SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

USER'S GUIDE FOR LSSOL (VERSION l.O)T:
A FORTRAN PACKAGE FOR CONSTRAINED LINEAR LEAST-SQUARES
AND CONVEX QUADRATIC PROGRAMMING

by

Philip E. Gill, Sven J. Hammarling¥, Walter Murray,
Michael A. Saunders and Margaret H. Wright

TECHNICAL REPORT SOL 86~1

January 1986

'LSSOL is available from the Stanford Office of Technology Licensing,
350 Cambridge Avenue, Sulte 250, Palo Alto, California 94306, USA.

*Numerical Algorithms Group, Ltd., 256 Banbury Road, Oxford, United
Kingdom.

Research and reproduction of this report were partially supported by the
U.S5. Department of Energy Contract DE-AA03-76SF00326, PA# DE-ASO3-
76ER72018; National Science Foundation Grants DCR-8413211 and
ECS-8312142; the Office of Naval Research Contract N0OQ014-85-K-0343 and
the U.S5. Army Research Office Contract DAAG29-84~K-(156.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part 1Is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

User’s Guide for LSSOL (Version 1.0)4:
a Fortran Package for Constrained Linear Least-Squares
and Convex Quadratic programming

Philip E. Gill, Sven J. Hammarling}, Walter Murray,
Michael A. Saunders and Margaret H. Wright
Systems Optimization Laboratory
Department of Operations Research
Stanford University
Stanford, California 94305

January 1986

ABSTRACT

This report forms the user’s guide for Version 1.0 of LSSOL, a set of Fortran 77 subroutines for
Iinearly constrained linear least-squares and convex quadratic programming. The method of LSSOL
is of the two-phase, active-set type, and is related to the method used in the package SOL/QPSOL
(Gill et al., 1984b). Two main features of LSSOL are its exploitation of convexity and treatment
of singularity.

LSSOL may also be used for lincar programming, and to find a feasible point with Tespect to a

set of linear inequality constraints. LSSOL treats all matrices as dense, and hence is not intended
for large sparse problems.

1 LSSOL is available from the Stanford Office of Technology Licensing, 350 Cambridge Avenue,
Suite 250, Palo Alto, California 94306, USA.

} Numerical Algorithms Group, Ltd., 256 Banbury Road, Oxford, United Kingdom.

The material contained in this report is based upon research supported by the U.S. Department
of Energy Contract DE-AA03-765F00326, PA No. DE-AS03-76ER72018; National Science Foun-
dation Grants DCR-8413211 and ECS-8312142; the Office of Naval Research Contract NO0014-85-
K-0343; and the U.S. Army Research Office Contract DAAG29-84-K-0156.

CONTENTS
1. PURPOSE 1
2. DESCRIPTION OF THE ALGORITHM 2
3. SPECIFICATION OF SUBROUTINELSSOL 7
3.1. Formal parameters, 7
3.2. Workspace parameters 10
4. OPTIONAL INPUT PARAMETERS 12
4.1. Specification of the optional parameters 12
4.2. Description of the optional parameters, 14
4.3. Optional parameter checklist and default values 16
5. DESCRIPTION OF THE PRINTED OUTPUT 17
6. ERROR RECOVERY 19
7. IMPLEMENTATION INFORMATION 20
7.1. Format of the distribution tape . e e e e e e e e e e e e 20
7.2. Instellation procedure, 0T 20
73.8ourcefiles L 20
74. Commonblocks 27" "7 21
7.5. Machine-dependent subroutines, 21
8. EXAMPLE PROBLEM 24
8. REFERENCES 26
APPENDIX. SAMPLE PROGRAM AND OUTPUT 27
INDEX 35

1. PURPOSE 1

1. PURPOSE

LSSOL is a collection of Fortran 77 subroutines designed to solve a class of quadratic programming
problems that are assumed to be stated in the following general form:

LCLS Inineig},ize F(z)

. z
subject to £ < {C:c} < u,

where C is my, x » (m, may be zero) and F(z) is one of the following objective functions:

FP: None (find a feasible point for the constraints)
LP: cTz

QP1: %zTAz A symmetric and positive semi-definite,
qQr2; Tz + %:TAz A symmetric and positive semi-definite,
QP3: %zTATAz A m x n upper-trapezoidal,

Qp4: cTz + %zTATAz A m x n upper-trapezoidal,

Ls1: 2o — Az|? Amxn,

Ls2: cT:1:+%||b-—A:r.|l2 Amxn,

LS3: 3116 — Az A m x n upper-trapezoidal,

Ls4: e’z + b — Az A m x n upper-trapezoidal,

with ¢ an n-vector and b an m-vector. The specific objective function to be minimized is selected
using the optional parameter Problem Type (see Section 4.2). In all that follows, problems of
type “LP”, “QP” and “LS” will be referred to as linear programming, quadratic programming and
constrained least-squares problems respectively.

The constraints involving C will be called the general constraints. Note that upper and lower
bounds are specified for all the variables and for all the general constraints. An equality constraint
is specified by setting £; = u;. If certain bounds are not present, the associated elements of £ or u
can be set to special values that will be treated as —co or +oc. {See the description of the optional
parameter Infinite Bound in Section 4.2.)

The constant second-derivative matrix of F(z) is defined as H, the Hessian matrix. In the
LP case, H = 0. In QP cases 1 and 2, H = A; and in QP cases 3 and 4, H = ATA. In all LS
cases, H = ATA. Problems of type QP3 or QP4 with A not in trapezoidal form should be solved
as type L51 or LS2 with b = 0. When considering problems of type LS, we shall refer to A as the
least-squares matrix and to b as the vector of observations.

The user must supply an initial estimate of the solution. If the Hessian matrix is non-singular,
LSSOL will obtain the unique (global) minimum. If H is singular, the solution may still be a global
minimum if all active constraints have nonzero Lagrange multipliers. Otherwise, the solution
obtained will either be a weak minimum (i.e., with a unique optimal objective value, but an
infinite set of optimal z), or else the objective function is unbounded below in the feasible region.
The last case can occur only when F () contains an explicit linear term (as in problems of type
LP, QP2, QP4, 152 and LS4).

The LSSOL package contains approximately 6000 lines of ANSI Fortran 77, of which about
50% are comments.

2 User’s Guide for LSSOL 1.0

2. DESCRIPTION OF THE ALGORITHM

Here we briefly smnmarize the main features of the method af LSSOL. Where possible, explicit

reference is made to the names of variables that are patameters of subroutine LSSOL or appear in
the printed output.

The method of LSSOL is a two-phase (primal) quadratic programming method {see Gill ¢t al.,
1984b) with features to exploit the convexity of the objective function. (In the full-rank case, the
method is related to that of Stoer, 1971.}) The two phases of the method are: finding an initial
feasible point by minimiziug the sum of infeasibilities (the feasibility phase), and minimizing the
quadratic objective function within the feasible region (the optimality phase). The computations
in both phases are performed by the same subroutines. The two-phase nature of the algorithm is
reflected by changing the function being minimized from the sum of infeasibilities to the quadratic
objective function. The feasibility phase does not perform the standard simplex method (i.e., it
does not necessarily find a vertex), except in the LP case when m, < n. Once any iterate is feasible,
all subsequent iterates remain feasible.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we
shall always consider a typical iteration and avoid reference to the index of the iteration.) Each
new iterate & is defined by

Z=z+ ap, (1)
where the step length o is 2 non-negative scalar, and p is called the search direction.

At each point z, a working set of constraints is defined to be a linearly independent subset
of the constraints that are satisfied “exactly” (to within the tolerance defined by the optional
parameter “Feasibility Tolerance”; see Section 4.2). The working set is the current prediction
of the constraints that hold with equality at a solution of LCLS. The search direction is constructed
so that the constraints in the working set remain unaltered for any value of the step length. For
a bound constraint in the working set, this property is achieved by setting the corresponding
component of the search direction to zero. Thus, the associated variable is fixed, and specification
of the working set induces a partition of = into fixed and free variables. During a given iteration,
the fixed variables are effectively removed from the problem; since the relevant components of the
search direction are zero, the columns of C corresponding to fixed variables may be ignored.

Let m,, denote the number of general constraints in the working set and let n., denote the
number of variables fixed at one of their bounds (mw and npy are the quantities “Lin” and “Bnd”
in the printed output from LSSOL). Similarly, let npp (nrr = n — ngy) denote the number of free
veriables. At every iteration, the variables are re-ordered so that the last nyy variables are fixed,
with all other relevant vectors and matrices ordered accordingly. The order of the variables is
indicated by the list of indices KX, a parameter of LSSOL.

Let Cry denote the my, X n., submatrix of general constraints in the working set corresponding
to the free variables, and let p;, denote the search direction with respect to the free variables only.
The general constraints in the working set will be unaltered by any move along p if

Crnppn = 0. (2)
In order to compute pg,, the T'Q factorization of Crr 1s used:
CFRQF‘R = (0T)9 (3)

where T is a nonsingular m, X m reverse-triangular matrix (i.e., t; =0if i+ 7 < my), and the
non-singular npy X nep matrix Qrg is the product of orthogonal transformations (see Gill et al.,
1984a). If the columns of Q.5 are partitioned so that

an—_'(z Y)s (4)

2. DESCRIPTION OF THE ALGORITHM i

where ¥ is npq X My, then the n; (n, = 7y —~ my) columns of Z form a basis for the null space
of Crr. Thus, per will satisfy (2) only if

Prr = ZP; (5)
for some vector p,.

Let O denote the n x n matrix

0= (Q“ I) (©)

where I« is the identity matrix of order nyx. Let R denote an n x n upper-triangular matrix (the
Cholesky factor) such that

QTHQ = RR, (7)

and let the matrix of first n; rows and columns of R be denoted by R,. (Recall that H in (7) will
in general have been re-ordered.)

The definition of p, in (5) depends on whether or not the matrix R, is singular at z. In the
non-singular case, p, satisfies the equations

Rngpz = =8z (8)

where g, denotes the vector Z7g,, and g denotes the objective gradient. (The norms of gps is
the printed quantity Norm Gf.) When p; is defined by (8), z + p is the minimizer of the objective
function subject to the comstraints (bounds and general) in the working set treated as equalities.
In general, a vector f, is available such that RTf, = ~g,, which allows p, to be computed from
a single back-substitution R,p, = f,. For example, when solving problem LS1, f, comprises the
first n, elements of the transformed residual vector

f=P(b- Ax), (9)

which is recurred from one iteration to the next, where P is an orthogonal matrix.
In the singular case, p; is defined such that

R.p; =0 and glp, <0. (10)

This vector has the property that the objective function is linear along p and may be reduced by
any step of the form z + ap, a > 0.

