both equality and inequality constraints.

• Tnnls - Also for linearly constrained least squares problem with both equality and inequality constraints.

• qld - For convex quadratic programming problem.

183

http://tomopt.com

12 TOMLAB Utility Functions

In the following subsections the driver routine and the utility functions in TOMLAB will be described.

12.1 tomRun

Purpose
General multi-solver driver routine for TOMLAB.

Calling Syntax

Result = tomRun(Solver, Prob, PriLev, ask) Call Solver on the problem defined in

structure Prob

Result = tomRun(Solver, probFile, probNumber, Prob, PriLev, ask) Call Solver on problem probNumber in Init

File probFile.m

Result = tomRun(Solver, probType, probNumber, PriLev, ask) Call Solver on problem number

probNumber in the default Init File

for problem type probType

tomRun(probType) Display all solvers for probType

tomRun Display all available solvers for all problem

types

Description of Inputs

Solver The name of the solver that should be used to optimize the problem. If the solver
may run several different optimization algorithms, then the values of Prob.Solver.Alg and
Prob.optParam.Method determines which algorithm and method to be used.

Prob Problem description structure, see Table 134, page 220.

ask Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask = 0 Use defaults.
ask ≥ 1 Ask questions in probFile.
ask = [] If uP = [], ask = −1, else ask = 0.

PriLev Print level when displaying the result of the optimization in the routine PrintResult. See
Section 12.12 page 199.

184

PriLev = 0 No output.
PriLev = 1 Final result, shorter version.
PriLev = 2 Final result.
PriLev = 3 Full results.

The printing level in the optimization solver is controlled by setting the parameter
Prob.PriLevOpt.

probFile User problem Init File.

probNumber Problem number in probFile. probNumber = 0 gives a menu in probFile.

Description of Outputs

Result Structure with result from optimization, see Table 149.

Description
The driver routine tomRun is called from the command line. If called with less than the required two parameters,
a list of available solvers are printed.

M-files Used
PrintResult.m, probInit.m, mkbound.m

185

12.2 addPwLinFun

Purpose
Adds piecewise linear function to a TOMLAB MIP problem.

Calling Syntax
There are two ways to call addPwLinFun:

Syntax 1: function Prob = addPwLinFun(Prob, 1, type, var, funVar, point, slope, a, fa)

Syntax 2: function Prob = addPwLinFun(Prob, 2, type, var, funVar, firstSlope, point, value, lastSlope)

Description of Inputs

Prob The problem to add the function to.
input Flag indicating syntax used.
type A string telling whether to construct a general MIP problem or to construct an MIP problem

only solvable by CPLEX. Possible values: ’mip’, ’cplex’.
var The number of the variable on which the piecewise linear function depends. Must exist in

the problem already.
funVar The number of the variable which will be equal to the piecewise linear function. Must exist

in the problem already.
firstSlope Syntax 2 only. The slope of the piecewise linear function left of the first point, point(1).
point An array of break points. Must be sorted. If two values occur twice, there is a step at that

point. Length r.
slope Syntax 1 only. An array of the slopes of the segments.

slope(i) is the slope between point(i-1) and point(i).
slope(1) is the slope of the function left of point(1).
slope(r+1) is the slope of the function right of point(r).

If points(i-1) == points(i), slope(i) is the height of the step.
value Syntax 2 only. The values of the piecewise linear function at the points given in point.

f(point(i)) = value(i). If point(i-1) == point(i), value(i-1) is the right limit of the value at
the point, and value(i) is the left limit of the value at the point.

lastSlope Syntax 2 only. The slope of the piecewise linear function right of the last point, point(r).
a, fa Syntax 1 only. The value of the piecewise linear function at point a is equal to fa. f(a) =

fa, that is.

Description of Outputs

Prob The new problem structure with the piecewise linear function added. New variables and
linear constraints added. (MIP problem)

Description

186

This function will make one already existing variable of the problem to be constrained equal to a piecewise linear
function of another already existing variable in the problem. The independent variable must be bounded in both
directions.

The variable constrained to be equal to a piecewise linear function can be used like any other variable; in constraints
or the objective function.

Depending on how many segments the function consists of, a number of new variables and constraints are added
to the problem.

Increasing the upper bound (x U) or decreasing the lower bound (x L) of the independent variable after calling
this function will ruin the piecewise linear function.

If the problem is to be solved by CPLEX, set type = ’cplex’ to enhance performance. Otherwise, let type = ’mip’.
NOTICE! You can not solve a problem with another solver than CPLEX if type = ’cplex’.

187

12.3 binbin2lin

Purpose
Adds constraints when modeling with binary variables which is the product of two other variables.

Calling Syntax
Prob = binbin2lin(Prob, idx4, idx1, idx2, idx3)

Description of Inputs

Prob Problem structure to be converted.
idx4 Indices for b4 variables.
idx1 Indices for b1 variables.
idx2 Indices for b2 variables.
idx3 Indices for b3 variables.

Description of Outputs

Prob Problem structure with added constraints.

Description

b4 = b1 ∗ b2. The problem should be built with the extra variable b4 in place of the b1*b2 products. The indices
of the unique product variables are needed to convert the problem properly.

Three inequalities are added to the problem:

b4 <= b1
b4 <= b2
b4 >= b1 + b2− 1

By adding this b4 will always be the product of b1 and b2.

The routine also handles products of three binary variables. b4 = b1 ∗ b2 ∗ b3. The following constraints are then
added:

b4 <= b1
b4 <= b2
b4 <= b3
b4 >= b1 + b2 + b3− 1

188

12.4 bincont2lin

Purpose
Adds constraints when modeling with binary variables which are multiplied by integer or continuous variables.
This is the most efficient way to get rid off quadratic objectives or constraints.

Calling Syntax
Prob = bincont2lin(Prob, idx prod, idx bin, idx cont)

Description of Inputs

Prob Problem structure to be converted.
idx prod Indices for product variables.
idx bin Indices for binary variables.
idx cont Indices for continuous/integer variables.

Description of Outputs

Prob Problem structure with added constraints.

Description

prod = bin ∗ cont. The problem should be built with the extra variables prod in place of the bin ∗ cont products.
The indices of the unique product variables are needed to convert the problem properly.

Three inequalities are added to the problem:

prod <= cont

prod >= cont− xU ∗ (1− bin)
prod <= xU ∗ bin

By adding this prod will always equal bin ∗ cont.

189

12.5 checkFuncs

Purpose
TOMLAB routine for verifying user supplied routines. The routine could be used for general debugging.

Calling Syntax
exitFlag = checkFuncs(Prob, Solver, PriLev)

Description of Inputs

Prob Problem structure created with assign routine.
Solver Solver that will be used. For example ’knitro’ (default).
PriLev 0 - suppress warnings (info), 1 - full printing (default).

Description of Outputs

exitFlag 0 if no errors.

190

12.6 checkDerivs

Purpose
TOMLAB routine for verifying derivatives of user supplied routines.

Calling Syntax
[exitFlag,output] = checkDerivs(Prob, x k, PriLev, ObjDerLev, ConsDerLev, AbsTol)

Description of Inputs

Prob Problem structure created with assign routine.
x k Point the check derivatives for. Default x 0 or (xL + xU)/2. x L and x U have to be within

1e5.
PriLev Print Level, default 1. (0-1 valid).
ObjDerLev Depth for objective derivative check, 1 - checks gradient, 2 checks gradient and Hessian.

Default 2 or level of derivatives supplied.
ConsDerLev Depth for constraint derivative check, 1 - checks Jacobian, 2 checks Jacobian and 2nd part

of the Hessian to the Lagrangian function. Default 2 or level of derivatives supplied.
AbsTol Absolute tolerance for errors. Default [1e-5 1e-3 1e-4 1e-3 1e-4] (g H dc d2c J).

Description of Outputs

exitFlag If exitFlag = 0 a problem exist. See output for more information. Binary indicates where
problem is: 01011. 1 + 2 + 8 = 13. Problems everywhere but ’dc’, ’J’. 11111 = ’J’ ’d2c’ ’dc’
’H’ ’g’.

output Structure containing analysis information.
g,H,dc,d2c,J Structure with results.
minErr: The smallest error.
avgErr: The average error.
maxErr: The largest error.
idx: Index for elements with errors.
exitFlag: 1 if problem with the function.

See Also
runtest

191

12.7 cpTransf

Purpose
Transform general convex programs on the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ Rn, A ∈ Rm×n and bL, bU ∈ Rm, to other forms.

Calling Syntax
[AA, bb, meq] = cpTransf(Prob, TransfType, makeEQ, LowInf)

Description of Inputs

Prob Problem description structure. The following fields are used:
QP.c Constant vector c in cTx.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

TransfType Type of transformation, see the description below.
MakeEQ Flag, if set true, make standard form (all equalities).
LowInf Variables equal to −Inf or variables < LowInf are set to LowInf before transforming the

problem. Default −10−4. |LowInf | are limit if upper bound variables are to be used.

Description of Outputs

AA The expanded linear constraint matrix.
bb The expanded upper bounds for the linear constraints.
meq The first meq equations are equalities.

Description
If TransType = 1 the program is transformed into the form

min
x

f(x− xL)

s/t AA(x− xL) ≤ bb

x− xL ≥ 0

where the first meq constraints are equalities. Translate back with (fixed variables do not change their values):

x(~x_L==x_U) = (x-x_L) + x_L(~x_L==x_U)

192

If TransType = 2 the program is transformed into the form

min
x

f(x)

s/t AA(x) ≤ bb

xL ≤ x ≤ xU

where the first meq constraints are equalities.

If TransType = 3 the program is transformed into the form

min
x

f(x)

s/t AAx ≤ bb

x ≥ xL

where the first meq constraints are equalities.

193

12.8 estBestHessian

Purpose
estBestHessian estimates the best Hessian. Result.x k(:,1) will be used for the estimation. The best step-size is
estimated by TOMLAB. If the gradient is given it will be used. The analytical hessian is returned if given.

Calling Syntax
[g k, H k] = estBestHessian(Result);

Description of Inputs

Result Problem structure to be converted.

Description of Outputs

g k The gradient at Result.x k(:,1).
H k Hessian of the objective at Result.x k(:,1).

194

12.9 lls2qp

Purpose
Converts an lls problem to a new problem based on the formula below. Only the objective function is affected.
The problem can be of any type with an LLS objective.

min
x

f(x) = 1
2 ||Cx− d|| =

0.5 ∗ (y − Cx)′ ∗ (y − Cx) = 0.5 ∗ (y′y − 2y′Cx+ x′C ′Cx) =
0.5 ∗ y′y + 0.5 ∗ x′Fx+ c′x

F = C ′C

c′ = −y′C
const = 1

2y
′y

(21)

Calling Syntax
qpProb = lls2qp(Prob, IntVars)

Description of Inputs

Prob.LS.C The linear matrix in 0.5 ∗ ||y − Cx||.
Prob.LS.y The constant vector in 0.5 ∗ ||y − Cx||.

Description of Outputs

qpProb The converted problem.

Description
If the problem is a linear least squares problem a qp problem is created. The new problem may have integer
variables. Create the problem with llsAssign then use this routine.

If the problem has nonlinear constraints an nlp is created. The new problem may have integer variables. Create
the problem with conAssign or minlpAssign, the set the fields Prob.LS.C and Prob.LS.y

195

12.10 LineSearch

Purpose
LineSearch solves line search problems of the form

min
0<αmin≤α≤αmax

f(x(k) + αp)

where x, p ∈ Rn.

Calling Syntax
Result = LineSearch(f, g, x, p, f 0, g 0, LineParam, alphaMax, pType, PriLev, varargin)

Description of Inputs

f Name of m-file computing the objective function f(x).
g Name of m-file computing the gradient vector g(x).
x Current iterate x.
p Search direction p.
f 0 Function value at α = 0.
g 0 Gradient at α = 0, the directed derivative at the present point.
LineParam Structure with line search parameters 140, the following fields are used:

LineAlg Type of line search algorithm, 0 = quadratic interpolation, 1 = cubic interpolation.
fLowBnd Lower bound on the function value at optimum.

sigma InitStepLength rho tau1 tau2 tau3 eps1 eps2 see Table 140.
alphaMax Maximal value of step length α.
pType Type of problem:

0 Normal problem.
1 Nonlinear least squares.
2 Constrained nonlinear least squares.
3 Merit function minimization.
4 Penalty function minimization.

PriLev Printing level:
PriLev > 0 Writes a lot of output in LineSearch.
PriLev > 3 Writes a lot of output in intpol2 and intpol3.

varargin Other parameters directly sent to low level routines.

Description of Outputs

196

Result Result structure with fields:
alpha Optimal line search step α.
f alpha Optimal function value at line search step α.
g alpha Optimal gradient value at line search step α.
alphaVec Vector of trial step length values.
r k Residual vector if Least Squares problem, otherwise empty.
J k Jacobian matrix if Least Squares problem, otherwise empty.
f k Function value at x+ αp.
g k Gradient value at x+ αp.
c k Constraint value at x+ αp.
dc k Constraint gradient value at x+ αp.

Description
The function LineSearch together with the routines intpol2 and intpol3 implements a modified version of a line
search algorithm by Fletcher [20]. The algorithm is based on the Wolfe-Powell conditions and therefore the
availability of first order derivatives is an obvious demand. It is also assumed that the user is able to supply a
lower bound fLow on f (α). More precisely it is assumed that the user is prepared to accept any value of f (α) for
which f (α) ≤ fLow. For example in a nonlinear least squares problem fLow = 0 would be appropriate.

LineSearch consists of two parts, the bracketing phase and the sectioning phase. In the bracketing phase the
iterates α(k) moves out in an increasingly large jumps until either f ≤ fLow is detected or a bracket on an interval
of acceptable points is located. The sectioning phase generates a sequence of brackets

[
a(k), b(k)

]
whose lengths

tend to zero. Each iteration pick a new point α(k) in
[
a(k), b(k)

]
by minimizing a quadratic or a cubic polynomial

which interpolates f
(
a(k)

)
, f ′

(
a(k)

)
, f
(
b(k)
)

and f ′
(
b(k)
)

if it is known. The sectioning phase terminates when
α(k) is an acceptable point.

197

12.11 preSolve

Purpose
Simplify the structure of the constraints and the variable bounds in a linear constrained program.

Calling Syntax
Prob = preSolve(Prob)

Description of Inputs

Prob Problem description structure. The following fields are used:
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

Description of Outputs

Prob Problem description structure. The following fields are changed:
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints, set to NaN for redundant constraints.
b U Upper bounds on the linear constraints, set to NaN for redundant constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

Description
The routine preSolve is an implementation of those presolve analysis techniques described by Gondzio in [36],
which is applicable to general linear constrained problems. See [7] for a more detailed presentation.

preSolve consists of the two routines clean and mksp. They are called in the sequence clean, mksp, clean. The
second call to clean is skipped if the mksp routine could not remove a single nonzero entry from A.

clean consists of two routines, r rw sng that removes singleton rows and el cnsts that improves variable bounds
and uses them to eliminate redundant and forcing constraints. Both r rw sng and el cnsts check if empty rows
appear and eliminate them if so. That is handled by the routine emptyrow. In clean the calls to r rw sng and
el cnsts are repeated (in given order) until no further reduction is obtained.

Note that rows are actually not deleted or removed, instead preSolve indicates that constraint i is redundant by
setting b L(i) = b U(i) = NaN and leaves to the calling routine to decide what to do with those constraints.

198

12.12 PrintResult

Purpose
Prints the result of an optimization.

Calling Syntax
PrintResult(Result, PriLev)

Description of Inputs

Result Result structure from optimization.

PriLev Printing level: (default 3)

0 Silent.

1 Problem number and name.
Function value at the solution and at start.
Known optimal function value (if given).

2 As PriLev =1 and:

Optimal point x and starting point x 0.
Number of evaluations of the function, gradient etc.
Lagrange multipliers, both returned and TOMLAB estimate.
Distance from start to solution.
The residual, gradient and projected gradient. (*)
ExitF lag and Inform.

(*) The calculation and output of these fields is controlled by
Result.Prob.PrintLM.

3 As PriLev =2 and:

Jacobian, Hessian or Quasi-Newton Hessian approximation.

199

Global Parameters Used

To avoid too many variables, constraints and residuals in the output, three
global variables are limiting the number printed:

MAX x Maximum number of variables
MAX c Maximum number of constraints
MAX r Maximum number of residuals in least squares problems

Example: To increase the number of variables printed by PrintResult to 50, do

global MAX_x

MAX_x = 50;

PrintResult(Result);

200

12.13 runtest

Purpose
Run all selected problems defined in a problem file for a given solver.

Calling Syntax
runtest(Solver, SolverAlg, probFile, probNumbs, PriLevOpt, wait, PriLev)

Description of Inputs

Solver Name of solver, default conSolve.
SolverAlg A vector of numbers defining which of the Solver algorithms to try. For each element in

SolverAlg, all probNumbs are solved. Leave empty, or set 0 if to use the default algorithm.
probFile Problem definition file. probFile is by default set to con prob if Solver is conSolve, uc prob

if Solver is ucSolve and so on.
probNumbs A vector with problem numbers to run. If empty, run all problems in probFile.
PriLevOpt Printing level in Solver. Default 2, short information from each iteration.
wait Set wait to 1 if pause after each problem. Default 1.
PriLev Printing level in PrintResult. Default 5, full information.

M-files Used
SolverList.m

See Also
systest

201

12.14 SolverList

Purpose
Prints the available solvers for a certain solvType.

Calling Syntax
[SolvList, SolvTypeList, SolvDriver] = SolverList(solvType)

Description of Inputs

solvType Either a string ’uc’, ’con’ etc. or the corresponding solvType number. See Table 1.

Description of Outputs

SolvList String matrix with the names of the solvers for the given solvType.
SolvTypeList Integer vector with the solvType for each of the solvers.
SolvDriver String matrix with the names of the driver routine for each different solvType.

Description
The routine SolverList prints all available solvers for a given solvType, including Fortran, C and Matlab Optimiza-
tion Toolbox solvers. If solvType is not specified then SolverList lists all available solvers for all different solvType.
The input argument could either be a string such as ’uc’, ’con’ etc. or a number corresponding to the type of
solver, see Table 1.

Examples
See Section 3.