The vector Z7g;, is known as the projected gradient at z. If the projected gradient is zero,
z is a constrained stationary point in the subspace defined by Z. During the feasibility phase, the
projected gradient will usually be zero only at a vertex (although it may be zero at non-vertices in
the presence of constraint dependencies). During the optimality phase, a zero projected gradient
implies that = minimizes the quadratic objective when the constraints in the working set are treated
as equalities. At a constrained stationary point, Lagrange multipliers A, and Ay for the general
and bound constraints are defined from the equations

CI?RAC =gz and Ap = Gex — szAc' (11)

Given a positive constant 6 of the order of the machine precision, the Lagrange multiplier Aj
corresponding to an inequality constraint in the working set is said to be optimal if Aj < 6 when

4 User’s Guide for LSSOL 1.0

the associated constraint is at its upper bound, or if A; 2 —& when the associated constraint is
at its lower bound. If a multiplier is non-optimal, the objeclive function (either the true obicetive
or the sum of infeasibilities) can be reduced by deleting the corresponding constraint (with index
Jdel: see Section §) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero,
there is no feasible point, and LSSOL will continue until the minimum value of the sum of infeasi-
bilities has been found. At this point, the Lagrange multiplier A; corresponding to an inequality
constraint in the working set will be such that —(1446) < A; < & when the associated constraint
is at its apper bound, and -6 < A; €1+ 6 when the associated constraint is at its lower bound.
Lagrange multipliers for equality constraints will satisfy |A;| < 1+ 4.

The choice of step length is based on remaining feasible with respect to the satisfied constraints.
If R, is nonsingular and z + p is feasible, a will be taken as unity. In this case, the projected
gradient at £ will be zero, and Lagrange multipliers are computed. Otherwise, a is set to a,,, the
step to the “nearest” constraint (with index Jadd; see Section 5), which is added to the working
set at the next iteration.

If A is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying
(7) obtained using the Cholesky factorization in the QP case, or the QR factorization in the LS case.
Column interchanges are used in both cases, and an estimate is made of the rank of the triangular
factor. Thereafter, the dependent rows of R are eliminated from the problern.

Each change in the working set leads to a simple change to Crg: if the status of a general
constraint changes, a row of Cpy is altered; if a bound constraint enters or leaves the working set,
a columzn of Crp changes. Explicit representations are recurred of the matrices T, Jrgr and R; and
of vectors QTg, Q7c and f, which are related by the formulae

F=Pb-~ (?) Q%z (b=0 for the QP case),

and
Q% = Q% - R'Y.

Note that the triangular factor R associated with the Hessian of the original problem is updated
during both the optimality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix
updating schemes used in LSSOL: if a given factor R, is non-singular, it can become singular
during subsequent iterations only when 2 constraint leaves the working set, in which case only its
last diagonal element can become zero. This property implies that a vector satisfying (10) may
be found using the single back-substitution R,p, = ez, where R, is the matrix R, with a unit
last diagonal, and e, is a vector of all zeros except in the last position. If H is singular, the
matrix R (and hence R;) may be singular at the start of the optimality phase. However, R, will
be non-singular if enough constraints are included in the initial working set. (The nunll matrix is
positive definite by definition, corresponding to the case when C;j contains ngq constraints.) The
idea is to include as many general constraints as necessary to ensure a non-singular R,.

At the beginning of each phase, an upper-triangular matrix Ry is determined that is the largest
non-singular leading submatrix of R,. The use of interchanges during the factorization of 4 tends
to maximize the dimension of R,. (The rank of R, is estimated using the optional parameter Rank
Tolerance; see Section 4.2.) Let Z; denote the columns of Z corresponding to R;, and let Z be
partitioned as Z = (Z, Z,). A working set for which Z; defines the nyll space can be obtained

2. DESCRIPTION OF THE ALGORITHM 5

by including the rows of Z7 as “artificial constraints”. Minimization of the objective function then
procecds within the subspace defined by Z;.
The artificially augmented working set is given by

= Crs
CFB. = (Z;r) 3 (12)

so that prp will satisfy Cppper = 0 and ZJpsy = 0. By definition of the TQ factorization, Crpq
automatically satisfies the following:

GMQM=(§‘§)Q“=(§?)(Z; Z, Y)=(0 T),

_ (0 T)
T= ,
I 0

and hence the TQ factorization of (12) requires no additional work.

The matrix 2> need not be kept fixed, since its role is purely to define an appropriate null space;
the TQ factorization can therefore be updated in the normal fashior as the iterations proceed.
No work is required to “delete” the artificial constraints associated with Z, when ZIgen = 0,
since this simply involves repartitioning (g, When deciding which constraint to delete, the
“artificial” multiplier vector associated with the rows of Z7 is equal to ZJg;», and the multipliers
corresponding to the vows of the “true” working set are the multipliers that would be obtained if
the temporary constraints were not present.

The number of columns of Z and Z,, the Euclidean norm of ZTgy, and the condition estimator
of R, appear in the printed output as Nz, Nz1, Norm Gz1 and Cond Rzl (see Section 5).

where

Although the algorithm of LSSOL does not perform simplex steps in general, there is one
exception: a linear program with fewer general constraints than variables (i.e., m, < n). (Use
of the simplex method in this situation leads to savings in storage.} At the starting point, the
“natural” working set (the set of constraints exactly or nearly satisfied at the starting point)
is augmented with a suitable number of “temporary” bounds, each of which has the effect of
temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is
treated as a standard constraint until it is deleted from the working set, in which case it is never
added again.

Ono of the moot impurtaut fcatures of LSSOL Is its control ot the conditioning of the working
set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonals
of the TQ factor T (the printed value Cond T; see Section 5). In constructing the initial working set,
constraints are excluded that would result in a large value of Cond T. Thereafter, LSSOL allows
constraints to be violated by as much as a user-specified Feasibility Tolerance (see Section
4.2) in order to provide, whenever possible, a choice of constraints to be added to the working set

at a given iteration. Let o, denote the maximum step at which z + a,p does not violate any

constraint by more than its feasibility tolerance. All constraints at distance a (a < a,,)} along p
from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the
working set. In order to ensure that the new iterate satisfies the constraints in the working set as
accurately as possible, the step taken is the exact distance to the newly added constraint. As a

User’s Guide for LSSOL 1.0

consequence, negative steps are occasionally permitted, since the current iterate may violate the
constraint to be added by as much as the feasibility tolerance.

LSSOL has been designed to be efficient when used to solve a sequence of related problems—for
example, within a scquential quadratic programiing method for nonlinearly constrained optirniza-
tion (e.g., the NPSOL package of Gill et al., 1986). In particular,
working set (the indices of the constraints believed to be satisfied
discussion of the optional paramcter Warm Start in Section 4.2.

the user may specify an initial
exactly at the solution); sce the

¥

8. SPECIFICATION OF SUBROUTINE LSSOL

3. SPECIFICATION OF SUBROUTINE LSSOL
The forinal specification of LSSOL is the following:
SUBROUTINE LSSOL (M, N,

NCLIN, NROWC, NROWA,

C, BL, BU, CVEC,

ISTATE, XX, X, A, B,
INFORM, ITER, OBJ, CLAMDA,
IW, LENIW, W, LENW)

INTEGER M, N, NCLIN,
NROWG, NROWA, INFORM, ITER, LENIW, LENW
INTEGER ISTATE(N+NCLIN), KX(N}, IW(LENIW)
REAL 0BJ
REAL C(NROWC,*), BL(N+NCLIN), BU(N+NCLIN)},

CVEC(*), X(N), A(NROWA,=*),
B(*), CLAMDA(N+NCLIN), W(LENW)

Note: Here and elsewhere, the specification of 2 parameter as REAL should be interpreted as working
precision, which may be DOUBLE in some installations.

3.1. Formal parameters

KCLIN

NROWC

NROWA

BL

(Input)} The number of rows in the array A. If the problem is specified as type FP or
LP (see Section 4), M is not referenced and is assumed to be zero.

If the problem is of type QP, M will usually be N, the number of variables. However, a
value of M less than N is appropriate for QP3 or QP4 if A is an upper-trapezoidal matrix
with M rows. Similarly, M may be used to define the dimension of a leading block of
non-zeros in the Hessian matrices of QP1 or QF2, in which case the last N — M rows and
columns of A are assumed to be zero. In the QP case, M should not be greater than N;
if it is, the last M — N rows of 4 are ignored.

If the problem is specified as type LS1, LS2, LS3 or LS4, M is also the dimension of the
array B. Note that all possibilities (M < N, M= N and ¥ > N) are allowed.

(Input) The number of variables, i.e., the dimension of X. (N must be positive.)

(Input) The number of general linear constraints in the problemn. (NCLIN may be
zero. }

(Input) The declared row dimension of C. (NROWC must be at Ieast 1 and at least
NCLIN.)

(Input) The declared row dimension of the array A. (NROWA must be at least 1 and
at least M.)

(Input} A real array of declared dimension (NROWC,*), where the second dimension
must be at least N. The i-th row of C contains the coefficients of the i-th general
constraint, 1 = 1 to NCLIN. If NCLIN is zero, C is not accessed; the actual parameter
may then be any convenient array or an array with dimension (1,1).

(Input) A real array of dimension at least N + NCLIN that contains the lower bounds
for all the constraints, in the following order (which is also observed for BU, ISTATE,

User’s Guide for LSSOL 1.0

BU

CVEC

ISTATE

and CLAMDA): the first N elements of BL contain the lower bounds on the variables; if
NCLIN > 0, the next NCLIN elenients of BL contain the lower bounds for the general
linear constraints. In order for the problem specification to be meamngful, it is
required that BL(j) < BU(j) for all j. To specify a non-existent lower bound (i.e.,
{; = —o0), the value used must satisfy BL(j) < —BIGBND, where BIGBND is the value of
the optional parameter Infinite Bound, whose default value is 10° (see Section 4.2).
To specify the j-th constraint as an equality, the nser must set BL(j) = BU(j) = 3,
say, where |3| < BIGBND.

(Input) A real array of dimension at least N+NCLIN that contains the upper bounds
for all the constraints, in the same order described above under BL. To specify a
non-existent upper bound (i.e., ; = oo), the value used must satisfy BU(7} > BIGBND.

(Input)} A real array of dimension at least N containing the coefficients of the explicit
linear term of the objective function. If the problem is of type FP, QP1, QP3, LS1 or
LS3, CVEC is not accessed; CVEC may then be declared to be of dimension (1), or the
actual parameter may be any convenient array.

(Input) An integer array of dimension at least N + NCLIN. ISTATE need mot be
initiahzed if Cold Start (the default) is specified. For a Warm Start, ISTATE specifies
the desired status of the constraints at the start of the feasibility phase. The ordering
of ISTATE is the same as that described above for BL, i.e., the first N components of
ISTATE refer to the upper and lower bounds on the variables, and components N + 1
through N + NCLIN refer to the upper and lower bounds on Cz. Possible values for
ISTATE are:

ISTATE(;) Meaning
0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This

value must not be specified unless BL(j) = BU(j). The values 1, 2 or 3
all have the same effect when BL(j) = BU(j).

Other values of ISTATE are also acceptable. In particular, if LSSOL has been called

previously with the same values of N and NCLIN, ISTATE already contains satisfactory
information.

(Output) If LSSOL exits with INFORM = 0, 1 or 3, the values in the array ISTATE in-
dicate the status of the constraints in the active set at the solution. Otherwise, ISTATE
indicates the composition of the working set at the final iterate. The significance of
each possible value of ISTATE(;) is as follows:

ISTATE(;) Meaning

-2 The constraint violates its lower bound by more than the feasibility tol-
erance. '

-1 The constraint violates its upper bound by more than the feasibility
tolerance. .

0 The constraint is satisfied to within the feasibility tolerance, but is not
in the working set.

3. SPECIFICATION OF SUBROUTINE LSS0L g
1 This inequality constraint is included in the working sct at its lower
bound.
2 This inequality constraint is included in the working set at its upper
bound.
3 The constraint is included in the working set as an equality. This value

KX

of ISTATE can occur only when BL{j) = BU(j).

(Input) An integer array of dimension at least N. KX must be defined on input for
problems QP3, QP4, LS3 or LS4, i.e., problems in which 4 is specified as an upper-
trapezoidal matrix. KX must define the order of the columns of the matrix A with
respect to the ordering of X. Thus, if KX(1) = 5, column 1 of A is the column associated

with variable X(3). For problems of type FP, LP, QP1, QP2, LS1 or 152, KX need not
be initjalized.

(Output) KX gives the order of the columns of &4 with respect to the ordering of X,
as described above.

(Input) A real array of dimension at least N. X contains the initial estimate of the
solution.

(Output) X is the last iterate of LSSOL. If INFORM = 0,1 or 3, X will be an estimate
of the solutiovn.

(Input) A real array of dimension (NROWA,*), where the second dimension must be
at least N. A defines the data matrix A in LCLS.

If the problem is of type FP or LP, 4 is not accessed and may be dimensioned (1 ,1).

If the problem is of type QP1 or QP2, the first M rows and columns of 4 must contain
the leading M by M rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper-triangular elements of the leading M rows and columns of A arg
referenced. The remaining elements are assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 or LS4, the first M rows of A must contain an M by N upper-
trapezoidal factor of either the Hessian matrix or the least-squares matrix, ordered
according to the KX array (see above). The factor need not be of full rank, i.e., some of
the diagonals may be zero. However, as a general rule, the larger the dimension of the
leading non-singular submatrix of 4, the fewer iterations will be required. Elements

outside the upper-triangular part nf tha firct M rowo of & azc assuiued (0 De zero and
need not be assigned.

If a constrained least-squares problem contains a very large number of observations,
storage limitations may prevent storage of the entire least-squares matrix. In such
cases, the user should transform the original A into a triangular matrix before the
call to LSSOL and solve the problem as type LS3 or LS4,

(Output) If the problem is of type LS or QP, A contains the upper-triangular matrix
R of (7}, with colurmns ordered as indicated by KX (see above), This matrix may
be used to obtain the variance-covariance matrix or to recaver the upper-triangular
factor of the original least-squares matrix.

{Input) A real array of dimension at least M. If the problem is of type FP, LP or QP,
B is not accessed and may be dimensioned (1). If the problem is of type LS, B must
contain the vector of observations b in problem LCLS.

10 User’s Guide for LESOL 1.0
{Output) On exit from a problem of type LS, B contains the transformed residual
vector (9).
INFDRY (Output) Aun integer that indicates the result of LSSOL. (If Print Level > Q, a
short description of INFORM is printed.) The possible values of INFORM are:
INFORM Meaning
0 X is a strong local minimum. (The projected gradient is negligible, the
Lagrange multipliers are optimal, and R, is non-singular.)
1 X is a weak local minimum. (The projected gradient is negligible, the

Lagrange multiplicrs are optimal, but R, is singular or there is a small
multiplier.) This means that the final X is not unique.

2 The solution appears to be unbounded. This value of INFORM implies
that a step as large as Infinite Bound would have to be taken in order
to continue the algorithm. This situation can occur only when A is
singular, there is an explicit linear term, and at least one variable has
no upper or lower bound.

3 No feasible point was found, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance. In this case, the constraint
violations at the final X will reveal a value of the tolerance for which a
feasible point will exist—for example, if the feasibility tolerance for each
violated constraint exceeds its Residual at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using
a Warm Start (see Section 4).

4 The limiting number of iterations (determined by the parameters Feasi~
bility Phase Iterations and Optimality Phase Iterations) was
reached before normal termination occurred.

5 The algorithm could be cycling, since & total of 50 changes were made
to the working set without altering X. :
6 An input parameter is invalid.
ITER (Output) An integer that gives the total number of iterations performed in the

feasibility phase and the optimality phase.

oBJ (Output) The value of the objective function at X if X is feasible, or the sum of
infeasibilities at X otherwise. If the problem is of type FP and X is feasible, OBJ is zera.

CLAMDA (Output} A real array of dimension at least N 4+ NCLIN that contains the Lagrange
multiplier for every constraint with respect to the current working set. The ordering
of CLAMDA follows the convention given above under BL, i.e., the first N components
contain the multipliers for the bound constraints on the variables, and the remaining
components contain the multipliers for the general linear constraints. If ISTATE(j) = 0
(ie., comstraint j is not in the working set), CLAMDA(j) is zero. If X is optimal,
CLAMDA(j) should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(F) = 2.

3.2. Workspace parameters

Iw (Input) An integer array of dimension LENIW that provides integer workspace for
LSSOL.

|

3. SPECIFICATION OF SUBROUTINE LSSOL 11

LENIW (Input) The dimension of IW. LENIW must be at least N.
W (Input) A real array of dimension LENW that provides real workspace for LSSOL.
LENW (Input) The dimension of W. If the problem is of type FP and N < NCLIN, LENW must

be at least 2N? + 6 N+ 6 NCLIN. If the problem is of type FP and 0 < NCLIN < N, LENW
must be at least 2 (NCLIN + 1) + 6 N 4 6 NCLIN. If NCLIN = 0, LENW must be at least
6N.

If the problem is of type LP and N < NCLIN, LENW must be at least 2N% + 7N +6 NCLIN.
If the problem is of type LP and N > NCLIN > 0, LENW must be at least 2 (NCLIN +
1)+ 7N+ 6NCLIN. If the problem is of type LP and NCLIN = 0, LENW must be at least
TN

For problems QP1, QP3, LS1 and 1S3, LENW must be at least 2N% + 9N + 6 NCLIN if
NCLIN > 0, and at least 9N if NCLIN = 0. For problems QP2, QP4, LS2 and LS4, LENW
must be at least 2N + 10N + 6 NCLIN if NCLIN > 0, and at least 10 ¥ if NCLIN = 0.

If Print Level > 0, the amounts of workspace provided and required are printed. As an alterna-
tive to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
appropriate values from the output of a preliminary run with a positive value of Print Level and
LENIW and LENW set to 1. (LSSOL will then terminate with INFORM ~ 6.)

12 User’s Guide for LSSOL 1.0

4. OPTIONAL INPUT PARAMETERS

Several optional parameters in LSSOL define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of LSSOL, these optional parameters
have associated default values (see Section 4.2) that are appropriate for most problems. Therefore,
the user need specify only those parameters whose values are to be different from their default
values. The remainder of this section can be skipped by users who wish to use the default values
for all optional parameters. '

Each optional parameter is defined by a single character string of up to 72 characters, con-
taining one or more items. The items associated with a given option must be scparated by spaces
or equal signs (=). Alphabetic characters may be upper or lower case. An example of an optional
parameter is the string

Print level = §

For each option, the string contains the following items.

1. The keyword (required for all options).

2. A phrase (one or two words) that qualifies the keyword (only for some options).

3. A number that specifies either an INTEGER or a REAL value (only for some options).
Such numbers may be up to 16 contiguous characters in Fortran 77’s I, F, E or D
formats, terminated by a space.

Blank strings and comments are ignored and may be used to improve readability. A comment begins
with an asterisk (*) and all subsequent charactcrs are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified output device {see Section 7.5).
Synonyms are recognized for some of the keywords, and abbreviations may be used.

The following are examples of valid option strings for LSSOL:

NOLIST

warm start

COLD START

Problem type = Least Squares

Problem type = LP

Problem Type QP4

Feasibility tolerance 1.0E-8 # for IBM in double precision
CRASH TOLERANCE = .002

* This string will be completely ignored.
Feasibility phase iteration limit 100
Optimality phase iteration limit = 10 »

"

u

4.1. Specification of the optional parameters
Optional parameters may be specified in two ways, as follows.

¢ Using subroutine LSFILE and an external file

The subroutine LSFILE provided with the LSSOL package will read options from 2n external options
file, and should be called before a call to LSSOL. Each line of the options file defines a single optional
parameter. The file must begin with Begin and end with End. (An options file consisting only of
these two lines corresponds to supplying no options.)

The specification of LSFILE is

SUBROUTINE LSFILE(IOPTNS, INFORM)
INTEGER I0OPTNS, INFORM

4. OFPTIONAL INPUT PARAMETERS 18

IOPTNS must be the unit number of the options file, in the range [0, 99, and is unchanged on exit
fromn LSFILE. INFORM need not be sct on entry. On return, INFORM will be 0 if the fle is a valid
options file and IOPTNS is in the correct range. INFORM will be set to 1 if TOPTNS is out of range,
and will be set to 2 if the file does not begin with Begin or end with End.

An cxample of & valid options file is

Begin
Print level = b
Problem type LP
End

If the options file is on unit number 5, it can be read by the call

CALL LSFILE(5, INFORM)

e Using subroutine LSOPTK

The second method of setting the optional parameters is through a series of calls to the subroutine
LSOPTN provided with the LSSOL package. The specification of LSOPTN is

SUBROUTINE LSOPTIN(STRING)
CHARACTER= (+) STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. LSOPTN
must be called once for every optional parameter to be set. An example of a call to LSOPTN is

CALL LSOPTN(’Print level = 5’)

¢ Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By using the
special parameter Nolist, the user may suppress this printing for a given call of LSSOL. To take
effect, Nolist must be the first parameter specified in the options file; for example,

Begin

Nolist

Problem type LP
End

Alternatively, the first call to LSOPTN, before or after a call to LSSOL, must be
CALL LSOPTN(?Nolist’),

All parameters not specified by the user are automatically set to their default values. Any
optional parameters that are set by the user are not altered by LSSOL, and hence changes to the
options are cumulative. For example, calling LSOPTN(’Print level = 5’) sets the print level
to 5 for all subsequent calls to LSSOL until it is reset by the user. The only exception to this

14 User’s Guide for LSSOL 1.0

rule is permitted by the special optional parameter Defaults, whose effect is to reset all optional
paramcters to their default values. For example, in the following situation

CALL LSSOL (...)
C .
CALL LSOPTIN(’Print level 5°)
CALL LSOPTN(*Iteration limit = 100’)
CALL LSSQL (...)
c

CALL LSOPTN(’Defaults’)
CALL LSSOL (...)

the first and last runs of LSSOL will occur with the default parameter settings, but in the second
run, the print level and iteration limit are altered.

4.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the default value, and the definition. The minimum
abbreviation of each keyword is underlined. If no characters of an optional qualifier are underlined,
the qualifer may be omitted. The letter a denotes a phrase (character string) that qualifies an
option. The letters i and r denote INTEGER and REAL values required with certain options. The
number ¢ is a generic notation for machine precision.

Cold Start Default = Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a cold start, LSSOL chooses
the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or “nearly” satisfy their bounds (to within Crash Tolerance; sce below).

With a warm start, the user must provide a valid definition of every element of the array
ISTATE (see Section 3 for the definition of this array). LSSOL will override the user’s specification
of ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. A warm
start will be advantageous if a good estimate of the initial working set is available—for example,
when LSSOL is called repeatedly to solve related problems.