M-files Used
SolverList.m

202

12.15 StatLS

Purpose
Compute parameter statistics for least squares problems.

Calling Syntax
LS = StatLS(x k, r k, J k);

Description of Inputs

x k Optimal parameter vector, length n.
r k Residual vector, length m.
J k Jacobian matrix, length m by n.

Description of Outputs

Structure LS with fields:

SSQ Sum of squares: r′k ∗ rk
Covar Covariance matrix: Inverse of J ′ ∗ diag(1./(r′k ∗ rk)) ∗ J
sigma2 Estimate squared standard deviation of problem, SSQ / Degrees of freedom, i.e. SSQ/(m-n)
Corr Correlation matrix: Normalized Covariance matrix

Cov./(CovDiag ∗ CovDiag′), where CovDiag = sqrt(diag(Cov))
StdDev Estimated standard deviation in parameters: CovDiag ∗ sqrt(sigma2)
x =x k, the input x
ConfLim 95 % Confidence limit (roughly) assuming normal distribution of errors ConfLim = 2 ∗

LS.StdDev

CoeffVar The coefficients of variation of estimates: StdDev./xk

203

12.16 systest

Purpose
Run big test to check for bugs in TOMLAB.

Calling Syntax
systest(solvTypes, PriLevOpt, PriLev, wait)

Description of Inputs

solvTypes A vector of numbers defining which solvType to test.
PriLevOpt Printing level in the solver. Default 2, short information from each iteration.
wait Set wait to 1 if pause after each problem. Default 1.
PriLev Printing level in PrintResult. Default 5, full information.

See Also
runtest

204

13 Approximation of Derivatives

This section about derivatives is particularly important from a practical point of view. It often seems to be the
case that either it is nearly impossible or the user has difficulties in coding the derivatives.

For information about supplying partial derivatives see the Prob parameter CheckNaN in Appendix A.

Options Summary

Observe that the usage depends on which solver is used. Clearly, if a global solver, such as glbFast is used, derivatives
are not used at all and the following sections do not apply. Some solvers use only first order information, while
others may require second order information. See ’help iniSolve’ and the TOMLAB interface for each solver (e.g.
snoptTL) for information on derivative level needed. If a solver requires second order information it is highly
recommended that at least the first order information is given analytically or the accuracy requested is changed.

Prob.NumDiff and Prob.ConsDiff options 11-15 require that the patterns (Prob.HessPattern, Prob.JacPattern and
Prob.ConsPattern) are properly set. They should also be set for options 1-5 but are not required. These are
most easily set by calling the corresponding user routines with 2 random set of variables and combining the sparse
matrices. The functions estConsPattern, estJacPattern and estHessPattern automates this process with 3 safe
trials.

If Prob.LargeScale is set to 1 and the respective user routines are not given, then estConsPattern, estJacPattern
and estHessPattern are automatically executed before the solution process is started.

If first order information is provided the user should set minus (-) in front of the option that they want. For
example if the objective function and gradient are given Prob.NumDiff = -1 will make sure that only the Hessian
is estimated by numerical differentiation.

Table 130 describes the differentiation options available in TOMLAB.

Table 131 shows the flags that are included in the callbacks to the user routines for objective, constraints and
other functions. These flags should be used to optimize the performance of numerical differentiation. For example
if FDVar = [1 4], then only the constraints that depend on decision variable number 1 and 4 need to be calculated.

The following applies to the different user supplied functions:

User c: If Prob.rows nonempty, then only these constraints need to be computed, others could be set as 0. If
it is easier to exclude the constraints to compute from dependencies, then Prob.FDVar says which variables are
changed, i.e. to compute numerical derivatives for. Only constraints that depend on the variable indices given in
FDVar need to be computed. If FDVar == 0, nothing is known, and all constraints must be computed.

User dc: If Prob.rows nonempty, then only these constraint Jacobian rows need to be computed, others could
be set as 0. If Prob.cols nonempty, only these columns in the constraint Jacobian need to be computed, others
could be set as 0. Only if Prob.cols is empty and Prob.FDVar(1) > 0 could Prob.FDVar be used to simplify the
computations.

User f : If Prob.FDVar(1) > 0, then only variables in Prob.FDVar are changed since the last call with Prob.FDVar
== 0. If knowledge about the functional parts that are dependent on the non-changed variables are saved the last
time Prob.FDVar == 0, it may be utilized to speed up the computations.

User g: If Prob.FDVar(1) > 0, the variables in Prob.FDVar are changed. They influence the variables in Prob.cols
(if nonempty), which means that g(Prob.cols) are the elements accessed to obtain the numerical Hessian.

User r: If Prob.rows nonempty, then only these residuals need to be computed, others could be set as 0. If it is
easier to exclude the residuals to compute from dependencies, then Prob.FDVar says which variables are changed,

205

i.e. to compute numerical derivatives for. Only residuals that depend on the variable indices given in FDVar need
to be computed, the rest could be set as 0. If FDVar == 0, nothing is known, and all residuals must be computed.

Table 130: The differentiation options in TOMLAB.

Flag Value Comments
Prob.ADObj 1 MAD used for first order information (gradient is automatically calculated with

floating point precision). Some functions are not supported by MAD.
-1 MAD used for second order information (Hessian), i.e. the gradient needs to be

specified. Users should make sure that MAD variables are allocated properly
in their files and that they are not overwritten.

Prob.ADCons 1 MAD used for first order information (Jacobian of the constraints is auto-
matically calculated with floating point precision). Some functions are not
supported by MAD. Users should make sure that MAD variables are allocated
properly in their files and that they are not overwritten.

-1 MAD used for second order information (d2c, the second part of the Hessian
to the Lagrangian), i.e. the Jacobian needs to be specified. Users should make
sure that MAD variables are allocated properly in their files and that they are
not overwritten.

Prob.NumDiff 1 fndg calculates the gradient. FDJac calculates the Jacobian of the residuals. If
needed the Hessian is estimated by FDHess. Default in TOMLAB .

-1 Same as option 1 but the gradient is not estimated, as it is given. A negative
sign has the same functionality for all options.

11 Same as option 1 but a function findpatt is called from iniSolve when using this
option. Prob.HessIx and Prob.JacIx are set to improve the performance of the
differentiation routines. These are only for internal use.

-11 Same as option 11 but the gradient is not estimated, as it is given. A negative
sign has the same functionality for all options.

2 Matlab standard splines (no additional toolboxes needed).
Prob.optParam.CentralDiff is used by this routine. fndg2 calculates the
gradient. FDJac2 calculates the Jacobian of the residuals. If needed the
Hessian is estimated by FDHess2.

12 Same as option 2 but Prob.HessIx and Prob.JacIx are set for improved perfor-
mance.

3 csaps will be used (Splines Toolbox needed). Prob.optParam.splineSmooth is
used by this routine. fndg2 calculates the gradient. FDJac2 calculates the
Jacobian of the residuals. If needed the Hessian is estimated by FDHess2.

13 Same as option 3 but Prob.HessIx and Prob.JacIx are set for improved perfor-
mance.

4 spaps will be used (Splines Toolbox needed). Prob.optParam.splineTol is used
by this routine. If Prob.optParam.SplineTol < 0 then csapi is used instead.
fndg2 calculates the gradient. FDJac2 calculates the Jacobian of the residuals.
If needed the Hessian is estimated by FDHess2.

14 Same as option 4 but Prob.HessIx and Prob.JacIx are set for improved perfor-
mance.

206

Table 130: The differentiation options in TOMLAB, continued.

Flag Value Comments
5 A routine using complex variables. fndg3 calculates the gradient. FDJac3

calculates the Jacobian of the residuals. This option is not available for solvers
requiring second order information.

15 Same as option 5 but Prob.JacIx is set for improved performance.
6 The derivatives are estimated by the solver (only available for some options).

Prob.ConsDiff 1 FDJac calculates the Jacobian of the constraints. If needed the nonlinear
constraint Hessian is estimated by FDcHess.

11 Same as option 1 but a function findpatt is called from iniSolve when using this
option. Prob.ConIx is set to improve the performance of the differentiation
routines. This is only for internal use.

2 Matlab standard splines (no additional toolboxes needed).
Prob.optParam.CentralDiff is used by this routine. FDJac2 calculates
the Jacobian of the constraints. If needed the nonlinear constraint Hessian is
estimated by FDcHess.

12 Same as option 2 but Prob.ConIx is set for improved performance.
3 csaps will be used (Splines Toolbox needed). Prob.optParam.splineSmooth is

used by this routine. FDJac2 calculates the Jacobian of the constraints. If
needed the nonlinear constraint Hessian is estimated by FDcHess.

13 Same as option 3 but Prob.ConIx is set for improved performance.
4 spaps will be used (Splines Toolbox needed). Prob.optParam.splineTol is used

by this routine. If Prob.optParam.SplineTol < 0 then csapi is used instead.
FDJac2 calculates the Jacobian of the constraints. If needed the nonlinear
constraint Hessian is estimated by FDcHess.

14 Same as option 4 but Prob.ConIx is set for improved performance.
5 A routine using complex variables. FDJac3 calculates the Jacobian of the resid-

uals. This option is not available for solvers requiring second order information.
15 Same as option 5 but Prob.ConIx is set for improved performance.
6 The derivatives are estimated by the solver.

Table 131: Callback flags in TOMLAB.

Flag Value Comments
Prob.FDVar 0 or vector The variables being perturbed in the callback for a numerical differentiation

routine. The user should make sure that unnecessary calculation are not made.

Prob.rows 0 or vector The rows in the user computed vector/matrix that will be accessed, and needs
to be set. If empty, no information is available, and all elements need to be set.

Prob.cols 0 or vector The columns in the user computed matrix that will be accessed, and needs to
be set. If empty, no information is available, and all elements need to be set.

Both numerical differentiation and automatic differentiation are possible. There are six ways to compute numerical

207

differentiation. Furthermore, the SOL solvers MINOS, NPSOL, NLSSOL, SNOPT and other solvers include
numerical differentiation.

Numerical differentiation is automatically used for gradient, Jacobian, constraint Jacobian and Hessian if a user
routine is not present.

Especially for large problems it is important to tell the system which values are nonzero, if estimating the Jacobian,
the constraint Jacobian, or the Hessian matrix. Define a sparse 0-1 matrix, with ones for the nonzero elements. This
matrix is set as input in the Prob structure using the fields Prob.JacPattern, Prob.ConsPattern, Prob.HessPattern
or Prob.d2LPattern. If there are many zeros in the matrix, this leads to significant savings in each iteration of the
optimization. It is possible to use the TOMLAB estimation routines mentioned above to set these.

A variable Prob.FDVar is a dynamically set field that indicates which decision variables are being perturbed during
a call to the user’s routines. For example if FDVar = [1,3,5], the variables with indices 1, 3 and 5 are being used
for an estimation. When the Jacobian (for example) is being calculated by repeated calls to the constraints (or
residuals) the user can make sure that unnecessary calculations are avoided.

FDVar = Prob.FDVar;

if FDVar == 0 | FDVar == 4

% Calculate some constraints

end

% The constraint will only be calculated if FDVar == 0

% which means that all are required, or if FDVar == 4, i.e.

% only if decision variable number 4 is being perturbed.

To allow efficiently estimation of the derivatives in the five different options, it is possible to obtain the indices
needed for the constraints (Prob.ConIx), Jacobian (Prob.JacIx) and Hessian (Prob.HessIx) evaluations. A function
called findpatt is called by iniSolve automatically if a 1 is added before the number assigned for the differentiation
method. The same functionality illustrated below applies for Prob.ConsDiff.

Prob.NumDiff = 11; % Use index information for NumDiff = 1

Prob.NumDiff = 12; % Use index information for NumDiff = 2

...

Prob.NumDiff = 15; % Use index information for NumDiff = 5

If a set of problems with identical indices for the differentiation routines are optimized in the sequence the following
code can be used. This avoids re-generating the indices needed:

Prob.ConIx = findpatt(Prob.ConsPattern);

Prob.JacIx = findpatt(Prob.JacPattern);

Prob.HessIx = findpatt(Prob.HessPattern);

Prob.NumDiff = 1; % NumDiff = 11 used automatically

Forward or Backward Difference Approximations

Prob.NumDiff = 1 (11) or Prob.ConsDiff = 1 (11). Default in TOMLAB .

The default way is to use the classical approach with forward or backward differences together with an optional
automatic step size selection procedure. Set Prob.GradTolg = -1 to run the procedure. The differentiation is
handled by the routine fdng, which is a direct implementation of the FD algorithm [28, page 343].

208

The fdng routine is using the parameter field DiffInt, in the structure optParam, see Table 141, page 229, as the
numerical step size. The user could either change this field or set the field Prob.GradTolg. The field Prob.GradTolg
may either be a scalar value or a vector of step sizes of the same length as the number of unknown parameters x.
The advantage is that individual step sizes can be used, in the case of very different properties of the variables or
very different scales. If the field Prob.GradTolg is defined as a negative number, the fdng routine is estimating a
suitable step size for each of the unknown parameters. This is a costly operation in terms of function evaluations,
and is normally not needed on well-scaled problems.

Similar to the fdng, there are two routines FDJac and FDHess. FDJac numerically estimates the Jacobian for
nonlinear least squares problems or the constraint Jacobian in constrained nonlinear problems. FDJac checks if
the field Prob.GradTolJ is defined, with the same action as fdng. FDHess estimates the Hessian matrix in nonlinear
problems and checks for the definition of the field Prob.GradTolH. Both routines use field Prob.optParam.DiffInt
as the default tolerance if the other field is empty. Note that FDHess has no automatic step size estimation.
The implementation in fdng, FDJac and FDHess avoids taking steps outside the lower and upper bounds on the
decision variables. This feature is important if going outside the bounds makes the function undefined.

Splines

Matlab splines is selected by setting Prob.NumDiff or Prob.ConsDiff = 2 (12). csaps will be used if Prob.NumDiff
or Prob.ConsDiff is set to 3 (13), spaps if set to 4 (14) and finally csapi if set to 4 (14) with Prob.optParam.SplineTol
< 0.

The first spline option can be used without the Spline Toolbox installed. If the Spline Toolbox is installed, gradient,
Jacobian, constraint Jacobian and Hessian approximations could be computed in three different ways depending
on which of the three routines, csaps, spaps or csapi the user choose to use.

The routines fdng2, FDJac2 and FDHess2 implements the gradient estimation procedure for the different approxi-
mations needed. All routines use the tolerance in the field Prob.optParam.CentralDiff as the numerical step length.
The basic principle is central differences, taking a small step in both positive and negative direction.

Complex Variables

Prob.NumDiff = 5 (15) or Prob.ConsDiff = 5 (15).

The fifth approximation method is a method by Squire and Trapp [72], which is using complex variables to estimate
the derivative of real functions. The method is not particularly sensitive to the choice of step length, as long as it
is very small. The routine fdng3 implements the complex variable method for the estimation of the gradient and
FDJac3 the similar procedure to estimate the Jacobian matrix or the constraint Jacobian matrix. The tolerance is
hard coded as 1E− 20. There are some pitfalls in using Matlab code for this strategy. In the paper by Martins et.
al [55], important hints are given about how to implement the functions in Matlab. They were essential in getting
the predefined TOMLAB examples to work, and the user is advised to read this paper before attempting to make
new code and using this differentiation strategy. However, the insensitivity of the numerical step size might make
it worthwhile, if there are difficulties in the accuracy with traditional gradient estimation methods.

Automatic Differentiation

Automatic differentiation is performed by use of the MAD toolbox. MAD is a TOMLAB toolbox which is docu-
mented in a separate manual, see http://tomopt.com.

209

MAD should be initialized by calling madinitglobals before running TOMLAB with automatic differentiation.
Note that in order for TOMLAB to be fully compatible with the MAD, the functions must be defined according
to the MAD requirements and restrictions. Some of the predefined test problems in TOMLAB do not fulfill those
requirements.

In the Graphical User Interface, the differentiation strategy selection is made from the Differentiation Method menu
reachable in the General Parameters mode. Setting the Only 2ndD click-box, only unknown second derivatives
are estimated. This is accomplished by changing the sign of Prob.NumDiff to negative to signal that first order
derivatives are only estimated if the gradient routine is empty, not otherwise. The method to obtain derivatives
for the constraint Jacobian is selected in the Constraint Jacobian diff. method menu in the General Parameters
mode.

When running the menu program tomRemote/tomMenu, push/select the How to compute derivatives button in
the Optimization Parameter Menu.

To choose differentiation strategy when running the driver routines or directly calling the actual solver set
Prob.ADObj equal to -1 or 1 for automatic differentiation or Prob.NumDiff to 1 (11), 2 (12), 3 (13), 4 (14)
or 5 (15) for numerical differentiation, before calling drivers or solvers. Note that Prob.NumDiff = 1 will run the
fdng routine. Prob.NumDiff = 2, 3, 4 will make the fdng2 routine use standard Matlab splines or call the Spline
Toolbox routines csaps, spaps, and csapi respectively. The csaps routine needs a smoothness parameter and the
spaps routine needs a tolerance parameter. Default values for these parameters are set in the structure optParam,
see Table 141, fields splineSmooth and splineTol. The user should be aware of that there is no guarantee that the
default values of splineSmooth and splineTol are the best for a particular problem. They work on the predefined
examples in TOMLAB. To use the built in numerical differentiation in the SOL solvers MINOS, NPSOL, NLSSOL
and SNOPT, set Prob.NumDiff = 6. Note that the DERIVATIVE LEVEL SOL parameter must be set properly
to tell the SOL solvers which derivatives are known or not known. There is a field DerLevel in Prob.optParam
that is used by TOMLAB to send this information to the solver. To select the method to obtain derivatives for
the constraint Jacobian the field Prob.ConsDiff is set to 1-6 (11-15, 16 not valid) with the same meaning as for
Prob.NumDiff as described above. Prob.ADCons is the equivalent variable for automatic differentiation of the
nonlinear constraints.

Here follows some examples of the use of approximative derivatives when solving problems with ucSolve and
clsSolve. The examples are part of the TOMLAB distribution in the file diffDemo in directory examples.

To be able to use automatic differentiation the MAD toolbox must be installed.