Crash Tolerance r Default = .01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
LSSOL selects an initial working set. If 0 < r < 1, the initial working set will include bounds or
general inequality constraints that lie within r of their bounds. In particular, a constraint of the
form c}‘z > | will be included in the initial working set if]c_fz =< r1+l)). fr<Oorr>1,
the default value is used.

Feasibility Phase Iteration Limit t3 Default = max(50,5(n + m,))
Optimality Phase Iteration Limit iz Default = max(50,5(n + m,))

The scalars ¢; and ¢, specify the maximum number of iterations allowed in the feasibility and opti-
mality phases. Optimality Phase Iteration Limit is equivalent to Tteration Limit. Setting
13 = 0 and Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed.

4. OPTIONAL INPUT PARAMETERS 15

Feasibility Tolerance T Default = /e

If » > 0, r defines the maximum acceptable absolute violation in each constraint at a “feasible”
point; i.e., a constraint is considered satisfied if its violation does not exceed r. For example, if the
variables and the coefficients in the general constraints are of order unity, and the latter are correct
to about 6 decimal digits, it would be appropriate to specify r as 10~¢, If » < 0, the default value
is used.

Infinite Bound Size r Default = 10

If r > 0, r defines the “infinite” bound BIGBND in the definition of the problem constraints. Any
upper bound greater than or equal to BIGRND will he regardsed se pluc infinity {ond similarly foi a
lower bound less than or equal to —~BIGBND). If r < 0, the default value is used.

Infinite Step Size r Defanlt = max(BIGBND, 10?)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to
an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is
singular and the objective contains an explicit linear term.) If the change in z during an iteration
would exceed the value of Infinite Step, the objective function is considered to be unbounded
below in the feasible region. If r < 0, the default value is used.

Iteration Limit i Default = max(50,5(n + m,))
Iters
Itns

See Feasibility Phase Iteration Limit above.

Optimality Phase Iteration Limit i Default = max(50,5(n 4+ m.))
See Feasibility Phase Iteration Limit above.

Print Level i Default = 10
The value of ¢ controls the amount of printout produced by LSSOL, as indicated below.

i Output

0 No output.

1 The final solution ouly.

5 One line of output for each iteration (no printout of the final solution).

> 10 The final solution and one line of output for each iteration.
> 20 At each iteration, the Lagrange maltipliers, the variables z, the constraint
values C'z and the constraint status.
>30 At each iteration, the diagonal elements of the matrix T associated with the 7'Q
factorization (3) of the working set, and the diagonal elements of the triangular
matrix R.
Problem Type a Default = LS1

This option specifies the type of objective function to be minimized during the optimality phase.
The following are the ten optional keywords and the dimensions of the arrays that must be specified

16 User’s Guide for LSSOL 1.0

to define the objective function:

FP A, B and CVEC not accessed;

LP 4 and B not accessed, CVEC(N);

QP1 A(NROWA,N) symmetric, B and CVEC not ref(;renced;

QP2 A(NROWA,N) symmetric, B not referenced, CVEC N);

QP3 A(NROWA,N) upper-trapezoidal, XX{N), B and CVEC not referenced;
QP4 A(NROWA,N) upper-trapezoidal, KX(N), B not referenced, CVEC(N);
Ls1 A(NROWA,N}, B(M), CVEC not referenced:;

Ls2 A(NROWA,N), B(M), CVEC(N);

Ls3 A(NROWA,N) upper-trapezoidal, KX(N), B(M), CVEC not referenced;
Ls54 A(NROWA,N) upper-trapezoidal, KX(N), B{(M), CVEC{N).

The options Least Squares and LS$Q are equivalent to the default option LS1. The options
Linear programand Quadratic programare equivalent to LP and QP2 respectively. If A =0, i.e.,
the objective function is purely linear, the efficiency of LSSOL may be increased by specifying a as
LP (or Linear Program).

Rank Tolerance r Default = /e

If0 <7 < 1, r enables the user to control the estimation of the rank of A and the triangular factor
R, (see Section 2). If p; denotes the function p; = max{|Ry1],|Rz2}s...,|Ri;|}, the rank of R is
defined to be smallest index ¢ such that [Rivii01] < 7lpizi| I r < Oorr > 1, the default value is
used.

4.3. Optional parameter checklist and default values

For easy reference, the following sample LSOPTN list shows all valid keywords and their default
values. The default options Feasibility Tolerance and Rank Tolerance depend upon ¢, the
relative precision of the machine being used. The values given here correspond to double precision
arithmetic on IBM 360 and 370 systems and their successors (e = 2.22 x 10 !%). Similar values
would apply to any machine having about 16 decimal digits of precision.

* List of optional parameters.
Cold Start

*
Crash Tolerance .01 *
Feasibility Tolerance - 1.1E-8 * /e
Infinite Bound 1.0E+10 + Plus infinity
Infinite Step 1.0E+10 *
Feasibility Phase Iteration Limit 50 * or 5(n+m,)
Optimality Phase Iteration Limit 50 * or 5(n +m,)
Print Level 10 *
Problem Type Least squares * or LS1
Rank Tolerance 1.1E-8 * /€

5. DESCRIPTION OF THE PRINTED OUTPUT 17

5. DESCRIPTION OF THE PRINTED OUTPUT

This section describes the intermediate printont produced by LSSOL. To aid interpretation of the
printed results, we repeat the convention for numbering the constraints: indices 1 through N refer to
the bounds on the variables, and indices N + 1 through N 4 NCLIN refer to the general constraints.
When the status of a constraint changes, the index of the constraint is printed, along with the
designation “L” {lower bound), “U” (upper bound), “E” (equality), “T” (temporary bound) or “z”
(artificial constraint). ‘

When Print Level > 5, the following line of output is produced at every iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.
Itn is the iteration count.

Jdel 1s the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no
constraint was added.
Step is the step taken along the computed search direction. If a constraint is added

during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. During the optimality phase, the step can be greater than
one only if the factor R, is singular.

Ninf is the number of violated constraints (infeasibilities). This number will be zero
during the optimality phase.

Sinf/Objective is the value of the current objective function. If X is not feasible, Sinf gives
a weighted sum of the magnitudes of constraint violations. If X is feasible,
Objective is the value of the objective function of LCLS. The output line for
the final iteration of the feasibility phase (i.e., the first iteration for which NINF
is zero) will give the value of the true objective at the first feasible point,

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasi-
bilities will either remain constant or be reduced until the minimum sum of
infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general linear constraints in the current working set.
Nz is the number of columns of Z (see Section 2). The value of Nz is the number

of variables minus the number of constraints in the working set; i.e., Nz =
N—(Bad+Lin). A zero value of Nz implies that z lies at a vertex of the feasible
region. '

Nz1 is the number of columns of Z; (see Section 2). Nzi is the dimension of the

subspace in which the objective function is currently being minimized. If Nz1
is less than Nz, the current R, is singular.

Norm Gf is the Euclidean norm of the gradient of the objective function with respect to
the free variables, i.e., variables not currently held at a bound.

Norm Gz1 is || ZTg.x i, the Euclidean norm of the projected gradient with respect to Z;.
During the optimality phase, this norm will be approximately zero after a unit
step.

18

User’s Guide for LSSOL 1.0

Cond T
Cond Rz1

is 2 lower bound on the condition number of the working set.

1s a lower bound on the condition number of the triangular factor R; (the first
Nz1 rows and columus of the factor R;. If the problem is specified to be of
type LP, or the estimated rank of the data matrix A is zero, Cond Rz1 is pot
printed.

When Print Level = 1 or Print Level > 10, the summary printout at the end of execution
of LSSOL includes a listing of the status of every variable and constraint. Note that default names
are assigned to all variables and constraints.

The following describes the printout for each variable.

Variable
State

Value

Lower bound

Upper bound

Lagr multiplier

Residual

gives the name (VARBL) and index 7 (f = 1 to N) of the variable.

gives the state of the variable (FR if neither bound is in the working set, EQ if
a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value
lies outside the upper or lower bounds by more than the feasibility tolerance,
State will be “++"” or “-=" respectively.

is the value of the variable at the final iteration.
is the lower bound specified for the variable. (“None” indicates that BL{j) <
—BIGBND.)

is the upper bound specified for the variable. {“None” indicates that BU(j) >
BIGBND.)

is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR. If X is optimal, the multiplier should be non-negative
if State is LL, and non-positive if State is UL.

is the difference between the variable “Value” and the nearer of its bounds
BL(j) and BU(j).

The meaning of the printout for general constraints is the same as that given above for vari-
ables, with “variable” replaced by “constraint”, with the following change in the heading: '

Linear constr

is the name (LNCON) and index : (i = 1 to NCLIN) of the constraint,

6. ERROR RECOVERY

19

6. ERROR RECOVERY

Termination

Underflow

QOverflow

INFORM =3

INFORM = 4

INFORM =5

Recommended Action

A single underflow will always occur if machine constants are computed automat-
ically (as in the distributed version of LSSOL; see Section 7). Other floating-point
underflows may occur occasionally, but can usually be ignored.

If the printed outpnut before the overflow error contains a warning about serious
ill-conditioning in the working set when adding the j-th constraint, it may be pos-
sible to avoid the difficulty by increasing the magritude of the optional parameter
Feasibility Tolerance and rerunning the program. If the message recurs even
after this change, the offending linearly dependent constraint (with index ;)
must be removed from the problern. If a warning message did not precede the
fatal overflow, contact the authors at Stanford University.

LSSOL has terminated without finding a feasible point, which means that no fea-
sible point exists for the given feasibility tolerance. The user should check that
there are no constraint redundancies. If the data for the constraints are accurate
only to the absolute precision ¢, the user should ensure that the value of the op-
tional parameter Feasibility Tolerance is greater than o. For example, if all
elements of C are of order unity and are accurate only to three decimal places, the
optional parameter Feasibility Tolerance should be at least 103,

The value of the optional parameter Iteration Limit may be too small. If the
method appears to be making progress (e.g., the objective function is being sat-
isfactorily reduced), increase the iterations himit and rerun LSSOL {possibly using
the warm start facility to specify the initial working set). If the iteration limit is
already large, but some of the constraints could be nearly linearly dependent, check
the output for 2 repeated pattern of constraints entering and leaving the working
set. (Near-dependencies are often indicated by wide variations in size in the di;
agonal elements of the T matrix, which will be printed if Print Level > 30.} In
this case, the algorithm could be cycling (see the comments for INFORM = 5).

This value will occur if 50 iterations are performed without changing X. The user
should check the printed output for a repeated pattern of constraint deletions and
additions. If a sequence of constraint changes is being repeated, the iterates are
probably cycling. (LSSOL does not contain a method that is guaranteed to avoid
cycling; such a method would be combinatorial in nature.}) Cycling may occur in
two circumstances: at a constrained stationary point where there are some small
or zero Lagrange multipliers; or at a point (usually a vertex) where the constraints
that are satisfied exactly are ncarly linearly dependent. In the latter case, the user
has the option of identifying the offending dependent constraints and removing
them from the problem, or restarting the run with a larger value of the optional
parameter Feasibility Tolerance. If LSSOL terminates with INFORM = 5, but
no suspicious pattern of constraint changes can be observed, it may be worthwhile
to yestart with the final X (with or without the warm start option).

Section 7 has been superseded.
Please see the *.doc files.

20 User’s Guide for LSSOL 1.0

7. IMPLEMENTATION INFORMATION

7.1. Format of the distribution tape

The source code and example program for LSSOL are distributed on a magnetic tape containing 7

files. The tape charactcristics are described in a document accompanying the tape; normally they

are 9 track, 1600 bpi, unlabeled, ASCII, 80-character records (card images), 4800-character blocks.
The following is a list of the files and a summary of their contents. For reference purposes we

give a name to each file. However, the names will not be recorded on unlabeled tapes. The MACH

and LSCODE files are composed of several smaller source files described in Section 7.3.

File Name Type Cardst Description
1. DPMACH FORTRAN 450 Double-precision source file 1: MCSUBS
2. DPLSCODE FORTRAN 8250 Double-precision source files 2-5: BLAS,...,0PSUBS
3. DPLSMAIN FORTRAN 260 Double-precision source file LSMAIN
4. LSMAIN DATA 6 Options file for LSMAIN
5. SPMACH FORTRAN 450 Single-precision source file 1
6. SPLSCODE FORTRAN 8250 Single-precision source files 2-5
7. SPLSMAIN FORTRAN 260 Single-precision version of file 3

1 Approximate figure.

One MACH and one LSCODE file should be selected for any given installation. DPMACH and
DPLSCODE are intended for machines that generally require double precision computation. Examples
include IBM Systems 360, 370, 3033, 3081, etc.; Amdah! 470, Facom, Fujitsu, Hitachi, and other
systems analogous to IBM; DEC VAX systems; Data General MV/8000; ICL 2900 series; recent
PRIME systems; DEC Systems 10 and 20; Honeywell systems; and the Univac 1100 series.

SPMACH and SPLSCODE are intended for machines for which single precision is suitably accurate
for numerical computation. Examples include the Burroughs 6700 and 7700 series; the CDC 6000
and 7000 series and their Cyber counterparts; and the Cray-1.

7.2. Installation procedure

1. Obtain the appropriate MACH and LSCODE files from the tape.

2. If necessary, edit the subroutine MCHPAR according to Section 7.5.

3. Decide whether or not to split the LSCODE file into files BLAS through OPSUBS as suggested in
Section 7.3.

4. Compile all the routines that were originally in the LSCODE files together with those from MACH.
Run them in conjunction with the main program LSMAIN from either File 3 or File 7 and the
options given in file LSMAIN DATA. Check the output against that shown in Section 8.

7.3. Source files

.L8SOL has been written in ANSI (1977) Fortran and tested on an IBM 3081K computer using the
IBM Fortran 77 compiler VS Fortran. Certain unavoidable machine dependencies are confined to
the routine MCHPAR,

The source code is divided into 5 logical parts. For ease of handling, these are combined into
the MACH and LSCODE files on the distribution tape, but for subsequent maintenance we recommend
that 5 separate files be kept. In the description below we suggest a name for each file and summarize

7. IMPLEMENTATION INFORMATION 21

its purpose. We then list the names of the Fortran subroutines and functions involved. The naming
convention used should minimize the risk of a clash with user-written routines.

File 1. MCSUBS Computes machine-dependent constants.
MCHP4AR MCEPS MCENVY MCENV2 MCSTOR

File 2. BLAS Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY Dpbot DNRM2 DSWAP DSCAL IDAMAX
These routines are functionally similar to mcembers of the BLAS package (Lawson et al.,
1979). If possible they should be rcplaced by authentic BLAS routines. Versions may
exist that have been tuned to your particular machine.

DGEMV DGER1

These routines are functionally similar to members of the Level 2 BLAS packages (Don-
garra et al., 1985).

DCOND DDIV DDSCL DLDAD DNORM D539 DSWAP ICOPY
IDRANK ILDAD

These are additional utility rontines that could be tuned to your machine. DLOAD is used
the most frequently, to load a vector with a constant value.

DROT3 DROT3G DGEAPQ DGEQR DGEQRP DGRFG

These linear algebra routines are used to compute and update various matrix factoriza-
tions in LSSOL.

File 3. CMSUBS General utility routines.

CMALF CMALF1 CMCEK CMFEAS CMPRT CMQMUL CMRSOL CMRSWP
CMRIMD CMTSOL

File 4. LSSUBS Least-squares routipes.

LSADD LSADDS LSBNDS LSCEOL LSCORE LSCRSH LSDEL LSDFLY
LSFEAS LSFILE LSGETP LSGSET LSKEY LsSLOC LSMOVE LSMULS
LSOPTN LSPRT LSSETX LSSOL

File 5. OPsUBS Uption string handling routines.
OPFILE OPLDDK OPNUM OPSCAN OPTOKN OPUPPR

7.4. Common blocks

Certain Fortran COMMON blocks are used in the LSSOL source code {0 communicate between sub-
routines. Their names are listed below.

CMDEBG LSDEBG LSPAR1 LSPAR2 SOLICM SOL3CM SOLACM SOLSCM
SQLSCM SOLMCH SOLALS SOL3LS

7.5. Machine-dependent subroutines

The routine MCHPAR in the MACH file may require modification to suit a particular machine or a
non-standard application.

22

Section 7 has been superseded.
Please see the *.doc files.

User’s Guide for LSSOL 1.0

At the beginning of LSSOL, MCHPAR is called to assign the machine-dependent constants and

the standard input and output unit numbers. These parameters are stored in the array WMACH(15)
in the labeled COMMON block SOLMCH, and are defined as follows.

WMACH(1)
WMACH(2)
WMACH(3)
WMACH(4)}
WMACH(5)
WMACH(6)
WMACH(7)
WMACH(8)
WMACH(10)
WMACH(11)

is NBASE, the base of floating-point arithmetic.

is NDIGIT, the number of NBASE digits of precision.
is EPS, the floating-point precision.

is RTEPS, the square root of EPSMCH.

is RMIN, the smallest positive floating-point number.
is RTMIN, the square root of RMIN.

is RMAX, the largest positive floating-point number.
is RTMAX, the square root of RMAX.

is NIN, the file number for the input stream.

is NOUT, the file number for the ontput stream.

Within routine MCHPAR, the machine constants are set one of two ways, depending upon the
value of the logical variable HDWIRE, which is set in-line. '

If HDWIRE is .FALSE. (the value set for the distributed copy of MCHPAR), the machine constants
are computed automatically for the machine being used. If HDWIRE is . TRUE., machine constants
appropriate for the IBM 360 Series are assigned directly to the elements of WMACH.

Before selecting the method of assigning the machine constants, you should note the following.
The computation of the machine constants will always generate a single arithmetic underflow, and
hence some appropriate remedial action may need to be taken if your machine traps underflow.

If you wish to implement the in-line assignment of machine constants for a machine other than
one from the IBM 360/370 Series, MCHPAR must be modified as follows.

1. Change the in-line assignment of HDWIRE from .FALSE. to .TRUE..

2. Set the values of WMACH appropriate for the machine and precision being used. The values of
NBASE, NDIGIT, EPSMCH, RMIN and RMAX for several machines are given in the following table,
for both single and double precision; RTEPS, RTMIN and RTMAX may be computed using Fortran
statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCE, RMIN and RMAX. The first value is 2 For-

tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause

no difficulty except in extreme circumstances. The second value is the exact mathematical

representation,

7. IMPLEMENTATION INFORMATION

29

Table of machine-dependent parameters

Univac 1100 1 DEC Vax “]

IBM 360/370 CDC 6000,/7000 DEC 10/20
Single Single Single Single Single
NBASE 16 2 2 2 2
NDIGIT & 43 27 27 24
EPS 9.84E-7 7.11E-18 7.46E-9 1.50E~8 1.20E-7
16-5 2-47 2—27 n-26 2—23
RMIN 1.CE-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
16—65 2-—975 2—129 2-—129 2-—128
RMAX 1.0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38
1663(1_16—5) 21070(1_2*48) 2127(1_2—27} J 212?(1_2-—27) 2127(1_2-24]
IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax
Doubls Double Doukle Doukle Doublc
NBASE i6 2 2 2 2
NDIGIT 14 86 62 €1 56
EPS 2.22D-16 2.53D-29 2.17D-19 8.68D-19 2.78D-17 |
16—13 2-95 2—62 2—60 2-55
RMIN 1.0D-78 1.0D-293 1.0D-38 1.0D~308 1.0D-38
16-65 2-975 2‘-129 2-1025 2-123
RMAX 1.0D+78 1.0D+322 1.0D+38 1.0D+307 1.0D+38
1663(1__16—]4) 21070(1_2*-96) 2127(1_2—52) 21023(1"2-61) 212?(1_2-56)

24 User’s Guide for LSSOL 1.0

8. EXAMPLE PROBLEMS
This section describes a linear least-squares problem and a quadratic program; the sample main
program LSMAIN that calls LSSOL and the outpnt are given in the Appendix.

The first problem is a constrained least-squares problem of type LS1 with nine variables and
three general linear constraints. The least-squares matrix and vector of observations are given by

(1 1 1 1 1 1 1 1 1\ (1\

1 2 1 1 1 1 2 g g 1

1 1 3 1 1 1 -1 -1 -3 1

1 1 1 4 1 1 1 1 1

4l 11 1 3 11 11 i oo |
1 1 2 1 1 0 6 0 -1 1

1 1 1 1 0o 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 0 1 1 1 2 32 3 1

‘1 0 1 1 1 1 ¢ 2 9 \1/

The least-squares matrix has rank 6. Let £ in LCLS be partitioned into two sections: the first n
components (denoted by £,), corresponding to the bound constraints; and the last m, components
(denoted by ¢,), corresponding to the linear constraints. The vector u is partitioned in a similar
fashion. Using this notation, the upper and lower bounds on the variables are given by

te=(-2, -2, -00, ~2, -2, -2, -2, -2,)T
us=(2 2 2 2 2 2 32 .32 2)7,

and the general constraints are given by

2 1 1 1 1 1 co
Li=|-c |, C= 1 2 3 4 -2 1 1 1 1 and u;, = | -2
~4 -1 -1 1 i 1 -2

The starting point z, is
zo = (.1, .5, .3333, .25, .2, .1667, ,1428, .125, .111])T,
and F(z,) = 9.4746 (to five figures). The optimal solution (to five figures) is
& = 2.0000, 1.5719, ~1.4454, —.037003, .546685, 17512, —1.6567, —.39477, .31002)7,

and F(z) = 1.390587. All three general linear constraints are satisfied exactly at . The Lagrange
multiplier associated with the third general constraint is of the order of the machine precision, and
therefore the point z° is a weak minimum, i.e., the optimal objective function is unique, but is
achieved for infinitely many values of z.