Automatic Differentiation example

madinitglobals; % Initiate MAD variables

probFile = ’uc_prob’; % Name of Init File

P = 1; % Problem number

Prob = probInit(probFile, P);

Prob.Solver.Alg = 2; % Use the safeguarded standard BFGS

Prob.ADObj = 1; % Use Automatic Differentiation.

Result = tomRun(’ucSolve’, Prob, 2);

FD example

% Finite differentiation using the FD algorithm

probFile = ’uc_prob’; % Name of Init File

P = 1; % Problem number

210

Prob = probInit(probFile, P); Prob.Solver.Alg = 2;

Prob.NumDiff = 1; % Use the fdng routine with the FD algorithm.

Result = tomRun(’ucSolve’, Prob, 2);

% Change the tolerances used by algorithm FD

Prob.GradTolg = [1E-5; 1E-6]; % Change the predefined step size

Result = tomRun(’ucSolve’, Prob, 1);

% The change leads to worse accuracy

% Instead let an algorithm determine the best possible GradTolg

% It needs some extra f(x) evaluations, but the result is much better.

Prob.GradTolg = -1; % A negative number demands that the step length

% of the algorithm is to be used at the initial point

% Avoid setting GradTolg empty, then instead Prob.optParam.DiffInt is used.

Result = tomRun(’ucSolve’, Prob, 1);

% Now the result is perfect, very close to the optimal == 0.

Prob.NumDiff = 5; % Use the complex variable technique

% The advantage is that it is insensitive to the choice of step length

Result = tomRun(’ucSolve’, Prob, 1);

% When it works, like in this case, it gives absolutely perfect result.

Increasing the tolerances used as step sizes for the individual variables leads to a worse solution being found, but no
less function evaluations until convergence. Using the automatic step size selection method gives very good results.
The complex variable method gives absolutely perfect results, the optimum is found with very high accuracy.

The following example illustrates the use of spline function to approximate derivatives.

Spline example

probFile = ’ls_prob’; % Name of Init File

P = 1; % Problem number

Prob = probInit(probFile, P);

Prob.Solver.Alg = 0; % Use the default algorithm in clsSolve

Prob.NumDiff = 2; % Use Matlab spline .

Result = tomRun(’clsSolve’, Prob, 2);

FD example with patterns

211

% Finite differentiation using the FD algorithm

%

% This example illustrates how to set nonzeros in HessPattern

% to tell TOMLAB which elements to estimate in the Hessian.

% All elements in Hessian with corresponding zeros in HessPattern are

% set to 0, and no numerical estimate is needed.

%

% This saves very much time for large problems

% In a similar way, Prob.ConsPattern is set for the constraint gradient

% matrix for the nonlinear constraints, and Prob.JacPattern for the

% Jacobian matrix in nonlinear least squares problems.

probFile = ’con_prob’;

P = 12;

Prob = probInit(probFile, P);

Prob.Solver.Alg = 1;

Prob.HessPattern = sparse([ones(6,6), zeros(6,6);zeros(6,12)]);

% Note that if setting Prob.NumDiff = 1, also the gradient would be

% estimated with numerical differences, which is not recommended.

% Estimating two levels of derivatives is an ill-conditioned process.

% Setting Prob.NumDiff = -1, only the Hessian is estimated

% Use qpSolve in base module for QP subproblems

Prob.SolverQP = ’qpSolve’;

Prob.NumDiff = -1; % Use the fdng routine with the FD algorithm.

Result = tomRun(’nlpSolve’,Prob,1);

% Setting Prob.NumDiff = -11 makes Tomlab analyze HessPattern

% and use a faster algorithm for large-scale problems

% In this small-scale case it is no advantage,

% it just takes more CPU-time.

Prob.NumDiff = -11; % Use the fdng routine with the FD algorithm.

Result = tomRun(’nlpSolve’,Prob,1);

% Run the same problem estimating Hessian with Matlab Spline

% Needs more gradient calculations because it is principle

% smooth central differences to obtain the numerical Hessian.

% If the problem is noisy, then this method is recommended.

Prob.NumDiff = -2; % Matlab spline

Result = tomRun(’nlpSolve’,Prob,1);

212

14 Special Notes and Features

In this section several topics of general interest, which enables a more efficient use of TOMLAB are collected.

14.1 Speed and Solution of Optimization Subproblems

It is often the case that the full solution of an optimization problem involves the solution of subtasks, which
themselves are optimization problems. In fact, most general solvers are constructed that way, they solve well-
defined linear or quadratic subproblems as part of the main algorithm. TOMLAB has a standard way of calling
a subsolver with the use of the driver routine tomSolve. The syntax is similar to the syntax of tomRun. Calling
QPOPT to solve a QP sub problem is made with the call

Result = tomRun(’qpopt’, Prob);

The big advantage is that tomSolve handles the global variables with a stack strategy, see Appendix D. Therefore it
is possible to run any level of recursive calls with the TOMLAB TOM solvers, that all run in Matlab. Even if care
has been taken in the MEX-file interfaces to avoid global variable and memory conflicts, there seem to be some
internal memory conflicts occurring when calling recursively the same MEX-file solver. Luckily, because TOMLAB
has several solver options, it should be possible to use different solvers. In one two-stage optimization, a control
problem, even four solvers were used. glcSolve was used to find a good initial value for the main optimization
and SNOPT was used to find the exact solution. In each iteration several small optimization problems had to be
solved. Here glbSolve was used to find a good initial point close to the global optimum, and MINOS then iterated
until good accuracy was found.

The general TOM solvers clsSolve, conSolve, cutplane, mipSolve, nlpSolve, qpSolve and sTrustr have all been
designed so it shall be possible to change the subproblem solver. For example to solve the QP subproblems in
conSolve there are several alternatives, QPOPT, qpSolve or even SNOPT. If using the BFGS update in conSolve,
which guarantees that the subproblems are convex, then furthermore QLD or SQOPT could be used. The QP,
LP, FP (feasible point) and DLP (dual LP) subproblems have special treatment. A routine CreateProbQP creates
the Prob structure for the subproblem. The routine checks on the fields Prob.QP.SOL and Prob.QP.optParam and
move these to the usual places Prob.SOL and Prob.optParam for the subproblem. Knowing this, the user may
send his own choices of these two important subfields as input to conSolve and the other solvers mentioned. The
choice of the subsolver is made by giving the name of the wanted subsolver as the string placed in Prob.SolverQP
for QP subproblems and similar for the other subproblems. Note that the time consuming call to CreateProbQP
is only done once in the solver, and after that only the fields necessary to be changed are altered in each iteration.

Note that if the user needs to cut CPU time as much possible, one way to save some time is to call tomSolve
instead of tomRun. But no checks are made on the structure Prob, and such tricks should only be made at the
production stage, when the code is known to be error free.

Another way to cut down CPU time for a nonlinear problem is to set

Prob.LargeScale = 1;

even if the problem is not that large (but time consuming). TOMLAB will then not collect information from
iterations, and not try to estimate the search steps made. This information is only used for plotting, and is mostly
not needed. Note that this change might lead to other choices of default solvers, because TOMLAB thinks the
problem is large and sparse. So the default choices might have to be overridden.

213

14.2 User Supplied Problem Parameters

If a problem is dependent on a few parameters, it is convenient to avoid recoding for each change of these param-
eters, or to define one problem for each of the different parameter choices. The user supplied problem parameters
gives the user an easy way to change the creation of a problem. A field in the Prob structure, the field Prob.user
is used to store the user supplied problem parameters. The field Prob.uP could be used when using Init Files.

Prob.uP, if set, is a numerical matrix or vector (recommended) with numbers. Its primary use is defining sizes and
other vitals parameters, like initial value choices, in problems defined as Init Files. Prob.uP may not be a Matlab
struct.

If ask == 1 is set, it is easy to change the values of Prob.uP in the test problems interactively. However, if setting
Prob.uP directly (needed for batch runs) it is more difficult.

Three different ways to set Prob.uP are described below. Following these examples will get the problem setup
correctly.

The first option assumes that the Prob structure is defined

Prob = ProbDef;

Prob.Name = ’Exponential problem (pseudorand)’;

Prob.uPName = Prob.Name; % Special field used to identify the uP parameters

Prob.P = 14;

Prob.uP = [60, 180]; % Increase the problem size to n=60, m=180

Prob = probInit(’ls_prob’,14,-1,Prob);

The advantage is that other fields may also be set, however they could also be set after the probInit call.

The second way avoid defining the full Prob structure. The field probFile must then also be initialized.

Prob = [];

Prob.Name = ’Exponential problem (pseudorand)’;

Prob.uPName = Prob.Name; % Special field used to identify the uP parameters

Prob.probFile = [];

Prob.P = 14;

Prob.uP = [60, 180]; % Increase the problem size to n=60, m=180

Prob = probInit(’ls_prob’,14,-1,Prob);

In the third and final option the uP parameters could be sent directly as the 4th input to probInit, instead of the
problem structure Prob.

Prob = probInit(’ls_prob’,14,-1,[60, 180]);

Note: One must not change Prob.uP after executing probInit. Doing this will normally result in a crash in some
routine, e.g. ls r or ls J or in erroneous results.

The best way to describe the User Supplied Problem Parameter feature inside Init Files is by an example. Assume
that a problem with variable dimension needs to be created. If the user wants to change the dimension of the
problem during the initialization of the problem, i.e. in the call to the Init File, the routine askparam is helpful.
Problem 27 in cls prob is an example of the this:

214

...

...

elseif P==27

Name=’RELN’;

% n problem variables, n >= 1 , default n = 10

uP = checkuP(Name,Prob);

n = askparam(ask, ’Give problem dimension ’, 1, [], 10, uP);

uP(1) = n;

y = zeros(n,1);

x_0 = zeros(n,1);

x_opt = 3.5*ones(n,1);

...

...

The routine checkuP is checking if the input Prob structure has the field Prob.uP defined, and if the Name of
the problem is the same as the one set in Prob.Name. If this is true, uP is set to supplied value. When calling
askparam, if ask <= 0, the dimension n is set to the default value 10 if uP is empty, otherwise to the value of uP.
If ask > 0 is set by the user, askparam will ask the question Give problem dimension and set the value given by
user. At the end of the Init File, the field Prob.uP is assigned the value of uP(1).

Using the routine checkuP, called after the Name variable is assigned, and the general question asking routine
askparam, it is easy to add the feature of user supplied problem parameters to any user problem. Type help
askparam for information about the parameters sent to askparam.

To send any amount of other information to the low-level user routines, it is recommended to use sub fields of
Prob.user as described in Section 2.4.

In the other problem definition files, cls r and cls J in this example, the parameter(s) are ”unpacked” and can be
used e.g. in the definition of the Jacobian.

...

...

elseif P==27

% ’RELN’

n = Prob.uP(1);

...

...

If questions should be asked during the setup of the problem, in the Init File, the user must set the integer ask
positive in the call to probInit. See the example below:

ask=1;

Prob = probInit(’cls_prob’,27,ask);

The system will now ask for the problem dimension, and assuming the choice of the dimension is 20, the output
would be:

Current value = 10

Give problem dimension 20

215

Now call clsSolve to solve the problem,

Result=tomRun(’clsSolve’, Prob, 1);

As a second example assume that the user wants to solve the problem above for all dimensions between 10 and
30. The following code snippet will do the job.

for dim=10:30

Prob = [];

Prob.uP(1) = dim;

PriLev = 0;

Result = tomRun(’clsSolve’, ’cls_prob’, 27, Prob, PriLev);

end

14.3 User Given Stationary Point

Known stationary points could be defined in the problem definition files. It is also possible for the user to define
the type of stationary point (minimum, saddle or maximum). When defining the problem RB BANANA (17) in
the previous sections, x opt was set as (1, 1) in the problem definition files. If it is known that this point is a
minimum point the definition of x opt could be extended to

x_opt = [1 1 StatPntType]; % Known optimal point (optional).

where StatPntType equals 0, 1, or 2 depending on the type of the stationary point (minimum, saddle or maximum).
In this case set StatPntType to 0 since (1, 1) is a minimum point. The extension becomes

x_opt = [1 1 0]; % Known optimal point (optional).

If there is more than one known stationary point, the points are defined as rows in a matrix with the values of
StatPntType as the last column. Assume that (−1,−1) is a saddle point, (1,−2) is a minimum point and (−3, 5)
is a maximum point for a certain problem. The definition of x opt could then look like

x_opt = [-1 -1 1

1 -2 0

-3 5 2];

Note that it is not necessary to define x opt. If x opt is defined it is not necessary to define StatPntType if all given
points are minimum points.

14.4 Print Levels and Printing Utilities

The amount of printing is determined by setting different print levels for different parts of the TOMLAB system.
The parameter is locally most often called PriLev. There are two main print levels. One that determines the
output printing of the driver or menu routines, set in the input structure as Prob.PriLev. The other printing level,
defined in Prob.PriLevOpt, determines the output in the TOM solvers and for the SOL solvers, the output in the
Matlab part of the MEX file interface. In Table 132 the meaning of different print levels are defined.

The utility routine PrintResult prints the results of an optimization given the Result structure. The amount
of printing is determined by a second input argument PriLev. The driver routine tomRun also makes a call to

216

PrintResult after the optimization, and if the input parameter PriLev is greater than zero, the result will be the
same as calling PrintResult afterwards.

PrintResult is using the global variables, MAX c, MAX x and MAX r to limit the lengths of arrays displayed. All
Matlab routines in the SOL interfaces are also using these global variables. The global variables get default values
by a call to tomlabInit, or if empty is set to default values by the different routines using them. The following
example show the lines needed to change the default values.

global MAX_c MAX_x MAX_r

MAX_x = 100;

MAX_c = 50;

MAX_r = 200;

This code could either be executed at the command line, or in any main routine or script that the user defines.

Table 132: Print level in the TOM solvers, Prob.PriLevOpt

Value Description
< 0 Totally silent.
0 Error messages and warnings.
1 Final results including convergence test results and minor warnings.
2 Each iteration, short output.
3 Each iteration, more output.
4 Line search or QP information.
5 Hessian output, final output in solver.

There is a wait flag field in optParam, optParam.wait. If this flag is set true, most of the TOM solvers uses the
pause statement to avoid the output just flushing by. The user must press RETURN to continue execution. The
fields in optParam is described in Table 141.

The TOM solvers routines print large amounts of output if high values for the PriLev parameter is set. To make
the output look better and save space, several printing utilities have been developed.

For matrices there are two routines, mPrint and PrintMatrix. The routine PrintMatrix prints a matrix with row
and column labels. The default is to print the row and column number. The standard row label is eight characters
long. The supplied matrix name is printed on the first row, the column label row, if the length of the name is at
most eight characters. Otherwise the name is printed on a separate row.

The standard column label is seven characters long, which is the minimum space an element will occupy in the
print out. On a 80 column screen, then it is possible to print a maximum of ten elements per row. Independent
on the number of rows in the matrix, PrintMatrix will first display A(:, 1 : 10), then A(:, 11 : 20) and so on.

The routine PrintMatrix tries to be intelligent and avoid decimals when the matrix elements are integers. It
determines the maximal positive and minimal negative number to find out if more than the default space is
needed. If any element has an absolute value below 10−5 (avoiding exact zeros) or if the maximal elements are too
big, a switch is made to exponential format. The exponential format uses ten characters, displaying two decimals
and therefore seven matrix elements are possible to display on each row.

For large matrices, especially integer matrices, the user might prefer the routine mPrint. With this routine a more
dense output is possible. All elements in a matrix row is displayed (over several output rows) before next matrix

217

row is printed. A row label with the name of the matrix and the row number is displayed to the left using the
Matlab style of syntax.

The default in mPrint is to eight characters per element, with two decimals. However, it is easy to change the
format and the number of elements displayed. For a binary matrix it is possible to display 36 matrix columns in
one 80 column row.

14.5 Partially Separable Functions

The routine sTrustr implements a structured trust region algorithm for partially separable functions (psf). A
definition of a psf is given below and an illustrative example of how such a function is defined and used in
TOMLAB.

f is partially separable if f(x) =
M∑
i

fi(x), where, for each i ∈ {1, ...,M} there exists a subspace Ni 6= 0 such that,

for all w ∈ Ni and for all x ∈ X, it holds that fi(x + w) = fi(x). X is the closed convex subset of Rn defined by
the constraints.

Consider the problem DAS 2 in File: tomlab/testprob/con prob :

min
x

f(x) = 1
2

6∑
1
ri(x)2

s/t Ax ≥ b
x ≥ 0

(22)

where

r =



√
11
6 x1 − 3√

11
x2−3√

2√
0.0775 · x3 + 0.5√

0.0775
x4
3 −3√

2
−5
6 x1 + 0.6x3

0.75x3 + 2
3x4


, A =

 −1 −2 −1 −1
−3 −1 −2 1

0 1 4 0

 , b =

 −5
−4
1.5

 .

The objective function in (22) is partially separable according to the definition above and the constraints are linear
and therefore they define a convex set. DAS 2 is defined as the constrained problem 14 in con prob, con f, con g
etc. as an illustrative example of how to define a problem with a partially separable objective function. Note the
definition of pSepFunc in con prob.

One way to solve problem (22) with sTrustr is to define the following statements:

probFile = ’con_prob’; % Name of Init File

P = 14; % Problem number in con_prob

Prob = probInit(probFile, P); % Define a problem structure

Result = tomRun(’sTrustr’, Prob, 0);

The sequence of statements are similar to normal use of TOMLAB. The only thing that triggers the use of
the partial separability is the definition of the variable Prob.PartSep.pSepFunc. To solve the same problem, and
avoiding the use of psf, the following statements could be used:

probFile = ’con_prob’; % Name of Init File

218

P = 14; % Problem number in con_prob

Prob = probInit(probFile, P); % Define a problem structure

Prob.PartSep.pSepFunc = 0; % Redefining number of separable functions

Result = tomRun(’sTrustr’, Prob, 0);

Another alternative is to set Prob.PartSep as empty before the call to sTrustr. This example, slightly expanded,
is included in the distribution as psfDemo in directory examples.

14.6 Utility Test Routines

The utility routines listed in Table 133 run tests on a large set of test problems.

Table 133: System test routines.