8. EXAMPLE PRODLEMS 25

The second problem is a quadratic programming problem of type QP2 with a semi-definite
Hessian matrix and linear term given by

(

R

(73

~1

-1
—.1
\-a/
(Note that by setting M = 5, we need not assign the last four rows and columns of 4 to zZ€ero.)
The upper and lower bounds on the variables are given by

\

L= I e T e e B o = X
O OO D e ek = B R
L= o T o T e T ST S T R X
O O O O =N
L= B T - T B N R O s
L= — T = T T T = I = I - I
L= = I = I e T o T e Y s T e T
L= B e T e T o T e T v S o S
(== e B s B s T i S o B o B e T o}
—

<)

=]

[« 9

2]

it

|

[

t;=(-2, -2, -2, -2, -2, -2, -2, —2, -2)7
ve=(2 2, 2, 2 2 2 2 2 2%

and the general constraints are given by

-2 1 1 1 1 1 1 1 1 4 1.5
LL=|-2}|, C= (1 2 3 4 -2 1 1 1 1) and u, = | 1.5
1 -1 1 -1 1 1 1 1 1 4

The starting point z, is the zero vector, at which F(z¢) = 0. The optimal solution (to five figures)
is

& = (2.0, —.23333, -.26607, —.3, —.1, 2.0, 2.0, —1.7777, —.45555)7,

and F(z') = —8.067778. The first two linear constraints are satisfied exactly at the solution, as are

the upper bounds on variables z,, z; and z;. Note that, although the Hessian matrix is pasitive
semi-definite, the point z' is unique.

26 User’s Guide for LSSOL 1.0

9. REFERENCES

Dongarra, J. J., Du Croz, J. J., Hammarling, S. J. and Hanson, R. J. (1985). A proposal for an
extended set of Fortran basic linear algebra subprograms, SIGNUM Newsletter 20, 1, 2-18,

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1984a). Procedures for optimization

problems with a mixture of bounds and general linear constraints, ACM Transactions on
Mathematical Software 10.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984b). User’s guide for QPSOL
(Version 3.2): a Fortran package for quadratic programming, Report SOL 84-6, Department
of Operations Research, Stanford University, California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986). User’s guide for NPSQOL

(Version 4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Department
of Operations Research, Stanford University, California.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, London
and New York.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. {1979). Basic linear algebra

subprograms for Fortran usage, ACM Transactions on Mathematical Software 5, pp. 308-
325.

Stoer, J. (1971). On the numerical solution of constrained least-squares problems, SIAM J. Numer.
Anal 8, pp. 382-411,

APPENDIX. SAMPLE PROGRAM AND OUTPUT

APPENDIX. SAMPLE PROGRAM AND OUTPUT

t *0—+++++1-9+++++0¢+++§0+rt+1+++i0++§++++ii+++§++¢+++++¢-}++0-§+++++0+++++*+0
Z = FILE LSMAIN FORTRAN
3 =
G Sample program for Version 1.0 January 1986,
5 I+++0++++0+§++++++++++++++¢+4#++++++0Gi+§++++++++++0++++#$++++0++§+#0+++
]
7 IMPLICIT DOUBLE PRECISION(A-H,D-Z)
8
9 x Set the declared array dimersions.
10 = NROMWC = the declared rom dimension of C.
11 = NROMA = the declared rom dimension of A.
12 % MaXN = wmaximum no. of variables allowed for.
13 = MAXM = maximum no. of observations allowed for.,
14 » HAXEND = maximtm no. of varisbles +# lirear constraints,
15 LIKORK = the length of the integer work array.
16 » LMORK = the lergth of the double precision work array,
17
18 PARAMETER {NROMC = 3, NROWA = 10,
9 $ MAXN = 9 MM = 10,
20 $ LINORK = 60, LWORK = 500,
et $ MAXBND = MAMN + MROWC)
22
23 INTEGER KX(MAXN), ISTATE(MAXBND)
24 INTEGER INORK(LINORK)
25 DOUBSLE PRECISION CUNROUC ,MAXN Iy B(MAXH)
26 DOUBLE PRECISION BLIMAXBND), BU(MAXBND I, CLAMDA(MAXBND)
27 DOUSLE PRECISION CVEC{MAXN)
28 DOUSLE PRECISION ACNROWA,MAXND, X{MAXN)
29 DOUBLE PRECISION WORK ¢ LWORK)
30
31 DOUBLE PRECISION BIGBND
32 CHARACTER*10 CBGSND
33
a4 INTRINSIC FLOAT
35
36 PARAMETER (POINT1=0.1D+0, POINT3=0.3D+0, ONERTS={.5D+0)
37 PARAMETER { ZERC =0.0D+0, DNE =1.0D+0, THWO =2.00+%0)
38 PARAMETER ¢ THREE =3.00+0, FOUR =4.004%0, FIVE <=5.0b+0 }
39 PARAMETER { SIX =6.0D*§ H
40
41 BIGEND = 1.0D*15
42 CEGEBND = *1.0D%15°
43
GG #
45 *
96 = e e T T T
47 = Set the actual problem dimensions.
98 ¥ M = the mmber of observations (rows of A) (may be),
49 » N = the mmber of variables.
50 = NCLIN = the rnumber of genera} linear constraints (may be 0),
51
5e] =10
53 N =9
54 NCLIN =3
55 NBND = N * NCLIN

28 User’s Guide for LSSOL 1.0
56

57 % — —— -
58 * Assign file rmumbers and problem data.

59 = NOUT = the unit ramber for printing.

60 * IOPTNS = the unit mmber for reading the options file.
61 * A = the least-squares matrix.

62 * B = the vector of observations.

63 c = the gereral comstraint matrix.
66 = BL = the lower bounds on » and Cwx.
65 » BU = the upper bourds on x and C¥x.
66 % X = the initial estimate of the solution.
67 * - - e m——————————————
68 JOPTNS = 5

€9 NOUT T 6

70

71 DO 120 0 = ¥, N

72 DO 110 I =1, M

73 AlLX,J) = ONE

74 B(I) = OHE

75 110 CONTINUE

76 120 CONTINUE

77

78 Al2 ,2) = T™O

79 Al(10,2) = ZERD

80

81 A(3,3) = THREE

82 Al6,3} = TWO

83 AL9,3) = ZERO

&84

85 Al(G,4) = FOUR

g5 A(5,8) = THREE

87 A(8y4) = ZERO

&8

89 AL7,5) = ZERO

20

91 Al6,6) = ZERD

92

93 A2 ,7) = THO

oG Al(3 ,7) = - ONE

95 Als ,7) = ZERD

$6 Al9 ,7) = TWO

97 AlL10,7) = ZERD

98

99 A(2 ,8) = ZERD
100 AL3 ,8) = - ONE
181 Al ,8) = ZERQ
102 AlS ,8) = THO
103 At10,8) = WO
104
105 AlZ ,9) = ZERO
106 A(3 ,9) = - THREE
107 Al6 »,9) = - ONE
108 Al ,9) = THREE
109 A(10,9) = THO

APPENDIX. SAMPLE PROGRAM AND OUTPUT

111
112
13
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137

139
140
141
142
143
144
145
145
147
148
14%
150
{51

152
153
154
155
156
157
158
159
160
161

162
163
164
165

* ok K ¥

DO 140 4 =1, N
DO 130 I = 1, NOLIN

ClI,dr = OnE
130 CONTINUE
140 CONTINUE
Cl1,9) = FOUR
€(z,2) = ™™
Ciz,;3) = THREE
Ct2,4) = FOUR
Ci2,5) = - nyp
Cl3,2) = - ONE
Ct3,4) = - ONE
DO 150 0 = 1, N
BL(J) = - Tuo
- BUl(J) = THD
150 CONTINUE
BLU 3) = - BIGBND
Set the rarges for the gereral corstraints,
BLIN+1) = R s]
BU(N+1) = B8I6BND
BLIN*2) = «~ BYGERND
BU(N+2) = ~ Tp
BLIN3) = « Foum
BUIKN+3) = - 1o
DG 170 3 =1, N
X(J) = ONE / FLOAT(J)
170 CONTYINUE

- o

Read the options file.
Add a sinyle option wing a call to LSOPTM.

---------——----.---.—-—--—q.---.---.....---—-------.-—--——-q.---.-—-.--—-u.

--——-n—---—-‘.-----m--—q.-—q.-——--——..-_—

CALL LSFILE(IOPTNS, INFORM }

IF (INFORM .NE. 6) TMEN
WRITE (NOUT, 3000) INFORM
SToR

END IF

CALL LSOPTN{ 'Infinite Bound size ='//CBGBND)

e e e et e -

Sclve the problem.

e e - s . e

CALL 15S0L (M, N,
$

NCLIN, NROWC, NROWA,

50 User’s Guide for LSSOL 1.0
166 $ C, BL, B, CVEC,

167 $ ISTATE, KX, X» A, B,

168 $ INFCRH, ITER, 0BJ, CLAMDA,

159 $ IMORK, LIHORK, WORK, LWORK)

170

171 ® Test for an error corndition.

172

173 IF (INFORM .BT. 1) 680 TO 999

174

175 = A e e
176 % Example 2. A QP with Hessian bordered by zeros.
177 % TS CCSCCTICCSTESCCS TS ICEIT oS EIETILSSSSSSIEESEEEES
178 * Set the new problem dimensions.

179 * o] s the nusber of rows (and columns) of A (way be 0).,
182 = N = the rumber of variables.

181 = NCLIN = the number of general linear constraints (may be 0).
182 * CVEC = the limear part of the objective function.
183

184 M =5

185 N =9

185 NCLIN = 3

187 NBHD = N ¢ NCLIN

188

1689 Do 2200 =1, M

19¢ DO 210 I = %, J-1

194 AlI,J} = ONE

192 21¢ CONTINUE

193 220 CONTINUE

194

195 DG 230 I = 1, M

195 AfI,I) = TWD

197 230 CONTINUE

198

199 PO 260 4 = 1, N

200 BL(J) = -~ TWD

2o BUlJ) = TRO

202 260 CONTINUE

203

204 BLIN¥1) = = TWO

205 BUIN*1} = ONEPTS

206 BLINt2} = = T

207 BU{N+2) = OREPTE

208 BL{N?3) = ~ TRO

209 BUINt3) = FOUR

210

211 DO 270 J = 1, N

212 CVEC(J) = ~ ONE

213 270 COHTINUE

214 CVEC(1) = - FOUR

215 CVEC(8) = - POINTI

216 CVEC(9) = = POINT3

217

218 DO 280 J = 1, N

219 X(J) = ZERQ

220 280 CONTINUE

APPENDIX. SAMPLE PROGRAM AND OUTPUT

31

221

222

223 » mm————— ~e—— w————

225 * Assign come nest optioms.

c2o = - ——— e e ——— -
226

227 CALL LSOPTN(’Defaulis M |

228 CALL LSOPTHNI(‘Problea type gP2' 3

229 CALL LSOPTN('Ramk tolerarmce = 1.0E~-10"')
230 CALL LSOPTN('Feasibility tolerance = 1.0E-10*)
23

232 ¥ e rrmm——— e e ———————— -

233 = Solve the QP problem.

23“ ® e ——— - e -~
235

236 CALL LSSCL (M, N,

237 $ NCLIN, NROWC, NROWA,

238 $ C,» BL, BU, CVEC,

239 $ ISTATE, KX, X, A, B,

240 $ INFORM, ITER, OBJ, CLAMDA,
241 $ IWORK,s LIMORK, MWORK, LWORK)
242

243 = Test for an error condition.

p£:343

245 IF (INFORM .BT. 11 680 TO %99

246 STOP

a7

248 % Error condition.

269

250 999 WRYITE (HOUT, 3010) INFORM

251 STOR

414

253 3000 FORMAT{/ * LSFILE terminated wmith INFORM = I3}
254 3010 FORMATL/ ' LSSGL terminated mith INFORM =ty I3)
255

256 = End of the example prograa for LSSOL.
257
258 END

52 User’s Guide for LSSOL 1.0

OFTIONS flle

BEGIN Options for LSSOL 1.0 Sample problem.