Function Description Section Page
runtest Runs all selected problems defined in a problem file for a given solver. 12.13 201
systest Runs big test for each probType in TOMLAB. 12.16 204

The runtest routine may also be useful for a user running a large set of optimization problems, if the user does not
need to send special information in the Prob structure for each problem.

219

A Prob - the Input Problem Structure

The Input Problem Structure, here referred to as Prob, is one of the most central aspects of working with TOMLAB.
It contains numerous fields and substructures that influence the behavior and performance of the solvers.

There are default values for everything that is possible to set defaults for, and all routines are written in a way
that makes it possible for the user to just set an input argument empty ([]) and get the default.

TOMLAB is using the structure variable optParam, see Table 141, for the optimization parameters controlling the
execution of the optimization solvers.

Subproblems

Many algorithms need sub-problems solved as part of the main algorithm. For example, in SQP algorithms
for general nonlinear programs, QP problems are solved as sub-problems in each iteration. As QP solver any
solver, even a general NLP solver, may be used. To send parameter information to the QP subsolver, the fields
Prob.optParam, Prob.Solver and Prob.SOL could be put as subfields to the Prob.QP field (see Table 136), i.e. as
fields Prob.QP.optParam, Prob.QP.Solver. The field Prob.QP.optParam need not have all subfields, the missing
ones are filled with default values for the particular QP solver.

The same Prob.QP subfield is used for the other types of subproblems recognized, i.e. Phase 1 feasibility problems,
LP and dual LP problems. Note that the fields Prob.SolverQP, Prob.SolverFP Prob.SolverLP and Prob.SolverDLP
are set to the name of the solver that should solve the subproblem. If the field is left empty, a suitable default
solver is used, dependent on the license for TOMLAB.

Table 134: Information stored in the problem structure Prob. Fields defining sub-structures are
defined in Table 135

Field Description

Tomlab TOMLAB Version number.

A Matrix with linear constraints, one constraint per row (dense or sparse).

ADObj Automatic differentiation flag. If 1, -1 MAD is used to obtain gradient and
Hessian, respectively.

ADCons Automatic differentiation flag. If 1, -1 MAD is used to obtain the constraint
Jacobian and nonlinear constraint Hessian, respectively.

b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

CHECK If true, no more check is done by ProbCheck. Set to true (=1) after first call
to ProbCheck.

220

Table 134: Information stored in the problem structure Prob, continued.

Field Description

CheckNaN If Prob.CheckNaN = 0, nlp d2c, nlp H, nlp d2r checks for NaN elements and
estimates the corresponding derivatives numerically. If Prob.CheckNaN > 0,
the same applies for nlp dc, nlp g, nlp J. Off-diagonal elements in symmetric
Hessians should both be set as NaN. fdng, fdng2, fdng3, only estimate NaN
elements in gradient, if gradient vector is input.

cName Name of each general constraint.

cols The columns in the user computed matrix that will be accessed, and needs to
be set.

ConIx A vector with the sequence of calls required to compute the numerical con-
straint Jacobian efficiently. See findpatt for more information.

ConsDiff Numerical approximation of the constraint derivatives. If set to 1, the classical
approach with forward or backward differences together with automatic step
selection will be used. If set to 2, 3 or 4 the spline routines csapi, csaps or
spaps in the SPLINE Toolbox will be used. If set to 5, derivatives will be
estimated by use of complex variables. For the SOL solvers, the value 6 gives
the internal derivative approximation.

ConsIdx Internally used to speed up the SOL solver computations. Used to send linear
index from multiple subscripts for nonzero pattern in constraint Jacobian.

ConsPattern Matrix with non-zero pattern in the constraint gradient matrix.

d2LPattern Sparsity pattern of the Hessian of the Lagrangian function.

f Low Lower bound on optimal function value.
f opt Objective function value f(x∗) corresponding to the points given in x opt.

GradTolg Size of step length to estimate first order derivatives in the gradient vector. If
this field is empty, optParam.DiffInt is used instead.

GradTolH Size of step length to estimate the Hessian matrix. If this field is empty ,
optParam.DiffInt is used instead.

GradTolJ Size of step length to estimate the Jacobian matrix or the constraint gradient
matrix. If this field is empty, optParam.DiffInt is used instead.

HessIx A vector with the sequence of calls required to compute the numerical Jacobian
efficiently. See findpatt for more information.

HessPattern Matrix with non-zero pattern in the Hessian matrix.

221

Table 134: Information stored in the problem structure Prob, continued.

Field Description

JacIx A vector with the sequence of calls required to compute the numerical Jacobian
efficiently. See findpatt for more information.

JacPattern Matrix with non-zero pattern in the Jacobian matrix.

LargeScale Flag if the problem is large scale. If this flag is set no collection of search steps
are made. Also, for some solvers, LargeScale chooses between dense (=0) or
sparse (=1) versions of the solver. This flag also controls several other features
in TOMLAB such as estimation of patterns.

MaxCPU Maximum execution time in seconds for the solver. The feature is available
for a limited number of solvers.

MENU Flag used to tell if a menu, the GUI or a driver is calling, to avoid unnecessary
checks of the fields in Prob (0).

Mode Indicates whether the user should return function values and/or derivatives.
Is best used when the user computes both function values and derivatives at
the same time to save CPU time. 0 = Assign function values. 1 = Assign
known derivatives, unknown derivative values set as -11111 (=missing value).
2 = Assign function and known derivatives, unknown derivatives set as -11111.

nState Indicates the first and last calls to the user routines to compute function and
derivatives. Used by the SOL solvers.

1 First call.
0 Other calls before the last call.
2 + Inform Last call, see the Inform parameter for the solver used.

N Problem dimension (number of variables).

mLin Number of linear constraints.

mNonlin Number of nonlinear constraints.

Name Problem name.

NumDiff Numerical approximation of the derivatives of the objective function. If set
to 1, the classical approach with forward or backward differences together
with automatic step selection will be used. If set to 2, 3 or 4 either the
standard Matlab spline function or the spline routines csapi, csaps or spaps in
the SPLINE Toolbox will be used. If set to 5, derivatives will be estimated by
use of complex variables. For the some solvers, the value 6 gives the internal
derivative approximation.

222

Table 134: Information stored in the problem structure Prob, continued.

Field Description

P Problem number (1).
plotLine Flag if to do a plot of the line search problem.

PriLev Print level in the driver routines (0).
PriLevOpt Print level in the TOM solver and the Matlab part of the solver interface (0).

PrintLM Flag: controls whether or not PrintResult should calculate Lagrange multipli-
ers and reduced (projected) gradient after a solver has been run.

Since PrintResult operates on a Result structure, and not on Prob, this flag is
accessed as Result.Prob.PrintLM, but of course it is possible to set it before
solving the problem.

probFile Name of m-file in which the problems are defined.
probType TOMLAB problem type, see Table 1.

rows The rows in the user computed vector/matrix that will be accessed, and needs
to be set.

simType A flag indicating when the TOMLAB simulation format is used. The objective
and constraints are calculated at the same function. The gradient and Jacobian
are also calculated in the same function.

smallA If 1 then small elements in the linear constraints are removed. The elements
have to be smaller than eps ∗max(max(abs(Prob.A))).

SolverDLP Name of the solver that should solve dual LP sub-problems.
SolverLP Name of the Solver that should solve LP sub-problems.
SolverFP Name of the solver that should solve a phase one LP sub-problem, i.e. finding

a feasible point to a convex set.
SolverQP Name of the solver that should solve QP sub problems.

uP User supplied parameters for the problem (Init File Format). Use Prob.user
for extra parameters.

uPName Problem name (Prob.Name) connected to the user supplied parameters in (
uP).

user User supplied parameters for the problem. Should be stored in subfields, for
example Prob.user.aParam.

WarmStart For solver with support for warmstarts, WarmStart > 0 indicates that the
solver should do a warm start.

223

Table 134: Information stored in the problem structure Prob, continued.

Field Description

x 0 Starting point.

x L Lower bounds on the variables x.
x U Upper bounds on the variables x.

x min Lower bounds on plot region.
x max Upper bounds on plot region.

x opt Stationary points x∗, one per row (if known). It is possible to define an extra
column, in which a zero (0) indicates a minimum point, a one (1) a saddle
point, and a two (2) a maximum. As default, minimum points are assumed.
The corresponding function values for each row in x opt should be given in
Prob.f opt.

xName Name of each decision variable in x.

Warning If 1 (default), some warnings may be issued.

224

Table 135: The fields defining sub-structures in the problem structure Prob. Default values are in all
tables given in parenthesis at the end of each item.

Field Description
QP Structure with special fields for linear and quadratic problems, see Table 136.
LS Structure with special fields for least squares problems, see Table 137.
MIP Structure with special fields for mixed-integer programming, see Table 138.
GO Structure with special fields for global optimization.
CGO Structure with special fields for costly global optimization.
ExpFit Structure with special fields for exponential fitting problems, see Table 139.
NTS Structure with special fields for nonlinear time series.
LineParam Structure with special fields for line search optimization parameters, see Table

140.
optParam Structure with special fields for optimization parameters, see Table 141.
PartSep Structure with special fields for partially separable functions, see Table 142.
SOL Structure with special fields for SOL (Stanford Optimization Laboratory)

solvers, see Table 143.
Solver Structure with fields Name, Alg and Method. Name is the name of the solver.

Alg is the solver algorithm to be used. Method is the solver sub-method tech-
nique. See the solver descriptions Section 11.

FUNCS Structure with user defined names of the m-files computing the objective,
gradient, Hessian etc. See Table 144. These routines are called from the
corresponding gateway routine

DUNDEE Structure with special fields for the MINLP solvers (University of Dundee).
PENOPT Structure with special fields for the PENOPT solvers.

225

Table 136: Information stored in the structure Prob.QP. The three last sub-fields, always part of the
Prob subfields, could optionally be put here to give information to a subproblem QP, LP, dual LP or
feasible point (Phase 1) solver.

Field Description
F Constant matrix F in 1

2x
′Fx+ c′x

c Cost vector c in 1
2x
′Fx+ c′x

B Logical vector of the same length as the number of variables. A zero
corresponds to a variable in the basis.

y Dual parameters y.
Q Orthogonal matrix Q in QR-decomposition.
R Upper triangular matrix R in QR-decomposition.
E Pivoting matrix E in QR-decomposition. Stored sparse.
Ascale Flag if to scale the A matrix, the linear constraints.
DualLimit Stop limit on the dual objective.
UseHot True if to use a crash basis (hot start).
HotFile If nonempty and UseCrash true, read basis from this file.
HotFreq How often to save a crash basis.
HotN The number of crash basis files.
optParam Structure with special fields for optimization parameters, see Table

141.
SOL Structure with special fields for SOL (Stanford Optimization Labo-

ratory) solvers, see Table 143.
Solver Structure with fields Name, Alg and Method. Name is the name of

the solver. Alg is the solver algorithm to be used. Method is the
solver sub-method technique. See the solver descriptions Section 11.

226

Table 137: Information stored in the structure Prob.LS

Field Description
weightType Weighting type:

0 No weighting.
1 Weight with data in y. If y(t) = 0, the weighting is 0, i.e.

deleting this residual element.
2 Weight with weight vector or matrix in weightY. If weightY is

a vector then weighting by weigthY.∗r (element wise multipli-
cation). If weightY is a matrix then weighting by weigthY ∗ r
(matrix multiplication).

3 nlp r calls the routine weightY (must be a string with the
routine name) to compute the residuals.

weightY Either empty, a vector, a matrix or a string, see weightType.
t Time vector t.
y Vector or matrix with observations y(t).
E Fixed matrix, in linear least squares problem E ∗ x− y.
yUse If yUse = 0 compute residual as f(x, t) − y(t) (default), other-

wise y(t) should be treated separately by the solver and the residual
routines just return f(x, t).

SepAlg If SepAlg = 1, use separable non linear least squares formulation
(default 0).

Table 138: Information stored in the structure Prob.MIP

Field Description
IntVars Which variables are integer valued
VarWeight Priority vector for each variable.
fIP Function value for point defined in xIP. Gives an upper bound on

the IP value wanted. Makes it possible to cut branches and avoid
node computations

xIP The point x giving the function value fIP.
PI See the Tomlab /Xpress User’s Guide.
SC See the Tomlab /Xpress User’s Guide.
SI See the Tomlab /Xpress User’s Guide.
sos1 See the Tomlab /Xpress User’s Guide.
sos2 See the Tomlab /Xpress User’s Guide.
xpcontrol See the Tomlab/ Xpress User’s Guide.
callback See the Tomlab /Xpress User’s Guide.
KNAPSACK See the Tomlab /Xpress User’s Guide.

227

Table 139: Information stored in the structure Prob.ExpFit. Default values in parenthesis.

Field Description
p Number of exponential terms (2).
wType Weighting type (1).
eType Type of exponential terms (1).
infCR Information criteria for selection of best number of terms (0).
dType Differentiation formula (0).
geoType Type of equation (0).
qType Length q of partial sums (0).
sigType Sign to use in (P ±

√
Q)/D in exp geo for p = 3, 4 (0).

lambda Vector of dimension p, intensities.
alpha Vector of dimension p, weights.
beta Vector of dimension p, weights in generalized exponential models.
x0Type Type of starting value algorithm.
sumType Type of exponential sum.

Table 140: Information stored in the structure Prob.LineParam

Field Description
LineAlg Line search algorithm. 0 = quadratic interpolation, 1 = cubic inter-

polation, 2 = curvilinear quadratic interpolation (not robust), 3 =
curvilinear cubic interpolation (not robust) (LineAlg = 1).

sigma Line search accuracy; 0 < sigma < 1. sigma = 0.9 inaccurate line
search. sigma = 0.1 accurate line search (0.9).

InitStepLength Initial length of step (1.0).
MaxIter Maximum number of line search iterations.
fLowBnd Lower bound on optimal function value. Used in the line search by

Fletcher, m-file LineSearch (= −realmax).
rho Determines the ρ line (0.01).
tau1 Determines how fast step grows in phase 1 (9).
tau2 How near end point of [a, b] (0.1).
tau3 Choice in [a, b] phase 2 (0.5).
eps1 Minimal length for interval [a, b] (10−7).
eps2 Minimal reduction (100× ε).

228

Table 141: Information stored in the structure Prob.optParam. Default values in parenthesis. The
values are selectively used in Base Module solvers. Refer to individual solver documentation for
more information.

Field Description

PriLev Solver major print level in file output.
PriFreq Print frequency in optimization solver.
SummFreq Summary frequency in optimization solver.
MinorPriLev Minor print level in file output in sub-problem solver.
IterPrint Flag for one-row-per-iteration printout during optimization (0).

wait Flag, if true use pause statements after output in each iteration (0).

MaxFunc Maximal number of function evaluations.
MaxIter Maximum number of iterations.
MajorIter Maximum number of iterations in major problem.
MinorIter Maximum number of iterations in minor problem.

eps f Relative convergence tolerance in f (10−8).
eps absf Absolute convergence tolerance for the function value (−realmax).
eps x Relative convergence tolerance in parameter solution x.
eps dirg Convergence tolerance for the directed derivative (10−8).
eps c Feasibility tolerance for nonlinear constraints.
eps g Gradient (or reduced gradient) convergence tolerance (10−7).
eps Rank Rank test tolerance.
EpsGlob Global/local weight parameter in global optimization (10−4).

fTol Relative accuracy in the computation of the function value.
xTol If x ∈ [x L, x L+ bTol] or [x U − bTol, x U], fix x on bound (100 ∗ ε =

2.2204 · 10−13).
bTol Feasibility tolerance for linear constraints.
cTol Feasibility tolerance for nonlinear constraints.
MinorTolX Relative convergence tolerance in parameters x in sub-problem.

size x Size at optimum for the variables x, used in the convergence tests (1).
Only changed if scale very different, x >> 1.

size f Size at optimum for the function f , used in the convergence tests (1). Only
changed if scale very different, f >> 1.

size c Size at optimum for the constraints c, used in the convergence tests (1).
Only changed if scale very different, c >> 1.

PreSolve Flag if presolve analysis is to be applied on linear constraints (0).

229

Table 141: Information stored in the structure Prob.optParam, continued.

Field Description

DerLevel Derivative Level, knowledge about nonlinear derivatives: 0 = Some compo-
nents of the objective gradient are unknown and some components of the
constraint gradient are unknown, 1 = The objective gradient is known but
some or all components of the constraint gradient are unknown, 2 = All
constraint gradients are known but some or all components of the objec-
tive gradient are unknown, 3 = All objective and constraint gradients are
known.

GradCheck 0, 1, 2, 3 gives increasing level of user-supplied gradient checks.

DiffInt Difference interval in derivative estimates.
CentralDiff Central difference interval in derivative estimates.

QN InitMatrix Initial matrix for Quasi-Newton, may be set by the user. When
QN InitMatrix is empty, the identity matrix is used.

splineSmooth Smoothness parameter sent to the SPLINE Toolbox routine csaps.m when
computing numerical approximations of the derivatives (−1 default). 0
means least squares straight line fit. 1 means natural (variational) cubic
spline interpolant. The transition range in [0,1] is small, suggested tries are
0.2 or 0.4. < 0 lets the routine csaps make the choice (default)

splineTol Tolerance parameter sent to the SPLINE Toolbox routine spaps.m when
computing numerical approximations of the derivatives (10−3). Should be
set in the order of the noise level.

BigStep Unbounded step size. Used to detect unbounded nonlinear problems.
BigObj Unbounded objective value. Used to detect unbounded nonlinear problems.
CHECK If true, no more check is done on the structure. Set to true (=1) after first

call to optParamSet.

Table 142: Information stored in the structure Prob.PartSep

Field Description
pSepFunc Number of partially separable functions.
index Index for the partially separable function to compute, i.e. if i = index,

compute fi(x). If index = 0, compute the sum of all, i.e. f(x) =
M∑
i=1

fi(x).

230

Table 143: Information stored in the structure Prob.SOL

Field Description
SpecsFile If nonempty gives the name of a file which is written in the SOL

SPECS file format.
PrintFile If nonempty gives the name of a file which the SOL solver should

print information on. The amount printed is dependent on the print
level in Prob.SOL.optPar(1).

SummFile If nonempty gives the name of a file which the SOL solver prints
summary information on.

xs Vector with solution x and slack variables s. Used for warm starts.
hs Vector with basis information in the SOL sparse solver format. Used

for warm starts.
nS Number of superbasics. Used for warm starts.
hElastic Elastic variable information in SQOPT.
iState Vector with basis information in the SOL dense solver format. Used

for warm starts.
cLamda Vector with Lagrange multiplier information in the SOL dense solver

format. Used for warm starts.
H Cholesky factor of Hessian Approximation. Either in natural order

(Hessian Yes) or reordered (Hessian No). Used for warm starts using
natural order with NPSOL and NLSSOL.

callback For large dense or nearly dense quadratic problems (probType ==
qp) it is more efficient to use a callback function from the MEX
routine to compute the matrix-vector product F ·x. Then Prob.QP.F
is never copied into the MEX solver. This option applies to SQOPT
only.

optPar Vector with optParN elements with parameter information for SOL
solvers. Initialized to missing value, −999. The elements used are
described in the help for each solver. If running TOMLAB format,
also see the help of the TOMLAB solver interface routine whos name
always has the letters TL added, e.g. minosTL.

optParN Number of elements in optPar, defined as 62.

231

Table 144: Information stored in the structure Prob.FUNCS

Field Description
f Name of m-file computing the objective function f(x).
g Name of m-file computing the gradient vector g(x). If Prob.FUNCS.g

is empty then numerical derivatives will be used.
H Name of m-file computing the Hessian matrix H(x).
c Name of m-file computing the vector of constraint functions c(x).
dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.
d2c Name of m-file computing the 2nd part of 2nd derivative matrix of

the Lagrangian function,
∑
i λi∂

2c(x)/dx2.
r Name of m-file computing the residual vector r(x).
J Name of m-file computing the Jacobian matrix J(x).
d2r Name of m-file computing the 2nd part of the Hessian for nonlinear

least squares problem, i.e.
m∑
i=1

ri(x) ∂
2ri(x)
∂xj∂xk

.

232

Table 145: Information stored in the structure Prob.DUNDEE

Field Description

callback If 1, use a callback to Matlab to compute QP.F · x in BQPD and miqpBB
. Faster when F is large and nearly dense. Avoids copying the matrix to
the MEX solvers.

kmax Maximum dimension of the reduced space (k), default equal to dimension
of problem. Set to 0 if solving an LP problem.

mlp Maximum number of levels of recursion.
mode Mode of operation, default set as 2 ∗ Prob.WarmStart.
x Solution (warmstart).
k Dimension of reduced space (warmstart).
e Steepest-edge normalization coefficient (warmstart).
ls Indices of active constraints, first n− k. (warmstart).
lp List of pointers to recursion information in ls (warmstart).
peq Pointer to end of equality constraint indices in ls (warmstart).

PrintFile Name of print file. Amount/print type is determined by
Prob.DUNDEE.optPar(1).

optPar Vector with optimization parameters. Described in Table 146.

233

Table 146: Prob.DUNDEE.optPar values used by TOMLAB /MINLP solvers . −999 in any element gives
default value.

Used by:

Index Name Default Description BQPD miqpBB filterSQP minlpBB

1 iprint 0 Print level in DUNDEE solvers. O O O O

2 tol 10−10 Relative accuracy in BQPD solution. O O O O

3 emin 1 1/0: Use/do not use constraint scaling in BQPD O O O O

4 sgnf 5 · 10−4 Maximum relative error in two numbers equal in

exact arithmetic.

O O O O

5 nrep 2 Maximum number of refinement steps. O O O O

6 npiv 3 No repeat of more than npiv steps were taken. O O O O

7 nres 2 Maximum number of restarts if unsuccessful. O O O O

8 nfreq 500 Maximum interval between refactorizations. O O O O

9 ubd 100 Constraint violation parameter I - - O O

10 tt 0.125 Constraint violation parameter II - - O O

11 NLP eps 10−6 Relative tolerance for NLP solutions - - O O

12 epsilon 10−6 Accuracy for x tests O O O O

13 MIopttol 10−4 Accuracy for f tests - O - O

14 fIP 1020 Upper bound on the IP value wanted. - O - O

15 timing 0 1/0: Use/do not use timing - O - -

16 max time 4000 Maximum time (sec’s) allowed for the run - O - -

17 branchtype 1 Branching strategy (1, 2, 3) - O - -

18 ifsFirst 0 Exit when first IP solution is found - O - -

19 infty 1020 Large value used to represent infinity O O O O

20 Nonlin 0 Treat all constraints as nonlinear if 1 - - O O

234

B Result - the Output Result Structure

The results of the optimization attempts are stored in a structure array named Result. The currently defined
fields in the structure are shown in Table 149. The use of structure arrays make advanced result presentation and
statistics possible. Results from many runs may be collected in an array of structures, making postprocessing on
all results easy.

When running global optimization, output results are also stored in mat-files, to enable fast restart (warm start)
of the solver. It is seldom the case that one knows that the solver actually converged for a particular problem.
Therefore one does restarts until the optimum does not change, and one is satisfied with the results. The infor-
mation stored in the mat-file glbSave.mat by the solver glbSolve is shown in Table 147. The information stored in
the mat-file glcSave.mat by the solver glcSolve is shown in Table 148. Different information is stored when using
glbFast and glcFast, see the solver reference.

Table 147: Information stored in the mat-file glbSave.mat by the solver glbSolve. Used for automatic
restarts.

Variable Description
C Matrix with all rectangle centerpoints, in [0,1]-space.
D Vector with distances from centerpoint to the vertices.
DMin Row vector of minimum function value for each distance.
DSort Row vector of all different distances, sorted.
E Computed tolerance in rectangle selection.
F Vector with function values.
L Matrix with all rectangle side lengths in each dimension.
Name Name of the problem. Used for security if doing warm start.
glbfMin Best function value found at a feasible point.
iMin The index in D which has lowest function value, i.e. the rectangle

which minimizes (F − glbfMin + E)./D where E = max(EpsGlob ∗
abs(glbfMin), 1E − 8).

235

Table 148: Information stored in the mat-file glcSave.mat by the solver glcSolve. Used for automatic
restarts.

Variable Description
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
G Matrix with constraint values for each point.
Name Name of the problem. Used for security if doing warm start.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
fMinEQ sum(abs(infeasibilities)) for minimum points, 0 if no equalities.
fMinIdx Indices of the currently best points.
feasible Flag indicating if a feasible point has been found.
glcf min Best function value found at a feasible point.
iL iL(i, j) is the lower bound for rectangle j in integer dimension I(i).
iU iU(i, j) is the upper bound for rectangle j in integer dimension I(i).
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
s s(j) is the sum of observed rates of change for constraint j.
s 0 s 0 is used as s(0).
t t(i) is the total number of splits along dimension i.

236

Table 149: Information stored in the optimization result structure Result.

Field Description

Name Problem name.

P Problem number.
probType TOMLAB problem type, according to Table 1, page 11.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
solvType TOMLAB solver type.

ExitFlag 0 if convergence to local min. Otherwise errors.
ExitText Text string describing the result of the optimization.
Inform Information parameter, type of convergence.

CPUtime CPU time used in seconds.
REALtime Real time elapsed in seconds.

Iter Number of major iterations.
MinorIter Number of minor iterations (for some solvers).

maxTri Maximum rectangle size.

FuncEv Number of function evaluations needed.
GradEv Number of gradient evaluations needed.
HessEv Number of Hessian evaluations needed.
ConstrEv Number of constraint evaluations needed.
ConJacEv Number of constraint Jacobian evaluations needed.
ConHessEv Number of nonlinear constraint Hessian evaluations needed.

ResEv Number of residual evaluations needed (least squares).
JacEv Number of Jacobian evaluations needed (least squares).

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
B k Quasi-Newton approximation of the Hessian at optimum.
H k Hessian value at optimum.

y k Dual parameters.
v k Lagrange multipliers for constraints on variables, linear and nonlinear con-

straints.

r k Residual vector at optimum.
J k Jacobian matrix at optimum.

237

Table 149: Information stored in the optimization result structure Result, continued.

Field Description

Ax Value of linear constraints at optimum.
c k Value of nonlinear constraints at optimum.
cJac Constraint Jacobian at optimum.

x 0 Starting point.
f 0 Function value at start i.e. f(x 0).
c 0 Value of nonlinear constraints at start.
Ax0 Value of linear constraints at start.

xState State of each variable, described in Table 150.
bState State of each linear constraint, described in Table 151.
cState State of each general constraint, described in Table 152.

p dx Matrix where each column is a search direction.
alphaV Matrix where row i stores the step lengths tried for the i:th iteration.
x min Lowest x-values in optimization. Used for plotting.
x max Highest x-values in optimization. Used for plotting.
LS Structure with statistical information for least squares problems, see Table

153.
F X F X is a global matrix with rows: [iter no f(x)].
SepLS General result variable with fields z and Jz. Used when running separable

nonlinear least squares problems.

QP Structure with special fields for QP problems. Used for warm starts, see
Table 136.

SOL Structure with some of the fields in the Prob.SOL structure, the ones
needed to do a warm start of a SOL solver, see Table 143. The routine
WarmDefSOL moves the relevant fields back to Prob.SOL for the subse-
quent call.

DUNDEE Structure with special result fields from TOMLAB /MINLP solvers.

plotData Structure with plotting parameters.

Prob Problem structure, see Table 134. Please note that certain solvers that do
reformulations of the problem, e.g. L1Solve, infSolve and slsSolve, return
the Prob structure of the reformulated problem in this field, not the original
one.

The field xState describes the state of each of the variables. In Table 150 the different values are described. The
different conditions for linear constraints are defined by the state variable in field bState. In Table 151 the different
values are described.

238

Table 150: The state variable xState for the variable.

Value Description
0 A free variable.
1 Variable on lower bound.
2 Variable on upper bound.
3 Variable is fixed, lower bound is equal to upper bound.

Table 151: The state variable bState for each linear constraint.

Value Description
0 Inactive constraint.
1 Linear constraint on lower bound.
2 Linear constraint on upper bound.
3 Linear equality constraint.

Table 152: The state variable cState for each nonlinear constraint.

Value Description
0 Inactive constraint.
1 Nonlinear constraint on lower bound.
2 Nonlinear constraint on upper bound.
3 Nonlinear equality constraint.

Table 153: Information stored in the structure Result.LS.

Field Description
SSQ rTk · rk.
Covar Covariance matrix (inverse of JTk · Jk).
sigma2 Estimate of squared standard deviation.
Corr Correlation matrix (normalized covariance matrix).
StdDev Estimated standard deviation in parameters.
x The optimal point x k.
ConfLim 95% confidence limit (roughly) assuming normal distribution

of errors.
CoeffVar Coefficients of variation of estimates.

239

C TomSym - the Modeling Engine

This appendix describes the details and functions of relevance to the user when modeling optimization and optimal
control problems with TomSym. It is possible to solve the modeling problems, either with ezsolve or by converting
the problem to a standard TOMLAB Prob struct with sym2prob. The latter provides for the option of controlling
all solver settings per the TOMLAB standard (see the solver manuals for more information). The procedure for
using MAD (Matlab Automatic Differentiation) is also described in the sections below.

C.1 Main functions

The following Matlab functions are used directly by the user when modeling problems for processing by the
TOMLAB solvers.

C.1.1 tom — Generate a tomSym symbol.

x = tom creates a scalar tomSym symbol with an automatic name.

x = tom(label) creates a scalar symbol with the provided name.

x = tom(label,m,n) creates a m-by-n matrix symbol.

x = tom([],m,n) creates a matrix symbol with an automatic name.

x = tom(label,m,n,’int’) creates an integer matrix symbol.

x = tom(label,m,n,’symmetric’) creates a symmetric matrix symbol.

Because constructs like ”x = tom(’x’)” are very common, there is the shorthand notation ”toms x”.

See also: toms, tomSym

C.1.2 toms — Create tomSym objects.

Toms is a shorthand notation, possibly replacing several calls to ’tom’

A symbol is created in the current workspace for each name listed. If a size is specified on the format ”NxM”
where N and M are integers, then all subsequent symbols will get that size. If the size specification ends with an
exclamation point (as in ”3x4!”) then a symbolic array of concatenated scalar symbols is created instead of one
matrix symbol.

The flags ”integer” (or ”int”) and ”symmetric” are recognized. If a flag is encountered, then all subsequent symbols
will get the properties of that flag.

-integer: The variable is constrained to integer values, resulting in a

mixed-integer problem (which requires a compatible solver.)

-symmetric: The variable is symmetric, so that x’ == x. This requires that

the dimensions be square. An NxN symmetric matrix only contains

N*(N+1)/2 unknowns, and the resulting symbolic object uses the

setSymmetric function.

Examples:

240

toms x y z

is equivalent to

x = tom(’x’);

y = tom(’z’);

z = tom(’z’);

toms 2x3 Q 3x3 -integer R -symmetric S

is equivalent to

Q = tom(’Q’, 2, 3);

R = tom(’R’, 3, 3, ’integer’);

S = tom(’S’, 3, 3, ’integer’, ’symmetric’)

toms 3x1! v

is equivalent to

v1 = tom(’v1’);

v2 = tom(’v2’);

v3 = tom(’v3’);

v = [v1;v2;v3];

In the last example, with the exclamation point, the result is a vector containing scalar symbols. This works
differently from the matrix symbols used in the previous examples. Mathematically this v is equivalent to ”toms
3x1 v”, but the auto-generated code will be different. Expressions such as v(1)+sin(v(2))*v(3) will be more
efficient, while expressions such as A*v will be less efficient.

Note: While the ”toms” shorthand is very convenient to use prototyping code, it is recommended to only use the
longhand ”tom” notation for production code. The reason is that Matlab’s internal compiler tries to guess whether
a statement like ”x(1)” is an index into a vector or a call to a function. Since it does not realize that the call to
”toms” creates new variables is will make the wrong guess if that function (named ”x” in this example) is on the
Matlab path when the script is loaded into memory. This will cause strange and unexpected results.

See also: tom, tomSym, setSymmetric

C.1.3 tomSym/tomSym — Class constructor

NOTE: Use toms or tom to create tomSym symbols.

p = tomSym(a,m,n,arguments...) creates a tomSym using the operator a.

p = tomSym(const) creates a tomSym constant with the value const.

p = tomSym(struct) converts a struct into a tomSym, if the struct has the

required fields.

See also: toms, tom, tomSym/funcs, tomSym/tomSym

C.1.4 ezsolve — Solve a tomSym optimization problem.

[solution, result] = ezsolve(f,c) returns the solution to the minimization problem that is defined by the
objective function f and the constraints c. The result structure from tomRun is provided in a second output
argument.

241

Ezsolve can also be used to find least-square solutions to equations. If options.norm is set to ’L2’, then f can be
a set of equations. (If there are equations both in f and c, then the ones in c are considered as strict, and will be
solved to tolerances, while the ones in f are solved in a least-square sense. If f is a vector, then the L2 norm of f is
minimized.

Ezsolve is meant to be as simple to use as possible. It automatically determines the problem type and finds a
suitable solver.

The returned solution is a struct, where the fields represent the unknown variables. This struct can be used by
subs to convert a tomSym to a numeric value.

s = ezsolve(f,c,x0) uses the initial guess x0. The input argument x0 can be a struct containing fields names as
the unknown symbols, for example a previously returned solution. Alternatively, x0 can be a cell array of simple
tomSym equation that can be converted to a struct using tom2struct.

s = ezsolve(f,c,x0,name) sets the problem name.

s = ezsolve(f,c,x0,OPTIONS) where OPTIONS is a structure sets solver options. The options structure can
have the following fields.

OPTIONS.name - The name of the problem

OPTIONS.type - The problem type, e.g. ’lp’, ’qp’, ’con’, ...

OPTIONS.solver - The solver to use, e.g. ’snopt’, ’knitro’, ...

OPTIONS.prilev - The ezsolve and tomRun print level (default 1)

OPTIONS.use_d2c - (boolean) true = compute symbolic d2c

OPTIONS.use_H - (boolean) true = compute symbolic H

See also: tomDiagnose, sym2prob, tomRun

C.1.5 sym2prob — Compile symbolic function/constraints into a Prob struct.

Prob = sym2prob(type,f,c) creates a Prob structure, suitable for tomRun, with the objective of minimizing f,
subject to c, with respect to all symbols that they contain.

The problem type can be (among others):

’lp’ - Linear programming

’qp’ - Quadratic programming

’con’ - Nonlinear programming

’qpcon’ - Quadratic problem with nonlinear constraints

’minlp’ - Mixed integer nonlinear programming

’sdp’ - Linear semidefinite programming

’bmi’ - Bilinear semidefinite programming

Prob = sym2prob(f,c) calls tomDiagnose to attempt to guess the problem type, and prints a warning.

The objective f must be a tomSym symbolic object, while the constraints list c should be a cell array.

If the objective f is a vector or matrix, then a least-square problem is solved, minimizing 0.5*sum(vec(f)) (Half
the sum-of-squares of the elements of f). If f is an equality on the form lhs == rhs, then the sum-of-squares of the
difference (rhs-lhs) is minimized.

sym2prob(type,f,c,x0) supplies an initial guess for one or more of the unknowns. The guess x0 should be a
struct, where each field is named as a symbol and contains a numeric array of the correct size.

242

sym2prob(type,f,c,x0,OPTIONS) where OPTIONS is a structure sets options. The options structure can have
the following fields.

OPTIONS.name - The name of the problem

OPTIONS.use_d2c - (boolean) true = compute symbolic d2c

OPTIONS.use_H - (boolean) true = compute symbolic H

Linear and box constraints will be automatically detected, if they are formulated using simple addition and
multiplication. For example,

-3*(x+2) <= 4+x

is automatically converted to

x >= -2.5

For nonlinear problems, sym2prob will generate temporary m-files representing the nonlinear functions and their
derivatives (These files are usually small and harmless, and many modern operating systems automatically clean
up old temporary files). In order to remove these files when they are no longer needed, it is recommended to run
tomCleanup(Prob) after the problem has been solved.

Overloaded methods:

tomSym/sym2prob

C.1.6 getSolution — Extract variables from a solution retuned by tomRun.

s = getSolution(solution) returns a struct where each field corresponds to one of the symbols used in the
tomSym problem formulation.