Iterations Limit
Problem Type

25
Least squares

[}

End

Calls %o LSOPTN

Infinite Bound size ={.0D+15

SOL/LSSOL === Version 1.0 Feb 1986

Parameters
Problem type....vevenee LSy
Liresr constraints..... 3 Feasibility tolerance.. 1.49E-08 COLD start.......... e
Variables...... PR o Infinite bound size.... 1.00E+15 Crash tolerance........ 1.00E-D2
Objective matrix rows.. 10 Infinite step size..... 1.00E+15 Rank tolerance....s.... 1.45E-08
EPS tmachime precision) 2.22E-16 Feasibillty phese 1tns. &0 Print level....vuau.... 10
Optimality phase iins, 25
Korkspace provided is IM(60}, M 900).,
To solve problem we need IN(9y Wt F{-3 %
Rank of the objective function data matrix = 6
Itn Jdel Jadd Step Hinf Sinf/Objective Bnd Lin Hz Nzl Horm 6f MNorm Gzt Cond T Cond Rzt
o 0 0 0.0E*Q0 2 9.474603E%00 0 [+] L 0 6.86E+00 O0.C0E+0Q0 1.0E*00 O.0E+D0Q
1 tZ 10L 1.2E*00 2 5.987698E+00 0 1 8 0 6.86E*00 O0,.00E+D0 1,DE*00 O0.DE+0D
2 1z MY 4.1E-91 1 4.990079E+00 0 2 7 0 3.00E¥00 O0.00E+0D $.1E400 O0.0E+00
3 1z 120 3.7E+D0 0 4.959041E401] 3 é 6 S5.60E+D01 4 13E+401 2.3E+00 2.2E+D1
@ [} 1V 3.0E-D% 0 2.429930E+D1 1 3 5 5 3.89EY01 2.85E+01 2.4E400 4.8E+00
5] 0 §.0E+00 0 1.390587E~01 1 3 5 5 6.55E~01 1,59E-15 2.GE*00 &.8E+00

Exit from LS problem after 5 tterations. INFORM =

-

Variable State Yalue Lower bound Upper bourxd Lagr multiplier Residual
VARBL UL 2.000000 =-2.002000 2.000000 -0.1191932 0.0000E*DQ
ARBL 2 FR 1.571859 =-2.000000 2.000000 0.0000000E*00 0.42680

VARBL 3 FR -1.445403 Hoeme 2.000000 Q."=NC0OE+QO 3.445

APPENDIX. SAMPLE PROGRAM AND OUTPUT 35
VARBL & FR =-D0.3700275E-01 -2.000000 2.000000 0.0000000E+00 1.963
VARBL 5 FR 0.5466858 -2.000000 2.000000 0.0000000E*00 1.453
VARBL & FR 0.175123¢6 -2.000000 2.000000 0.0G000OOE+CD 1.82%
VARBL 7 FR =-1.656704 ~2.000000 2.000000 0.DG0D0DCE*DD 0.3433
ViDL 8 FR =0.3947742 ~2.000000 2.000000 0.0000000E+00 1.605
VARBL 9 FR 6,.31002%0 -2.000000 2.000000 0.0000000E+Q0 1.6%0
Linear constr State Value Lower bowrrd Upper bound Lagr multiplier Residkal
ENCON LL 2.000000 2.000000 Nore 0.3973107E-0} -0.3553E-14
LHCOH 2 uL =-2.000000 None -2.000000 -D.1191932 -0.4219E~14
LHCON 3 uL -2.000000 -4.000000 -2.000000 0.2006660E-15 =0,4441E-15
Exit LSSOL - Weak LS solution.
Final LS objective value = 0.1390587
Calls to LSOPTN
bDefaults
Problem type QP2
Rark tolerance = 1.0E-10
Feasibility tolerance = t1,QE-10
SOL/LSSOL ==~ VYersion 1.0 Feb 1586
Parameters
Problem type....cvuv... QP2
Lincar constraints..... 3 Feasibility tolerance.. 1.00E-10 COLD start....vvvnnnann
Variables...vvaecvasen, 9 Intinlte bound size.... 1.00E+10 Crash tolerance........ 1.00E-02
Cojective matrix rows.. s Infinite step size..... 1,00E+10 Rank tolerance......... 1.00E-10
EFS {machine precision) 2.22E-16 Feasibiltty phase 1tms, 60 Print level.....ecavu., 10
Optimality phase ites. 60
Horkspace provided is T 601, MI 900}, -
To solve problem we need IH(93y MWC 270).
Rark of the objective function data matrix = 5
Itn Jdel Jadd Step Ninf Sinf/Objective Bnd Lin Nz Nz Norm 6f MNorm Bz! Cond T Cond Rzt
0 0 1] Q.0E+0D 0 0.000000E+D0 b] 9 5 S.70E400 4.47E+00 2.4E*80 1.3E+00
1 0 iU 7.5E-D1 4 =-§.37500CE+QD 1 0 8 4 1.53E+00 S.00E-01 2.4E+00 1.3£+00
2 0 0 1.8E+00 4 -%.400000E+00 1 0 & & 1.45E+00 3.67E-17 2.4E+00 $.3E+00
3 52 100 3.0E-01 -] -4, 700000E+00 1 1 7 & 1.45E*00 8.9¢E-0% 1.0E+00 1.0E+DO
4 o o 1.0E*00 0 =5.100000E+00 1 1 7 4 Z.47E*00 1.20E-17 1.0E+0D 1.0E+00
5 7Z 12U 5.4E-01 0 =6.055714E+00 1 -4 6 & 2.47E%00 1,73E400 2.0E+0D 1.3E+00
& 0 U 1.1E-D2] =6.113326E+00 2 2 5 3 2.2°700 1.64EY00 2.0E400 1.7E+00

34 User’s Guide for LSSOL 1.0
7 0 110 1.1E~-01 [«) =6.215049E+00 F4 3 & 2 2.03E+00 1.1BE+00 2.1E+00 1.SE+Q0
a 0 L] 1.0E*00 [+ -6.538008E+00 2 3 4 2 1.10E+00 2.22E-16 2.3E+Q0 1.5C+00
9 3z) 1.QE+00 o =6.56737IEY0D 2 3 L} 3 1.07E*00 2.23E-16 2.1E*Q0 2.7E+DD
10 L ¥4 U 1.7E00 [+ «~8.055612E+00 3 3 3 3 3.83E-01 2.80E-01 2.1E*00 3.7E+00
11 0 4] 1.0E+00 Q -8.0677V18E+00 3 3 3 3 G.38E-01 1.05E-16 2.1E+00 3.7E+00
12 t2v] 1.0E+00 [} ~8.067778E+CD 3 4 4 & 4.31E~D1 1.05E-16 1.2E+00 5.8E+00

Exit frow GP problem after 12 Tterations. INFORH = O

Variable State Value Lower bound Upper bowud Lagr sultiplier Residual

YARBL 1 UL 2.000000 -2.000000 2.000000 ~0.8000000 0.0000E*00

VARBL 2 FR -0.2333333 ~2.000000 2.000000 0.0000000E+CD 1.767

VAREL 3 FR =0,2666667 ~2.000000 2.000000 0.0000000E+0D 1.733

YARBL & FR =-0.3000000 ~2.000000 2.000000 ©.0000000E+00 1.700

YARBL B FR ~-0,1000000E+0Q0 -2.000000 2.000000 0.0000000E+DD 1.900

VARBL 6 UL 2.000000 -2.000000 2.000000 -0.5000000 0.00DDE*DD

VARBL 7 UL 2.000000 -2.000000 2.000000 -0.9000000 0.00QDE+0QD

VARBL 8 FR -1.777778 -2.000000 2.000000 0.000C00GE+00Q 0.2222

VARBL 9 FR =~0.4555556 ~2.000000 2.000000 0.0000000E+00 1.544

Linear corstr State Value Lower bound Upper bound Lagr multiplier Residual

LNCON % uL $.500000 =-2.000000 1.500000 =0.6666667E~D1 ~0.3553E-14

LNcoN 2 uL t.500000 -2.000000 1.500000 =0.3333333E-01 0.2220E-15

LNCcON 3 FR 3.933333 -2.000000 4.000000 0.0000000E+DOD U.6667E-D1

Exit LSSOL - Optisal QP solution.

Final GP objective value = -8.067778

INDEX

35

INDEX

A {objective data matrix), 1.
estitnated rank of, 4, 16, 18.)
identically zero, 16 {also see Linear program).
A, 9 (dcfinition).
Algorithm of LSSOL, description, 2-86.
a (step length}, 2, 4
printed value, 17.
@ (step to nearest constraint), 5.
Amdah!} 470, 20.
ANSI (1977) Fortran, 1, 20.
Artificial constraint, 4-5 (definition}, 17.
Artificial multiplier, 5.
ASCI, 20,

b {vector of cbservations}, 1.
B, 9-10 {definition).
Begin (in options filc}, 12-13.
BIGBND, 15 (also see Infinite Bound Size).
BL, 7-8 (definition).
BLAS, 21,
Level 2, 21.
Bnd, 2, 17.
BU, 8 (definition).
Burroughs 6600 and 7600, 20.

C {general constraint matrix), 1.
in examples, 24-25.
CFFl, 2, 3-
CFX: 3-
C, 7 (definition).
CDC 8000 and 7000, 20.
Checklist of optional parameters, 16.
Cholesky factor, 3, 4, 9, 15.
printout of diagonals, 15.
CLAMDA, 10 (definition).
Cold Start, 8, 14 (definition).
Column interchanges, 4 (also see Rank).
Comment (in optional parameter specification),
12.
Common blocks, list of, 21.
Cond Rzi, 5, 18.
Cond T, 5, 18.
Condition estimator
for R;. 5, 1B.
for T, 5, 18.
Condition of working set, control of, 5-6.
Constrained stationary point, 3.
Constraint status indicator (see ISTATE}.
Constraint violations, weighted sum of, 17.
Convexity, 2.
Crash Tolerance, 14 (definition).
Cray-1, 20.
CVEC, 8 (definition).
Cyber, 20.
Cycling, 10, 19.

Data General MV /8000, 20.

Data matrix (see A and 4).

DEC Systemns 10 and 20, 20.

DEC VAX, 20.

Default values of optional parameters, checklist
of, 18.

Diagonals
of R, printout, 15.
of T, printout, 15.
Distribution tape, format of, 20.
DOUBLE, 7.
Double precision
table of machine constants, 23.
version of code, 20,

E (printed constraint designation), 17.
End {in options file), 12-13.
EPS, 22 (also see ¢).
¢ {machine precision), 14, 22.".
EQ (printed constraint status), 18, 22.
Equality constraint, 1, 8, 17, 18.
Error correction procedurcs, 19.
Estimated rank :
of A, 4, 16, 18 (also see Rank Tolerance).
of Ry, 16 (also see RBank Tolerance).
Example 1 {a least-squares problem), 24.
Example 2 (a quadratic progeam), 25.
Example problems, 24-25. .
Explicit linear term in objective function, 1, 10,
External file, use for option specification, 12-13.