C.1.7 tomDiagnose — Determine the type for of tomSym optimization problem.

type = tomDiagnose(f,c) returns a text string, defining the problem type that is represented by the objective
function f and the constraints c.

Some possible return values:

’lp’ - Linear programming

’qp’ - Quadratic programming

’cls’ - Least squares with linear constraints

’nls’ - Nonlinear least squares

’con’ - Nonlinear programming

’qpcon’ - Quadratic problem with nonlinear constraints

’minlp’ - Mixed integer nonlinear programming

’sdp’ - Linear semidefinite programming

’bmi’ - Bilinear semidefinite programming

The objective f must be a tomSym symbolic object, while the constraints list c should be a cell array of tomSym
objects.

243

C.1.8 tomCleanup — Remove any temporary files created for a tomSym problem.

tomCleanup(Prob) removes any temporary files (created by sym2prob) that are referenced in the problem structure
Prob. This should be done after a problem has been solved, to avoid leaving garbage in the system’s ”temp”
directory (although most modern operating system will clean up these files eventually anyway.)

WARNING: IF THE AUTOGENERATED FILES HAVE BEEN EDITED, THEN RUNNING

TOMCLEANUP WILL CAUSE ALL CHANGES TO BE LOST.

tomCleanup(’all’) will remove all files and directories that are judged to be tomSym files from the system’s
”temp” directory. All files that contain a certain ”marker” in the filename will be removed. This might be useful
if a large number of temporary files were created accidentally, such as when running sym2prob inside a for-loop
without calling tomCleanup(Prob) at the end of the loop.

Note: Under normal circumstances there is never a need to run

tomCleanup(’all’). The operating system should remove old temporary

files as required.

After running tomCleanup, all Prob structures that reference the deleted files will be useless.

See also: sym2prob

244

C.2 Using MAD

Some models require the use of alternative method for partial derivatives. If TomSym cannot be used, one
alternative is to use MAD.

C.2.1 madWrap — Compute a Jacobian using MAD.

J = madWrap(FUN,N,...) uses MAD to call FUN(...) and returns the Jacobian matrix with respect to the N:th
input argument.

FUN must be the name of an existing function. N must be an integer between one and nargin(FUN).

J = madWrap(M,FUN,N,...) computes the Jacobian matrix of the Mth output argument, instead of the first one.

J will be a Jacobian matrix on the form that is used by tomSym.

245

C.3 Sub function details

Advanced users may need to understand how and what some sub functions execute in TomSym. This section
describes how to add functionality to TomSym and some more details ”under the hood”.

C.3.1 ifThenElse — Smoothened if/then/else.

y = ifThenElse(cmp1, op, cmp2, yTrue, yFalse, s) replicates the behavior of the C-language construction
y = (condition ? yTrue : yFalse) but with a smoothing sigmoid function, scaled by s. (Setting s≤0 gives
discontinuous ”standard” if-then-else.)

The operand string op must be the name of one of the comparison operators (’eq’, ’lt’, ’le’, etc.)

Example: The absolute value of x is ifThenElse(x,’gt’,0,x,-x)

Overloaded methods:

tomSym/ifThenElse

C.3.2 tomSym/derivative

The symbolic derivative of a tomSym object.

df_dx = derivative(f,x) computes the derivative of a tomSym object f with respect to a symbol x.

d2f_dxdy = derivative(f,x,y,..) computes the second (third, ...) derivative of f with respect to the symbols
x, y, ...

Both f and x can be matrices.

The symbol x can either be a tomSym symbol, or a concatenation of tomSym symbols.

There exist several conventions for how the elements are arranged in the derivative of a matrix. This function uses
the convention that vec(df) = df dx*vec(dx). This means that if size(f) = [m n] and size(x) = [p q] then
size(df_dx) = [m*n, p*q]. Thus, the derivative of a matrix or vector with respect to a scalar is a column vector,
the derivative of a scalar is a row vector, and the derivative of any matrix with respect to itself is an identity
matrix.

Examples:

• If f and x are vectors, then J = derivative(f,x) computes the Jacobian matrix.

• If f is scalar and x is a vector, then H = derivative(f,x,x) computes the Hessian matrix.

For functions that tomSym/derivative is unfamiliar with, it assumes that there also exists a derivative function
for each argument. For example, when computing the derivative of a function ”userfun”, it is assumed that
”userfunJ1” gives the derivative of userfun with respect to its first input argument.

Reference: Brookes, M., ”The Matrix Reference Manual”

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

246

C.3.3 ppderivative — The derivative of a piecewise polynomial.

dpp = ppderivative(pp) returns a piecewise polynomial which is the derivative of pp, except at points where pp
is discontinuous.

dpp = ppderivative(pp,n) returns the nth derivative. A negative n results in the antiderivative (integral) of
pp.

C.3.4 tomSym/mcode

Generate m-code from a tomSym object.

[code, data, header] = mcode(f) generates m-code, representing an object f.

All constants are moved to a data object, which needs to be supplied in the function call.

The returned function header lists all symbols alphabetically, and the data input last.

247

D Global Variables and Recursive Calls

The use of globally defined variables in TOMLAB is well motivated, for example to avoid unnecessary evaluations,
storage of sparse patterns, internal communication, computation of elapsed CPU time etc. The global variables
used in TOMLAB are listed in Table 154 and 155.

Even though global variables is efficient to use in many cases, it will be trouble with recursive algorithms and
recursive calls. Therefore, the routines globalSave and globalGet have been defined. The globalSave routine saves
all global variables in a structure glbSave(depth) and then initialize all of them as empty. By using the depth
variable, an arbitrarily number of recursions are possible. The other routine globalGet retrieves all global variables
in the structure glbSave(depth).

For solving some kinds of problems it could be suitable or even necessary to apply algorithms which is based on a
recursive approach. A common case occurs when an optimization solver calls another solver to solve a subproblem.
For example, the EGO algorithm (implemented in the routine ego) solves an unconstrained (uc) and a box-bounded
global optimization problem (glb) in each iteration. To avoid that the global variables are not re-initialized or
given new values by the underlying procedure TOMLAB saves the global variables in the workspace before the
underlying procedure is called. Directly after the call to the underlying procedure the global variables are restored.

To illustrate the idea, the following code would be a possible part of the ego code, where the routines globalSave
and globalGet are called.

...

...

global GlobalLevel

if isempty(GlobalLevel)

GlobalLevel=1;

else

GlobalLevel=GlobalLevel+1;

end

Level=GlobalLevel

globalSave(Level);

EGOResult = glbSolve(EGOProb);

globalGet(Level);

GlobalLevel=GlobalLevel-1;

...

...

Level=GlobalLevel

globalSave(Level);

[DACEResult] = ucSolve(DACEProb);

globalGet(1);

globalGet(Level);

GlobalLevel=GlobalLevel-1;

...

...

248

In most cases the user does not need to define the above statements and instead use the special driver routine
tomSolve that does the above global variable checks and savings and calls the solver in between. In the actual
implementation of the ego solver the above code is simplified to the following:

...

...

EGOResult = tomSolve(’glbSolve’,EGOProb);

...

...

DACEResult = tomSolve(’ucSolve’,DACEProb);

...

...

This safely handles the global variables and is the recommended way for users in need of recursive optimization
solutions.

Table 154: The global variables used in TOMLAB

Name Description
MAXCOLS Number of screen columns. Default 120.
MAXMENU Number of menu items showed on one screen. Default 50.
MAX c Maximum number of constraints to be printed.
MAX x Maximum number of variables to be printed.
MAX r Maximum number of residuals to be printed.
n f Counter for the number of function evaluations.
n g Counter for the number of gradient evaluations.
n H Counter for the number of Hessian evaluations.
n c Counter for the number of constraint evaluations.
n dc Counter for the number of constraint normal evaluations.
n d2c Counter for the number of evaluations of the 2nd part of 2nd deriva-

tive matrix of the Lagrangian function.
n r Counter for the number of residual evaluations.
n J Counter for the number of Jacobian evaluations.
n d2r Counter for the number of evaluations of the 2nd part of the Hessian

for a nonlinear least squares problem .
NLP x Value of x when computing NLP f.
NLP f Function value.
NLP xg Value of x when computing NLP g.
NLP g Gradient value.
NLP xH Value of x when computing NLP H.
NLP H Hessian value.
NLP xc Value of x when computing NLP c.
NLP c Constraints value.
NLP pSepFunc Number of partially separable functions.
NLP pSepIndex Index for the separated function computed.

249

Table 155: The global variables used in TOMLAB

Name Description
US A Problem dependent information sent between user routines. The

user is recommended to always use this variable.
LS A Problem dependent information sent from residual routine to Jaco-

bian routine.
LS x Value of x when computing LS r
LS r Residual value.
LS xJ Value of x when computing LS J
LS J Jacobian value.
SEP z Separated variables z.
SEP Jz Jacobian for separated variables z.
wNLLS Weighting of least squares residuals (internal variable in nlp r and

nlp J).
alphaV Vector with all step lengths α for each iteration.
BUILDP Flag.
F X Matrix with function values.
pLen Number of iterations so far.
p dx Matrix with all search directions.
X max The biggest x-values for all iterations.
X min The smallest x-values for all iterations.
X NEW Last x point in line search. Possible new x k.
X OLD Last known base point xk
probType Defines the type of optimization problem.
solvType Defines the solver type.
answer Used by the GUI for user control options.
instruction Used by the GUI for user control options.
question Used by the GUI for user control options.
plotData Structure with plotting parameters.
Prob Problem structure, see Table 134.
Result Result structure, see Table 149.
runNumber Vector index when Result is an array of structures.
TIME0 Used to compute CPU time and real time elapsed.
TIME1 Used to compute CPU time and real time elapsed
cJPI Used to store sparsity pattern for the constraint Jacobian when au-

tomatic differentiation is used.
HPI Used to store sparsity pattern for the Hessian when automatic dif-

ferentiation is used.
JPI Used to store sparsity pattern for the Jacobian when automatic dif-

ferentiation is used.
glbSave Used to save global variables in recursive calls to TOMLAB.

250

E External Interfaces

Some users may have been used to work with MathWorks Optimization Toolbox, or have code written for use with
these toolboxes. For that reason TOMLAB contains interfaces to simplify the transfer of code to TOMLAB. There
are two ways in which the MathWorks Optimization Toolbox may be used in TOMLAB. One way is to use the
same type of call to the main solvers as in MathWorks Optimization TB, but the solution is obtained by converting
the problem into the TOMLAB format and calling a TOMLAB solver. The other way is to formulate the problem
in any of the TOMLAB formats, but when solving the problem calling the driver routine with the name of the
Optimization Toolbox solver. Which way to use is determined by setting if 0 or if 1 in startup.m in the addpath
for the variable OPTIM. If setting if 1 then the TOMLAB versions are put first and MathWorks Optimization TB
is not accessible.

E.1 Solver Call Compatible with Optimization Toolbox

TOMLAB is call compatible with MathWorks Optimization TB. This means that the same syntax could be used,
but the solver is a TOMLAB solver instead. TOMLAB normally adds one extra input, the Prob structure, and
one extra output argument, the Result structure. Both extra parameters are optional, but if the user are adding
extra input arguments in his call to the MathWorks Optimization TB solver, to use the TOMLAB equivalents, the
extra input must be shifted one step right, and the variable Prob be put first among the extra arguments. Table
156 gives a list of the solvers with compatible interfaces.

Table 156: Call compatible interfaces to MathWorks Optimization TB.

Function Type of problem solved
bintprog Binary programming.
fmincon Constrained minimization.
fminsearch Unconstrained minimization using Nelder-Mead type simplex search method.
fminunc Unconstrained minimization using gradient search.
linprog Linear programming.
lsqcurvefit Nonlinear least squares curve fitting.
lsqlin Linear least squares.
lsqnonlin Linear least squares with nonnegative variable constraints.
lsqnonneg Nonlinear least squares.
quadprog Quadratic programming.

In Table 157 a list is given with the demonstration files available in the directory examples that exemplify the
usage of the call compatible interfaces. In the next sections the usage of some of the solvers are further discussed
and exemplified.

E.1.1 Solving LP Similar to Optimization Toolbox

For linear programs the MathWorks Optimization TB solver is linprog. The TOMLAB linprog solver adds one
extra input argument, the Prob structure, and one extra output argument, the Result structure. Both extra
parameters are optional, but means that the additional functionality of the TOMLAB LP solver is accessible.

An example of the use of the TOMLAB linprog solver to solve test problem (13) illustrates the basic usage

251

Table 157: Testroutines for the call compatible interfaces to MathWorks Optimization TB present in the
examples directory in the TOMLAB distribution.

Function Type of problem solved
testbintprog Test of binary programming.
testfmincon Test of constrained minimization.
testfminsearchTest of unconstrained minimization using a Nelder-Mead type simplex search method.
testfminunc Test of unconstrained minimization using gradient search.
testlinprog Test of linear programming.
testlsqcurvefit Test of nonlinear least squares curve fitting.
testlsqlin Test of linear least squares.
testlsqnonlin Test of linear least squares with nonnegative variable constraints.
testlsqnonneg Test of nonlinear least squares.
testquadprog Test of quadratic programming.

File: tomlab/usersguide/lpTest2.m

lpExample;

% linprog needs linear inequalities and equalities to be given separately

% If the problem has both linear inequalities (only upper bounded)

% and equalities we can easily detect which ones doing the following calls

ix = b_L==b_U;

E = find(ix);

I = find(~ix);

[x, fVal, ExitFlag, Out, Lambda] = linprog(c, A(I,:),b_U(I),...

A(E,:), b_U(E), x_L, x_U, x_0);

% If the problem has linear inequalites with different lower and upper bounds

% the problem can be transformed using the TOMLAB routine cpTransf.

% See the example file tomlab\examples\testlinprog.m for an example.

fprintf(’\n’);

fprintf(’\n’);

disp(’Run TOMLAB linprog on LP Example’);

fprintf(’\n’);

xprinte(A*x-b_U, ’Constraints Ax-b_U ’);

xprinte(Lambda.lower, ’Lambda.lower: ’);

xprinte(Lambda.upper, ’Lambda.upper: ’);

xprinte(Lambda.eqlin, ’Lambda.eqlin: ’);

xprinte(Lambda.ineqlin, ’Lambda.ineqlin: ’);

xprinte(x, ’x: ’);

format compact

252

disp(’Output Structure’)

disp(Out)

fprintf(’Function value %30.20f. ExitFlag %d\n’,fVal,ExitFlag);

The results from this test show the same results as previous runs in Section 5, because the same solver is called.

File: tomlab/usersguide/lpTest2.out

linprog (CPLEX): Optimization terminated successfully

Run TOMLAB linprog on LP Example

Constraints Ax-b_U 0.000000e+000 0.000000e+000

Lambda.lower: 0.000000e+000 0.000000e+000

Lambda.upper: 0.000000e+000 0.000000e+000

Lambda.eqlin:

Lambda.ineqlin: -1.857143e+000 -1.285714e+000

x: 2.571429e+000 1.714286e+000

Output Structure

iterations: 2

algorithm: ’CPLEX: CPLEX Dual Simplex LP solver’

cgiterations: 0

Function value -26.57142857142857300000. ExitFlag 1

E.1.2 Solving QP Similar to Optimization Toolbox

For quadratic programs the MathWorks Optimization TB solver is quadprog. The TOMLAB quadprog solver adds
one extra input argument, the Prob structure, and one extra output argument, the Result structure. Both extra
parameters are optional, but means that the additional functionality of the TOMLAB QP solver is accessible.

An example of the use of the TOMLAB quadprog solver to solve test problem (15) illustrates the basic usage

File: tomlab/usersguide/qpTest2.m

qpExample;

% quadprog needs linear equalities and equalities to be given separately

% If the problem has both linear inequalities (only upper bounded)

% and equalities we can easily detect which ones doing the following calls

ix = b_L==b_U;

E = find(ix);

I = find(~ix);

[x, fVal, ExitFlag, Out, Lambda] = quadprog(F, c, A(I,:),b_U(I),...

A(E,:), b_U(E), x_L, x_U, x_0);

253

% If A has linear inequalites with different lower and upper bounds

% the problem can be transformed using the TOMLAB routine cpTransf.

% See the example file tomlab\examples\testquadprog.m for an example.

fprintf(’\n’);

fprintf(’\n’);

disp(’Run TOMLAB quadprog on QP Example’);

fprintf(’\n’);

xprinte(A*x-b_U, ’Constraints Ax-b_U ’);

xprinte(Lambda.lower, ’Lambda.lower: ’);

xprinte(Lambda.upper, ’Lambda.upper: ’);

xprinte(Lambda.eqlin, ’Lambda.eqlin: ’);

xprinte(Lambda.ineqlin, ’Lambda.ineqlin: ’);

xprinte(x, ’x: ’);

format compact

disp(’Output Structure’)

disp(Out)

fprintf(’Function value %30.20f. ExitFlag %d\n’,fVal,ExitFlag);

The restricted problem formulation in MathWorks Optimization TB sometimes makes it necessary to transform
the problem. See the comments in the above example and the test problem file tomlab/examples/testquadprog.m
. The results from this test show the same results as previous runs

File: tomlab/usersguide/qpTest2.out

Run TOMLAB quadprog on QP Example

Constraints Ax-b_U -4.888889e+000 0.000000e+000

Lambda.lower: 0.000000e+000 0.000000e+000

Lambda.upper: 0.000000e+000 0.000000e+000

Lambda.eqlin: -3.500000e+000

Lambda.ineqlin: -5.102800e-016

x: 5.555556e-002 5.555556e-002

Output Structure

iterations: 1

algorithm: ’qpopt: QPOPT 1.0 QP/LP code’

cgiterations: []

firstorderopt: []

Function value -0.02777777777777779000. ExitFlag 1

E.2 The Matlab Optimization Toolbox Interface

Included in TOMLAB is an interface to a number of the solvers in the MathWorks Optimization TB v1.5 [10].
and MathWorks Optimization TB [12]. The solvers that are directly possible to use, when a problem is generated
in the TOMLAB format, are listed in Table 158. The user must of course have a valid license. The TOMLAB

254

interface routines are opt15Run and opt20Run, but the user does not need to call these directly, but can use the
standard multi-solver driver interface routine tomRun.

Several low-level interface routines have been written. For example, the constr solver needs both the objective
function and the vector of constraint functions in the same call, which nlp fc supplies. Also the gradient vector
and the matrix of constraint normals should be supplied in one call. These parameters are returned by the routine
nlp gdc.

MathWorks Optimization TB v1.5 is using a parameter vector OPTIONS of length 18, that the routine foptions
is setting up the default values for. MathWorks Optimization TB is instead using a structure.

Table 158: Optimization toolbox routines with a TOMLAB interface.

Function Type of problem solved
bintprog Binary programming.
fmincon Constrained minimization.
fminsearch Unconstrained minimization using Nelder-Mead type simplex search method.
fminunc Unconstrained minimization using gradient search.
linprog Linear programming.
lsqcurvefit Nonlinear least squares curve fitting.
lsqlin Linear least squares.
lsqnonlin Linear least squares with nonnegative variable constraints.
lsqnonneg Nonlinear least squares.
quadprog Quadratic programming.
constr Constrained minimization.
fmins Unconstrained minimization using Nelder-Mead type simplex search method.
fminu Unconstrained minimization using gradient search.
leastsq Nonlinear least squares.
lp Linear programming.
qp Quadratic programming.

255

E.3 The AMPL Interface

The AMPL interface is described in a separate manual. Enter help amplAssign in MATLAB to see the function-
ality.

256

F Motivation and Background to TOMLAB

Many scientists and engineers are using Matlab as a modeling and analysis tool, but for the solution of optimization
problems, the support is weak. That was one motive for starting the development of TOMLAB;

To solve optimization problems, traditionally the user has been forced to write a Fortran code that calls some
standard solver written as a Fortran subroutine. For nonlinear problems, the user must also write subroutines
computing the objective function value and the vector of constraint function values. The needed derivatives
are either explicitly coded, computed by using numerical differences or derived using automatic differentiation
techniques.

In recent years several modeling languages are developed, like AIMMS [5], AMPL [24], ASCEND [62], GAMS [6, 11]
and LINGO [1]. The modeling system acts as a preprocessor. The user describes the details of his problem in a very
verbal language; an opposite to the concise mathematical description of the problem. The problem description file
is normally modified in a text editor, with help from example files solving the same type of problem. Much effort
is directed to the development of more user friendly interfaces. The model system processes the input description
file and calls any of the available solvers. For a solver to be accessible in the modeling system, special types of
interfaces are developed.

The modeling language approach is suitable for many management and decision problems, but may not always
be the best way for engineering problems, which often are nonlinear with a complicated problem description.
Until recently, the support for nonlinear problems in the modeling languages has been crude. This is now rapidly
changing [18].

For people with a mathematical background, modeling languages often seems to be a very tedious way to define an
optimization problem. There has been several attempts to find languages more suitable than Fortran or C/C++
to describe mathematical problems, like the compact and powerful APL language [51, 64]. Nowadays, languages
like Matlab has a rapid growth of users. Matlab was originally created [56] as a preprocessor to the standard
Fortran subroutine libraries in numerical linear algebra, LINPACK [17] and EISPACK [71] [27], much the same
idea as the modeling languages discussed above.

Matlab of today is an advanced and powerful tool, with graphics, animation and advanced menu design possibilities
integrated with the mathematics. The Matlab language has made the development of toolboxes possible, which
serves as a direct extension to the language itself. Using Matlab as an environment for solving optimization
problems offers much more possibilities for analysis than just the pure solution of the problem. The increased
quality of the Matlab MEX-file interfaces makes it possible to run Fortran and C-programs on both PC and Unix
systems.

The concept of TOMLAB is to integrate all different systems, getting access to the best of all worlds. TOMLAB
should be seen as a complement to existing model languages, for the user needing more power and flexibility than
given by a modeling system.

257

G Performance Tests on Linear Programming Solvers

We have made tests to compare the efficiency of different solvers on medium size LP problems. The solver
lpSimplex, two algorithms implemented in the solver linprog from Optimization Toolbox 2.0 [12] and the Fortran
solvers MINOS and QPOPT, available in TOMLAB v4.0, are compared. In all test cases the solvers converge to
the same solution. The results are presented in five tables

Table 159, Table 160, Table 161, Table 162 and Table 163. The problem dimensions and all elements in (6) are
chosen randomly. Since the simplex algorithm in linprog does not return the number of iterations as output, these
figures could not be presented. lpSimplex has been run with two selection rules; Bland’s cycling prevention rule
and the minimum cost rule. The minimum cost rule is the obvious choice, because lpSimplex handles most cycling
cases without problems, and also tests on cycling, and switches to Bland’s rule in case of emergency (does not
seem to occur). But it was interesting to see how much slower Bland’s rule was.

The results in Table 159 show that problems with about 200 variables and 150 inequality constraints are solved by
lpSimplex fast and efficient. When comparing elapsed computational time for 20 problems, it is clear that lpSimplex
is much faster then the corresponding simplex algorithm implemented in the linprog solver. In fact lpSimplex, with
the minimum cost selection rule, is more than five times faster, a remarkable difference. lpSimplex is also more
than twice as fast as the other algorithm implemented in linprog, a primal-dual interior-point method aimed for
large-scale problems [12]. There is a penalty about a factor of three to choose Bland’s rule to prevent cycling in
lpSimplex. The solvers written in Fortran, MINOS and QPOPT, of course run much faster, but the iteration count
show that lpSimplex converges as fast as QPOPT and slightly better than MINOS. The speed-up is a factor of 35
when running QPOPT using the MEX-file interface.

In Table 160 a similar test is shown, running 20 problems with about 100 variables and 50 inequality constraints.
The picture is the same, but the time difference, a factor of five, between lpSimplex and the Fortran solvers are not
so striking for these lower dimensional problems. lpSimplex is now more than nine times faster than the simplex
algorithm in linprog and twice as fast as the primal-dual interior-point method in linprog.

A similar test on larger dense problems, running 20 problems with about 500 variables and 240 inequality con-
straints, shows no benefit in using the primal-dual interior-point method in linprog, see Table 163. In that test
lpSimplex is more than five times faster, and 15 times faster than the simplex algorithm in linprog. Still it is about
35 times faster to use the MEX-file interfaces.

In conclusion, looking at the summary for all tables collected in Table 164, for dense problems the LP solvers in
Optimization Toolbox offers no advantage compared to the TOMLAB solvers. It is clear that if speed is critical,
the availability of Fortran solvers callable from Matlab using the MEX-file interfaces in TOMLAB v4.0 is very
important.

258

Table 159: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

128 32 37 12 10 11 16 1.05 0.61 0.33 0.31 9.06 1.14

129 60 8 10 10 9 17 0.63 0.59 0.24 0.21 9.20 2.07

125 45 8 9 16 7 14 0.57 0.59 0.35 0.32 8.20 1.34

81 65 27 5 7 4 12 1.30 0.54 0.23 0.21 3.51 1.38

102 40 25 9 12 8 12 1.00 0.60 0.39 0.33 5.26 1.01

96 33 13 7 6 8 11 0.65 0.41 0.34 0.32 4.72 0.84

110 61 29 10 9 9 15 1.38 0.66 0.25 0.33 6.34 1.73

113 27 25 8 161 8 10 0.87 0.50 0.41 0.34 6.72 0.77

127 58 16 9 13 8 14 0.91 0.58 0.26 0.34 8.58 1.82

85 58 10 7 7 7 14 0.68 0.59 0.25 0.21 3.70 1.45

103 31 15 7 9 6 12 0.69 0.52 0.35 0.33 5.39 0.87

101 41 22 9 11 9 11 0.87 0.56 0.36 0.22 5.20 0.98

83 41 9 6 7 7 12 0.54 0.36 0.38 0.33 3.55 0.98

118 39 28 9 8 8 13 0.89 0.57 0.36 0.34 7.23 1.14

92 33 13 8 8 7 12 0.63 0.53 0.23 0.33 4.33 0.90

110 46 21 7 15 6 13 0.81 0.46 0.25 0.34 6.37 1.26

82 65 25 6 6 5 15 1.21 0.51 0.38 0.22 3.41 1.63

104 29 6 6 10 4 11 0.47 0.36 0.23 0.34 5.52 0.85

83 48 28 8 10 10 13 1.13 0.50 0.24 0.35 3.53 1.15

90 50 8 4 4 3 11 0.44 0.35 0.24 0.23 4.13 1.18

103 45 19 8 17 7 13 0.84 0.52 0.30 0.30 5.70 1.23

259

Table 160: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

228 132 32 10 17 12 22 3.41 1.56 0.49 0.39 38.66 11.51

191 164 20 9 9 10 18 3.12 1.85 0.49 0.26 24.91 12.50

212 155 63 16 30 16 19 7.90 2.76 0.54 0.41 33.36 12.57

185 158 53 25 16 16 18 6.86 4.00 0.38 0.43 23.88 11.29

222 168 35 12 0 12 21 5.38 2.56 0.64 0.42 40.13 17.78

207 162 10 8 6 7 21 1.91 1.69 0.51 0.27 33.74 15.66

229 130 42 12 21 19 21 4.31 1.81 0.42 0.44 44.53 11.69

213 136 56 6 21 6 19 6.02 1.19 0.51 0.39 36.54 11.07

227 146 95 19 33 20 23 10.91 2.94 0.45 0.45 44.84 15.82

192 150 25 6 13 5 16 3.22 1.26 0.53 0.27 27.07 10.79

195 155 12 8 9 7 22 2.19 1.76 0.52 0.39 27.40 14.76

221 160 30 12 10 11 22 4.66 2.41 0.59 0.43 36.95 18.00

183 144 61 9 9 10 20 7.08 1.62 0.37 0.39 22.34 11.22

200 165 19 10 0 14 19 3.27 2.22 0.61 0.42 27.94 14.43

199 137 16 6 7 5 19 2.04 1.04 0.48 0.39 28.67 9.90

188 154 18 8 9 7 17 2.59 1.57 0.53 0.39 25.19 10.81

202 159 25 13 0 11 17 3.82 2.50 0.60 0.44 30.28 12.37

223 155 103 16 20 17 24 12.50 2.95 0.56 0.44 39.54 18.06

196 121 17 7 16 6 18 1.81 1.08 0.37 0.40 27.59 7.94

202 133 47 10 12 12 20 4.71 1.34 0.38 0.41 30.03 10.09

206 149 39 11 13 11 20 4.89 2.01 0.50 0.39 32.18 12.91

260

Table 161: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

328 192 174 26 33 34 24 34.73 6.59 0.70 0.76 121.57 50.52

326 212 65 10 24 12 20 14.67 3.28 0.82 0.57 116.00 49.87

325 185 15 15 33 15 33 4.19 4.31 0.78 0.55 112.43 63.63

327 186 21 11 14 13 26 4.49 2.86 0.75 0.55 112.95 49.85

327 192 22 6 8 6 19 5.01 1.92 0.73 0.48 113.05 40.58

285 181 9 7 11 7 21 2.33 1.98 0.64 0.44 80.13 30.33

323 219 24 10 15 11 22 6.44 3.39 0.88 0.56 110.42 59.27

284 201 45 10 10 9 24 9.46 3.21 0.71 0.35 81.13 44.80

285 199 22 9 14 8 21 4.85 2.62 0.71 0.33 78.64 39.07

296 228 33 11 10 13 23 9.00 3.78 0.77 0.39 89.67 59.23

310 185 28 14 19 16 25 5.62 3.30 0.73 0.54 96.93 43.75

311 219 23 12 12 17 22 6.53 4.13 0.78 0.60 97.05 53.90

280 206 58 23 28 17 20 12.20 5.80 0.76 0.40 75.66 38.22

319 204 17 11 11 12 23 4.41 3.45 0.64 0.54 106.16 52.84

287 202 8 6 6 5 17 2.43 1.79 0.75 0.34 78.26 32.93

328 202 44 9 11 10 18 9.32 2.72 0.76 0.53 117.09 41.86

307 213 85 12 34 12 30 19.35 3.97 0.86 0.51 98.97 70.47

285 199 29 11 11 9 24 6.43 3.27 0.71 0.47 78.32 44.30

315 194 22 10 8 9 20 5.14 3.00 0.73 0.52 102.28 41.73

310 181 38 6 7 5 22 6.95 1.80 0.71 0.46 96.99 36.93

308 200 39 11 16 12 23 8.68 3.36 0.75 0.50 98.18 47.20

261

Table 162: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

428 232 8 6 7 5 24 3.02 2.47 0.97 0.57 248.88 90.83

421 234 22 5 11 4 22 7.54 2.64 0.86 0.54 232.29 84.15

397 242 19 9 8 10 26 7.13 4.30 0.93 0.52 196.02 101.09

388 226 30 10 11 10 24 9.19 3.80 0.89 0.51 187.35 78.37

381 248 23 6 11 5 29 8.28 3.31 0.99 0.54 176.07 109.18

402 228 80 16 28 22 25 22.21 5.94 1.03 0.86 207.52 84.60

383 241 41 7 10 7 22 13.30 3.79 0.93 0.57 180.90 83.62

421 236 94 21 19 15 34 27.94 7.80 1.06 0.80 234.26 131.09

402 253 23 8 8 7 22 8.58 4.01 0.89 0.62 206.50 95.63

395 260 24 8 8 7 23 8.95 3.95 0.94 0.48 197.14 100.85

404 224 73 7 13 6 21 20.85 3.11 0.83 0.47 208.55 70.67

393 267 44 11 15 9 25 16.64 5.86 1.09 0.65 192.59 116.73

393 247 15 8 9 7 19 5.56 3.67 0.86 0.63 191.53 77.74

384 245 79 14 27 20 25 24.59 6.10 1.08 0.79 185.63 97.19

385 254 75 9 16 9 21 25.06 5.30 1.06 0.67 177.95 88.69

409 226 58 8 9 8 23 15.76 3.56 0.82 0.63 210.86 78.32

410 263 38 15 20 19 29 14.66 7.27 0.98 0.74 214.83 130.13

403 250 117 12 27 20 20 36.56 5.35 1.06 0.87 201.18 81.53

426 238 15 4 5 3 20 5.20 2.05 0.99 0.44 239.71 80.46

409 250 57 10 13 10 24 19.00 5.01 1.21 0.72 210.15 101.34

402 243 47 10 14 10 24 15.00 4.46 0.98 0.63 204.99 94.11

262

Table 163: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

528 232 35 7 7 6 28 12.33 3.50 1.28 0.86 453.03 124.19

482 252 33 9 7 8 25 12.02 4.26 1.00 0.71 346.37 120.24

503 251 72 15 38 17 35 25.45 6.79 1.49 1.01 387.91 170.35

507 259 142 18 46 27 28 50.68 8.55 1.43 1.33 397.67 147.41

487 240 48 17 33 19 26 16.69 7.02 1.29 1.03 346.64 114.96

506 251 46 8 11 8 24 16.92 4.19 1.13 0.78 394.38 119.71

504 256 35 9 16 8 36 14.73 4.97 1.26 0.81 395.37 183.20

489 255 36 28 27 28 26 14.39 11.87 1.32 1.30 355.66 129.45

514 228 9 4 4 3 32 3.24 1.80 1.05 0.51 399.44 133.82

524 245 64 11 27 14 28 21.99 5.34 1.26 1.00 439.31 135.32

506 255 112 22 28 23 23 40.12 10.07 1.12 1.21 385.12 117.49

497 224 50 11 14 12 31 15.51 4.57 1.11 0.86 362.38 121.94

482 249 27 16 17 20 30 10.24 6.75 1.15 1.08 339.27 138.16

485 249 18 6 21 5 20 6.36 2.87 1.35 0.55 340.35 95.15

509 223 84 22 35 17 35 23.51 7.55 1.17 1.04 390.88 142.31

506 224 38 12 11 14 33 11.89 4.65 1.09 0.94 383.13 132.21

511 241 115 10 36 9 26 36.51 4.32 1.29 0.69 390.78 122.23

497 230 78 23 43 12 26 23.60 8.27 1.29 0.75 362.08 109.30

514 226 84 21 42 26 31 25.10 7.90 1.57 1.47 407.94 126.53

511 268 59 10 30 9 28 24.74 5.76 1.43 0.94 385.56 161.65

503 243 59 14 25 14 29 20.30 6.05 1.26 0.94 383.16 132.28

263

Table 164: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude CPi
266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSimplex, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. Each row presents the mean of a test of
20 test problems with mean sizes shown in the first two columns.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

103 45 19 8 17 7 13 0.84 0.52 0.30 0.30 5.70 1.23

206 149 39 11 13 11 20 4.89 2.01 0.50 0.39 32.18 12.91

308 200 39 11 16 12 23 8.68 3.36 0.75 0.50 98.18 47.20

402 243 47 10 14 10 24 15.00 4.46 0.98 0.63 204.99 94.11

503 243 59 14 25 14 29 20.30 6.05 1.26 0.94 383.16 132.28

References

[1] LINGO - The Modeling Language and Optimizer. LINDO Systems Inc., Chicago, IL, 1995.

[2] M. Al-Baali and R. Fletcher. Variational methods for non-linear least squares. J. Oper. Res. Soc., 36:405–421,
1985.

[3] M. Al-Baali and R. Fletcher. An efficient line search for nonlinear least-squares. Journal of Optimization
Theory and Applications, 48:359–377, 1986.

[4] Jordan M. Berg and K. Holmström. On Parameter Estimation Using Level Sets. SIAM Journal on Control
and Optimization, 37(5):1372–1393, 1999.

[5] J. Bisschop and R. Entriken. AIMMS - The Modeling System. Paragon Decision Technology, Haarlem, The
Netherlands, 1993.

[6] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling system in a strategic
planning environment. Mathematical Programming Study, 20:1–29, 1982.

[7] M. Björkman. Nonlinear Least Squares with Inequality Constraints. Bachelor Thesis, Department of Mathe-
matics and Physics, Mälardalen University, Sweden, 1998. Supervised by K. Holmström.

[8] M. Björkman and K. Holmström. Global Optimization Using the DIRECT Algorithm in Matlab. Advanced
Modeling and Optimization, 1(2):17–37, 1999.

[9] M. Björkman and K. Holmström. Global Optimization of Costly Nonconvex Functions Using Radial Basis
Functions. Optimization and Engineering, 1(4):373–397, 2000.