J (transformed residual), 3, 4.
F {objective function), 1.
Facom, 20.
Feasibility pbase, 2, 4, 8, 17, 19.
Feasibility Phase Iteration Limit, 10, 14 (def-
nition).
Feasibility Tolerance, 2, 5, 8, 15 (definition),
19,

adjustment to avoid overflow, 19.
Feasible point, 15 (dcfinition).
Feasible-point problem, 1 (also see FP).
Final solution, printout, 15. !
Fixed variables, 2 (also see EQ}.
Formal parameters of LSSOL, 7-10.
Formal specification of LSSOL, 7.
Format of distribution tape, 20.
Fortran

ANSI (1977), 20.

subroutines, naming convention, 21.
FP (problem type), 1, 7, 8, 18.
FR (printed constraint status), 18.
Free variables, 2.
Fujitsu, 20.

Gabor, Zsa Zsa, 19.
General constraints, 1, 18.
Global minimum, 1.

H (Hessian matrix), 1.

HDWIRE, 22.

Hessian matrix, 1, 4.
semi-definite example, 25.
upper-triangular factor, 3, 4, 9.

Hitachi, 20.

Honeywell, 20.

IBM

360/370 and 3033/3081, 16, 20, 22.
VS Fortran, 20.

58

User’s Guide for LSSOL 1.0

ICL 2800, 20.

Inplementation information, 20-23.

Infeasible problemn, 3-4, 10, 17, 19.

Infeasibilities, weighted sum, 17.

Infinite lower or upper bound, 1, 8.

Infinite Bound Size, B, 10, 15 (definition).

Infinite Step Size, 15 (definition).

INFORM, 10 (dcfinition).

Initial working set, 5, 8, 8 (also see Cold Start

and Warm Start).

Input parameter, invalid, 10.

Installation procedure, 20.

Invalid input parameter, 10.

IOPINS (options file number), 12-13,

ISTATE, 89 (definition), 14, 18.
printout, 15.

ITER, 10 {definition).

Iteration Limit, 15 (definition), 19.

Iters (see Iteration Limit).

Itn (printed value), 17.

Itns (see Iteration Limit).

Iw, 10 (definition).

Jadd (printed value), 4, 17.
Jdel (printed value), 4, 17,

Keyword in option specification, 12.
KX, 2, 9 (definition), 16.

£ (lower bound vector), 1, 8 (also see BL).
g, 24,
L., 24.
L (printed constraint designation}, 17 (also see
BL).
Lagr multiplier (printed value), 18,
Lagrange multiplier, 3, 10, 15, 18, 19, 24.
optimal, 3-4, 10, 18.
zero or small, 19.
LCLS {problem statement), 1.
Least Squares {see L5t).
Least-squares matrix, 1, 9 (also see 4 and 1).
Least-squares problem, 1.
example, 24,
LENIV, 11 (definition).
LENW, 11 (definition).
Level 2 BLAS, 21.
Lin (printed value), 2, 17.
Linear constr, 18.
Lipear least-squares problem, 1.
Linear objective function, 186.
Linear program, 1, 18.
Linear Program (see LP).
Linear term in cbjective function, 1, 10.
Lines of code in LSSOL, 1, 20.
LL {printed constraint status}, 18.
LNCON, 18.
Local minimum, 1 (also see Weak minimum).
Lower Bound, 17, 18 (also see BL}.
LP {problem type), 1, 7, 8, 16.
Ls1 (problem type), 1, 7, 8, 18, 24.
LS2 (problem type), 1, 7, 8, 16.
Ls3 (problem type), 1, 7, 8, 16.
LS4 (problem type}, 1, 7, 8, 16.
LSFILE, 12-13.

LSOPTN, 13.
Bist, sample, 16.

LsQ (see LS1}.

LSSOL
algorithm of, 2-6.
lines of ¢ode n, 1, 20.
parameters of, 7-11.
specification of, 7.

m, L.
m, (oumber of general constraints}, 1, 2, 5, 24.
mu (oumber of general constraints in working
set}, 2.
M. 7 {deBnition).
Machine constants
computation of, 21.
tables of, 22.
Machine dependencies in code, 21-23.
Machine precision (see €).

Matrix factorizations, routines for updating, 21.

MCHPAR, 22 (alsc see Machine constants).

Method of LSSOL, description, 2-6.

Minimal sum of infeasibilities, 4, 17, 19.

Minimum abbreviation {of optional parameter),
14.

7 (number of variables), 1.
nrp (oumber of free variables), 2.
nrx (oumber of fixed variables), 2.
nz, 3,5, 17.
¥, 7 {definition)}.
Naming convention for Fortran subroutines, 21.
NBASE, 22.
NCLIN, 7 (definition) (also see m,}.
NDIGIT, 22.
Negative steps, & (also see a).
KRIN, 22.
Ninf (number of infeasibilities), 17.
No feasible point, 4, 10, 17, 19.
Nolist option, 13.
Nonp-existent lower or upper bound, 8.
None (in printout), 18.
Nonlinearly constrained optimization, 8.
NOUT, 22.
Norm 61, 3, 17 {also see Projected gradient).
Nerm Gz1, 5, 17 (also see Projected gradient).
NPSOL, 8.
NROWA, 7 (definition).
NROWC, 7 (definition).
Null space, 3.
dimexnsion of (see nz).
Number of infeasibilities, 17.
Nz, 3, 5, 17.
Nz1, 5, 17.

0BJ, 10 {definition).
Objective, 17.
Objective function (F), 1.
data matrix (see A and).
linear, 18.
Objective matrix (see 4 and 1),
Observation vector (b), 1.
Optimal Lagrange multiplier, 3-4 (definition),
10, 18.

INDEX

87

Optimal solution, 10.

Optimality phase, 2 (also see Method of LSSOL).

Dptimality Phase Iteration Limit, 10, 14 {defi-
nition).

Optimality test, 10.

Option-handling routines, 21.

Optional parameters, 12-186.
checklist and default values, 16.
cumulative changes, 13.
description, 14-186.

Options fle, 12-13.

Ordering of variables, 2 (also see KX).

Orthogonal transformation, 2.

Overflow, 19.

p (search direction}, 2, 3.
Prr, 2, 3.
Parameter vector (see z).
Parameters of LSSOL, 7-11.
Phase 1 (see Feasibility phase).
Phase 2 (see Optimality phase).
Phrase (to modify optional parameter}, 12.
Precision, machine (see e).
Primal method, 2.
Prime Systems, 20.
Print Level, 10, 11, 15 (definition).
Printed output, description, 17-18.
Printout, control of, 15.
Problem type (see Problem Type).
Problem Type, 1, 15-16 (definition).
Projected gradient, 3, 10.

norm, 17.

Q3
Q!-‘Ih 2.
QP (problem type), 7, 8.
@r1 (problem type}, 1, 7, 8, 16.
GP2 (problem type), 1, 7, 8, 18, 25.
QP3 (problem type}, 1, 7, 8, 16,
QP4 (problem type), 1, 7, 8, 16,
QR factorization, 4.
Quadratic program, 1, 16.
example, 25.
Quadratic Program {problem type) (see qP2).
Qualifying phrase {in optional parameter), 12.

R, 3, 4,9, 15 (also see Ry).
ordering of columns (see XX),
printout of diagonals, 15.
R, 4, 16.
condition estimate of, 18 (also see Cond Rzi).
Rz, 3,4, 10,17. -
singular, 3, 4, 10, 17.
Rank, 4, 16.
determiration, 18.
Rank Tolerance, 4, 18 (definition), 18.
BEAL, 7,

‘References, 26.

Re-ordering of variables, 2 (also see KX).
Reset optional parameters, 13-14.
Residual, 10, 18.

Residual vector, 3, 4, 10.
Reverse-triangular matrix, 2 (also see T).
RMAX, 22,

RMIN, 22.

RTEPS, 22.
RINAX, 22.°
RTNIN, 22.

Search direction (p), 2.
Second-derivative matrix, 1 {also see Hessian ma-
trix).
Semi-definite Hessian matrix, example, 25.
Sequential quadratic programming method, 6,
Simplex method, 2, 5.
Simplex steps, 2, 5.
Sint (weighted sum of infeasibilities), 17.
Single precision
table of machine constants, 23.
version of code, 20.
Singular Rz, 3, 4, 10, 17.
Small Lagrange multiplier, 19.
Source files, list, 20.
Specification of LSSOL, 7.
Standard simplex method, 2.
State, 18 (also see ISTATE}.
Stationary point, 3.
Status indicator for constraints (see ISTATE).
Step {printed value), 17 (also see Step length).
Step length (a), 2, 4, 17.
choice of, 4, 5.
Strong local minimum, 1, 10.
Sum of infeasibilities, 3-4.
minimum, 17,
weighted, 17,
Synonyms (for optional parameters), 12.

T,2, 5.
condition estirnate, 18 (also see Cond T).
printout of diagonals, 15.
T (printed constraint designation), 17 (alsc see
Temporary bound).
Tape
characteristics, 20.
format 20.
Temporary bound, 5, 17.
TQ factorization, 2, 5, 15.
Transformed residual vector (£}, 3, 4, 10.
Trapezoidal matrix, I, 9 (also see Triangular fac-
tor).
Triangular factor, 3, 4, 9, 15.
of Hessian as data matrix, 9.
Two-phase primal method, 2.

u (upper bound vector), 1, 17 (also see 8U).
ug, 24,
ur, 24.
U (printed constraint designation), 17.
UL (printed constraint status), 18.
Unbounded
objective function, 10, 15.
solution, 1, 10.
step, 15.
Underflow, 19.
Unique solution, 1, 10.
Univac 1100, 20.
Unknowns, vector of (see z and X).
Updating matrix factorizations, routines for, 21.

38

User’s Guide for LSSOL 1.0

Upper bound, 18 (also sec u and BU).

Upper-trapezoidal matrix, i, 9 {also see Triang-
ular factor).

Upper-triangular factor {see Triangular factor).

Valid option strings, examples of, 12.
Value, 18.
VARBL, 18.
Varisble, 18.
Variance-covariance matrix, 9.
Vector
of observations (b), 1 (also see B).
of unknowns (z), 1 (also see X}.
Vertex, 2, 3, 17.
Violations, constraint (see Infeasibilities).

¥, 11 (decfinition).
Warm Start, 6, 8, 14 (definition), 19.
Weak miniinum, 1, 10.
example of, 24.
¥eak LP solution {see Weak minimum).
¥eak LS solution (see Weak minimusm).
¥eak QP solution (sec Weak minimurm).
Weighted sum of infeasibilities, 4, 17 (also see
Infeasible problem).
WMACH, 22 (also sce Machine constants}.
Working precision, 7 {also see €).
Working set
changes in, 4.
condition estimate, 18 (also see Cond T).
definition, 2.
Workspace parameters of LSS0L, 10-11.

z (vector of unknowns), 1.
printout, 18.
X, 9 (definition).

Y, 2.

Z (basis for null space), 2 (also see Null space).
dimension of {see nz).

Z1,4-5, 17.

ngpa, 5 {also see Projected gradient}.

Z3, 4-5.

Z (printed constraint designation), 17.

Zero Lagrange multiplier, 19 {also see Lagrange

multiplier).

-- (printed constraint status), 18 (also see Infea-
sible problem).

++ (printed constraint status), 18 {also see Infea-
sible problem).