[10] Mary Ann Branch and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime Park Way, Natick, MA
01760-1500, 1996.

264

[11] A. Brooke, D. Kendrick, and A. Meeraus. GAMS - A User’s Guide. The Scientific Press, Redwood City, CA,
1988.

[12] Thomas Coleman, Mary Ann Branch, and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime Park
Way, Natick, MA 01760-1500, 1999. Third Printing Revised for Version 2 (Release 11).

[13] A. R. Conn, N. I. M. Gould, A. Sartenaer, and P. L. Toint. Convergence properties of minimization algorithms
for convex constraints using a structured trust region. SIAM Journal on Scientific and Statistical Computing,
6(4):1059–1086, 1996.

[14] C. D. Perttunen D. R. Jones and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant.
October 1993.

[15] T. J. Dekker. Finding a zero by means of successive linear interpolation. In B. Dejon and P. Henrici, editors,
Constructive Aspects of the Fundamental Theorem of Algebra, New York, 1969. John Wiley.

[16] Matthias Schonlau Donald R. Jones and William J. Welch. Efficient global optimization of expensive Black-
Box functions. 1998.

[17] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s Guide. SIAM, 1979.

[18] Arne Stolbjerg Drud. Interactions between nonlinear programing and modeling systems. Mathematical Pro-
gramming, Series B, 79:99–123, 1997.

[19] R. Fletcher and C. Xu. Hybrid methods for nonlinear least squares. IMA Journal of Numerical Analysis,
7:371–389, 1987.

[20] Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 2nd edition, 1987.

[21] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Technical Report
NA/171, University of Dundee, 22 September 1997.

[22] V. N. Fomin, K. Holmström, and T. Fomina. Least squares and Minimax methods for inorganic chemical
equilibrium analysis. Research Report 2000-2, ISSN-1404-4978, Department of Mathematics and Physics,
Mälardalen University, Sweden, 2000.

[23] T. Fomina, K. Holmström, and V. B. Melas. Nonlinear parameter estimation for inorganic chemical equilib-
rium analysis. Research Report 2000-3, ISSN-1404-4978, Department of Mathematics and Physics, Mälardalen
University, Sweden, 2000.

[24] R. Fourer, D. M. Gay, and B. W.Kernighan. AMPL - A Modeling Language for Mathematical Programming.
The Scientific Press, Redwood City, CA, 1993.

[25] C. M. Fransson, B. Lennartson, T. Wik, and K. Holmström. Multi Criteria Controller Optimization for
Uncertain MIMO Systems Using Nonconvex Global Optimization. In Proceedings of the 40th Conference on
Decision and Control, Orlando, FL, USA, December 2001.

[26] C. M. Fransson, B. Lennartson, T. Wik, K. Holmström, M. Saunders, and P.-O. Gutmann. Global Controller
Optimization Using Horowitz Bounds. In Proceedings of the 15th IFAC Conference, Barcelona, Spain, 21th-
26th July, 2002.

[27] B. S. Garbow, J. M. Boyle, J. J. Dongara, and C. B. Moler. Matrix Eigensystem Routines-EISPACK Guide
Extension. In Lecture Notes in Computer Science. Springer Verlag, New York, 1977.

265

[28] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1982.

[29] Philip E. Gill, Sven J. Hammarling, Walter Murray, Michael A. Saunders, and Margaret H. Wright. User’s
guide for LSSOL ((version 1.0): A Fortran package for constrained linear least-squares and convex quadratic
programming. Technical Report SOL 86-1, Systems Optimization Laboratory, Department of Operations
Research, Stanford University, Stanford, California 94305-4022, 1986.

[30] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for QPOPT 1.0: A Fortran package
for Quadratic programming. Technical Report SOL 95-4, Systems Optimization Laboratory, Department of
Operations Research, Stanford University, Stanford, California 94305-4022, 1995.

[31] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for Large-Scale con-
strained programming. Technical Report SOL 97-3, Systems Optimization Laboratory, Department of Oper-
ations Research, Stanford University, Stanford, California 94305-4022, 1997.

[32] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for SQOPT 5.3: A Fortran package for
Large-Scale linear and quadratic programming. Technical Report Draft October 1997, Systems Optimization
Laboratory, Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1997.

[33] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for SNOPT 5.3: A Fortran pack-
age for Large-Scale nonlinear programming. Technical Report SOL 98-1, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1998.

[34] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. User’s guide for NPSOL
5.0: A Fortran package for nonlinear programming. Technical Report SOL 86-2, Revised July 30, 1998, Sys-
tems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1998.

[35] D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[36] Jacek Gondzio. Presolve analysis of linear programs prior to applying an interior point method. INFORMS
Journal on Computing, 9(1):73–91, 1997.

[37] T. Hellström and K. Holmström. Parameter Tuning in Trading Algorithms using ASTA. In Y. S. Abu-
Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend, editors, Computational Finance (CF99) – Abstracts of
the Sixth International Conference, Leonard N. Stern School of Business, January 1999, Leonard N. Stern
School of Business, New York University, 1999. Department of Statistics and Operations Research.

[38] T. Hellström and K. Holmström. Parameter Tuning in Trading Algorithms using ASTA. In Y. S. Abu-
Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend, editors, Computational Finance 1999, Cambridge, MA,
1999. MIT Press.

[39] T. Hellström and K. Holmström. Global Optimization of Costly Nonconvex Functions, with Financial Appli-
cations. Theory of Stochastic Processes, 7(23)(1-2):121–141, 2001.

[40] K. Holmström. New Optimization Algorithms and Software. Theory of Stochastic Processes, 5(21)(1-2):55–63,
1999.

[41] K. Holmström. Solving applied optimization problems using TOMLAB. In G. Osipenko, editor, Proceedings
from MATHTOOLS ’99, the 2nd International Conference on Tools for Mathematical Modelling, pages 90–98,
St.Petersburg, Russia, 1999. St.Petersburg State Technical University.

266

[42] K. Holmström. The TOMLAB Optimization Environment in Matlab. Advanced Modeling and Optimization,
1(1):47–69, 1999.

[43] K. Holmström. The TOMLAB v2.0 Optimization Environment. In E. Dotzauer, M. Björkman, and K. Holm-
ström, editors, Sixth Meeting of the Nordic Section of the Mathematical Programming Society. Proceedings,
Opuscula 49, ISSN 1400-5468, Väster̊as, 1999. Mälardalen University, Sweden.

[44] K. Holmström. Practical Optimization with the Tomlab Environment. In T. A. Hauge, B. Lie, R. Ergon,
M. D. Diez, G.-O. Kaasa, A. Dale, B. Glemmestad, and A Mjaavatten, editors, Proceedings of the 42nd SIMS
Conference, pages 89–108, Porsgrunn, Norway, 2001. Telemark University College, Faculty of Technology.

[45] K. Holmström and M. Björkman. The TOMLAB NLPLIB Toolbox for Nonlinear Programming. Advanced
Modeling and Optimization, 1(1):70–86, 1999.

[46] K. Holmström, M. Björkman, and E. Dotzauer. The TOMLAB OPERA Toolbox for Linear and Discrete
Optimization. Advanced Modeling and Optimization, 1(2):1–8, 1999.

[47] K. Holmström and T. Fomina. Computer Simulation for Inorganic Chemical Equilibrium Analysis. In S.M.
Ermakov, Yu. N. Kashtanov, and V.B. Melas, editors, Proceedings of the 4th St.Petersburg Workshop on
Simulation, pages 261–266, St.Petersburg, Russia, 2001. NII Chemistry St. Peterburg University Publishers.

[48] K. Holmström, T. Fomina, and Michael Saunders. Parameter Estimation for Inorganic Chemical Equilibria
by Least Squares and Minimax Models. Optimization and Engineering, 4, 2003. Submitted.

[49] K. Holmström and J. Petersson. A Review of the Parameter Estimation Problem of Fitting Positive Expo-
nential Sums to Empirical Data. Applied Mathematics and Computations, 126(1):31–61, 2002.

[50] J. Huschens. On the use of product structure in secant methods for nonlinear least squares problems. SIAM
Journal on Optimization, 4(1):108–129, 1994.

[51] Kenneth Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

[52] Donald R. Jones. Encyclopedia of Optimization. To be published, 2001.

[53] P. Lindström. Algorithms for Nonlinear Least Squares - Particularly Problems with Constraints. PhD thesis,
Inst. of Information Processing, University of Ume̊a, Sweden, 1983.

[54] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Reading,
Massachusetts, 2nd edition, 1984.

[55] J. R. R. A. Martins, I. M. Kroo, and J. J. Alonso. An automated method for sensitivity analysis using complex
variables. In 38th Aerospace Sciences Meeting and Exhibit, January 10-13, 2000, Reno, NV, AIAA-2000-0689,
pages 1–12, 1801 Alexander Bell Drive, Suite 500, Reston, Va. 22091, 2000. American Institute of Aeronautics
and Astronautics.

[56] C. B. Moler. MATLAB — An Interactive Matrix Laboratory. Technical Report 369, Department of Mathe-
matics and Statistics, University of New Mexico, 1980.

[57] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.5 USER’S GUIDE. Technical Report SOL 83-
20R, Revised July 1998, Systems Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, California 94305-4022, 1998.

267

[58] G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[59] C. C. Paige and M. A. Saunders. Algorithm 583 LSQR: Sparse linear equations and sparse least squares.
ACM Trans. Math. Software, 8:195–209, 1982.

[60] C. C. Paige and M. A. Saunders. LSQR. An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Software, 8:43–71, 1982.

[61] J. Petersson. Algorithms for Fitting Two Classes of Exponential Sums to Empirical Data. Licentiate Thesis,
ISSN 1400-5468, Opuscula ISRN HEV-BIB-OP–35–SE, Division of Optimization and Systems Theory, Royal
Institute of Technology, Stockholm, Mälardalen University, Sweden, December 4, 1998.

[62] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND: An object-oriented computer
environment for modeling and analysis: The modeling language. Computers and Chemical Engineering, 15:53–
72, 1991.

[63] J.D. Pintér. Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Im-
plementations and Applications). Kluwer Academic Publishers, Dordrecht / Boston / London., See
http://www.wkap.nl/prod/b/0-7923-3757-3, 1996.

[64] Raymond P. Polivka and Sandra Pakin. APL: The Language and Its Usage. Prentice Hall, Englewood Cliffs,
N. J., 1975.

[65] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

[66] Axel Ruhe and Per-Åke Wedin. Algorithms for Separable Nonlinear Least Squares Problems. SIAM Review,
22(3):318–337, 1980.

[67] A. Sartenaer. Automatic determination of an initial trust region in nonlinear programming. Technical Report
95/4, Department of Mathematics, Facultés Universitaires ND de la Paix, Bruxelles, Belgium, 1995.

[68] M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT, 35:588–604, 1995.

[69] K. Schittkowski. On the Convergence of a Sequential Quadratic Programming Method with an Augmented
Lagrangian Line Search Function. Technical report, Systems Optimization laboratory, Stanford University,
Stanford, CA, 1982.

[70] L. F. Shampine and H. A. Watts. Fzero, a root-solving code. Technical Report Report SC-TM-70-631, Sandia
Laboratories, September 1970.

[71] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix
Eigensystem Routines - EISPACK Guide Lecture Notes in Computer Science. Springer-Verlag, New York,
2nd edition, 1976.

[72] William Squire and George Trapp. Using complex variables to estimate derivatives of real functions. SIAM
Review, 40(1):100–112, March 1998.

268

	Contents
	1 Introduction
	1.1 What is TOMLAB?
	1.2 The Organization of This Guide
	1.3 Further Reading

	2 Overall Design
	2.1 Structure Input and Output
	2.2 Introduction to Solver and Problem Types
	2.3 The Process of Solving Optimization Problems
	2.4 Low Level Routines and Gateway Routines

	3 Problem Types and Solver Routines
	3.1 Problem Types Defined in TOMLAB
	3.2 Solver Routines in TOMLAB
	3.2.1 TOMLAB Base Module
	3.2.2 TOMLAB /BARNLP
	3.2.3 TOMLAB /CGO
	3.2.4 TOMLAB /CONOPT
	3.2.5 TOMLAB /CPLEX
	3.2.6 TOMLAB /KNITRO
	3.2.7 TOMLAB /LGO
	3.2.8 TOMLAB /MINLP
	3.2.9 TOMLAB /MINOS
	3.2.10 TOMLAB /OQNLP
	3.2.11 TOMLAB /NLPQL
	3.2.12 TOMLAB /NPSOL
	3.2.13 TOMLAB /PENBMI
	3.2.14 TOMLAB /PENSDP
	3.2.15 TOMLAB /SNOPT
	3.2.16 TOMLAB /SOL
	3.2.17 TOMLAB /SPRNLP
	3.2.18 TOMLAB /XA
	3.2.19 TOMLAB /Xpress
	3.2.20 Finding Available Solvers

	4 Defining Problems in TOMLAB
	4.1 The TOMLAB Format
	4.2 Modifying existing problems
	4.2.1 add_A
	4.2.2 keep_A
	4.2.3 remove_A
	4.2.4 replace_A
	4.2.5 modify_b_L
	4.2.6 modify_b_U
	4.2.7 modify_c
	4.2.8 modify_c_L
	4.2.9 modify_c_U
	4.2.10 modify_x_0
	4.2.11 modify_x_L
	4.2.12 modify_x_U

	4.3 TomSym
	4.3.1 Modeling
	4.3.2 Ezsolve
	4.3.3 Usage
	4.3.4 Scaling variables
	4.3.5 SDP/LMI/BMI interface
	4.3.6 Interface to MAD and finite differences
	4.3.7 Simplifications
	4.3.8 Special functions
	4.3.9 Procedure vs parse-tree
	4.3.10 Problems and error messages
	4.3.11 Example

	5 Solving Linear, Quadratic and Integer Programming Problems
	5.1 Linear Programming Problems
	5.1.1 A Quick Linear Programming Solution

	5.2 Quadratic Programming Problems
	5.2.1 A Quick Quadratic Programming solution

	5.3 Mixed-Integer Programming Problems

	6 Solving Unconstrained and Constrained Optimization Problems
	6.1 Defining the Problem in Matlab m-files
	6.1.1 Communication between user routines

	6.2 Unconstrained Optimization Problems
	6.3 Direct Call to an Optimization Routine
	6.4 Constrained Optimization Problems
	6.5 Efficient use of the TOMLAB solvers

	7 Solving Global Optimization Problems
	7.1 Box-Bounded Global Optimization Problems
	7.2 Global Mixed-Integer Nonlinear Problems

	8 Solving Least Squares and Parameter Estimation Problems
	8.1 Linear Least Squares Problems
	8.2 Linear Least Squares Problems using the SOL Solver LSSOL
	8.3 Nonlinear Least Squares Problems
	8.4 Fitting Sums of Exponentials to Empirical Data
	8.5 Large Scale LS problems with Tlsqr

	9 Multi Layer Optimization
	10 tomHelp - The Help Program
	11 TOMLAB Solver Reference
	11.1 TOMLAB Base Module
	11.1.1 clsSolve
	11.1.2 conSolve
	11.1.3 cutPlane
	11.1.4 DualSolve
	11.1.5 expSolve
	11.1.6 glbDirect
	11.1.7 glbSolve
	11.1.8 glcCluster
	11.1.9 glcDirect
	11.1.10 glcSolve
	11.1.11 infLinSolve
	11.1.12 infSolve
	11.1.13 linRatSolve
	11.1.14 lpSimplex
	11.1.15 L1Solve
	11.1.16 MILPSOLVE
	11.1.17 minlpSolve
	11.1.18 mipSolve
	11.1.19 multiMin
	11.1.20 multiMINLP
	11.1.21 nlpSolve
	11.1.22 pdcoTL
	11.1.23 pdscoTL
	11.1.24 qpSolve
	11.1.25 slsSolve
	11.1.26 sTrustr
	11.1.27 Tfmin
	11.1.28 Tfzero
	11.1.29 ucSolve
	11.1.30 Additional solvers

	12 TOMLAB Utility Functions
	12.1 tomRun
	12.2 addPwLinFun
	12.3 binbin2lin
	12.4 bincont2lin
	12.5 checkFuncs
	12.6 checkDerivs
	12.7 cpTransf
	12.8 estBestHessian
	12.9 lls2qp
	12.10 LineSearch
	12.11 preSolve
	12.12 PrintResult
	12.13 runtest
	12.14 SolverList
	12.15 StatLS
	12.16 systest

	13 Approximation of Derivatives
	14 Special Notes and Features
	14.1 Speed and Solution of Optimization Subproblems
	14.2 User Supplied Problem Parameters
	14.3 User Given Stationary Point
	14.4 Print Levels and Printing Utilities
	14.5 Partially Separable Functions
	14.6 Utility Test Routines

	A Prob - the Input Problem Structure
	B Result - the Output Result Structure
	C TomSym - the Modeling Engine
	C.1 Main functions
	C.1.1 tom --- Generate a tomSym symbol.
	C.1.2 toms --- Create tomSym objects.
	C.1.3 tomSym/tomSym --- Class constructor
	C.1.4 ezsolve --- Solve a tomSym optimization problem.
	C.1.5 sym2prob --- Compile symbolic function/constraints into a Prob struct.
	C.1.6 getSolution --- Extract variables from a solution retuned by tomRun.
	C.1.7 tomDiagnose --- Determine the type for of tomSym optimization problem.
	C.1.8 tomCleanup --- Remove any temporary files created for a tomSym problem.

	C.2 Using MAD
	C.2.1 madWrap --- Compute a Jacobian using MAD.

	C.3 Sub function details
	C.3.1 ifThenElse --- Smoothened if/then/else.
	C.3.2 tomSym/derivative
	C.3.3 ppderivative --- The derivative of a piecewise polynomial.
	C.3.4 tomSym/mcode

	D Global Variables and Recursive Calls
	E External Interfaces
	E.1 Solver Call Compatible with Optimization Toolbox
	E.1.1 Solving LP Similar to Optimization Toolbox
	E.1.2 Solving QP Similar to Optimization Toolbox

	E.2 The Matlab Optimization Toolbox Interface
	E.3 The AMPL Interface

	F Motivation and Background to TOMLAB
	G Performance Tests on Linear Programming Solvers
	References

