USER'S GUIDE FOR TOMLAB /MINOS ${ }^{1}$

Kenneth Holmström ${ }^{2}$, Anders O. Göran ${ }^{3}$ and Marcus M. Edvall ${ }^{4}$

February 13, 2008

[^0]
Contents

Contents 2
1 Introduction 5
1.1 Overview 5
1.2 Contents of this Manual 5
1.3 Prerequisites 5
2 Using the Matlab Interface 6
3 TOMLAB /MINOS Solver Reference 7
3.1 MINOS 8
3.1.1 Direct Solver Call 8
3.1.2 Using TOMLAB 14
3.1.3 optPar 18
3.2 LP-MINOS 21
3.2.1 Using TOMLAB 21
3.2.2 optPar 25
3.3 QP-MINOS 27
3.3.1 Using TOMLAB 27
3.3.2 optPar 31
3.4 LPOPT 34
3.4.1 Direct Solver Call 34
3.4.2 Using TOMLAB 37
3.4.3 optPar 40
3.5 QPOPT 41
3.5.1 Direct Solver Call 41
3.5.2 Using TOMLAB 45
3.5.3 optPar 49
4 Using the TOMLAB /MINOS Solvers 50
4.1 Setting Solver Parameters 50
4.2 Derivatives for the Solvers 50
4.3 Solver Output to Files 51
4.4 Warm Starts for the Solvers 51
4.5 Memory for the Solvers 52
4.6 Parameters in Prob.optParam 52
5 QPOPT details 54
5.1 Introduction 54
5.1.1 Overview 54
5.1.2 The working set 54
5.1.3 The reduced Hessian 55
5.1.4 Optimality conditions 55
5.2 Further Details of the Method 57
5.2.1 Treatment of simple upper and lower bounds 57
5.2.2 The initial working set 57
5.2.3 The anti-cycling procedure 58
5.3 The Options File 60
5.3.1 Format of option strings 60
5.4 Description of the optional parameters 61
5.5 Optional parameter checklist and default values 65
5.6 The Summary File 66
5.6.1 Constraint numbering and status 66
5.6.2 The iteration log 66
5.6.3 Summary file from the example problem 67
5.7 The Print File 68
5.7.1 Constraint numbering and status 68
5.7.2 The iteration log 68
5.7.3 Printing the solution 69
5.7.4 Interpreting the printout 70
6 MINOS details 71
6.1 Introduction 71
6.1.1 Linear Programming 71
6.1.2 Problems with a Nonlinear Objective 73
6.1.3 Problems with Nonlinear Constraints 75
6.1.4 Problem Formulation 77
6.1.5 Restrictions 78
6.2 Solver Options 79
6.2.1 Options for Linear Programming 79
6.2.2 Options for All Problems 79
6.2.3 Options for Nonlinear Objectives 85
6.2.4 Options for All Nonlinear problems 85
6.2.5 Options for Nonlinear Constraints 90
6.2.6 Options for Input and Output 95
6.3 File Output 97
6.3.1 The PRINT file 97
6.3.2 The major iteration \log 97
6.3.3 The minor iteration log 99
6.3.4 Crash statistics 102
6.3.5 Basis factorization statistics 102
6.3.6 EXIT conditions 104
6.3.7 Solution output 109
6.3.8 The SUMMARY file 111
References 113

1 Introduction

1.1 Overview

Welcome to the TOMLAB /MINOS User's Guide. TOMLAB /MINOS includes a set of solvers and MATLAB embedded interfaces. The solver package includes binaries for the following solvers:

MINOS - For large-scale sparse general nonlinear programming problems.
LP-MINOS - For large-scale sparse linear programming problems.
QP-MINOS - For large-scale sparse quadratic programming problems.
LPOPT - For dense linear programming problems.
QPOPT - For dense convex quadratic programming problems.
Please visit http://tomopt.com/tomlab/products/minos/ for more information.
The interface between TOMLAB /MINOS, Matlab and TOMLAB consists of two layers. The first layer gives direct access from Matlab to MINOS, via calling one Matlab function that calls a pre-compiled MEX file (DLL under Windows, shared library in UNIX) that defines and solves the problem in MINOS. The second layer is a Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the function creates the output in the TOMLAB format.

1.2 Contents of this Manual

- Section 2 gives the basic information needed to run the Matlab interface.
- Section 3 provides all the solver references for MINOS, LP-MINOS, QP-MINOS, LPOPT and QPOPT.
- Section 4 discusses the use of TOMLAB /MINOS in more detail.

1.3 Prerequisites

In this manual we assume that the user is familiar with MINOS, the MINOS Reference Manual, TOMLAB and the Matlab language.

2 Using the Matlab Interface

The main routines in the two-layer design of the interface are shown in Table 1. Page and section references are given to detailed descriptions on how to use the routines.

Table 1: The interface routines.

Function	Description	Section	Page
minos	The layer one Matlab interface routine, calls the MEX-file interface minos.dll	3.1.1	8
minosTL	The layer two interface routine called by the TOMLAB driver routine tomRun. This routine then calls minos.m.	3.1.2	14
minosLPTL	The layer two TOMLAB interface routine that calls minosLPTL.m. Converts the input Prob format before calling minos.m and converts back to the output Result structure. This option only handles linear programming problems	3.2.1	21
m	The layer two TOMLAB interface routine that calls minosQPTL.m. Converts the input Prob format before calling minos.m and converts back to the output Result structure. This option only handles quadratic programming problems	3.3.1	27
lpopt	The layer one Matlab interface routine, calls the MEX-file interface lpopt.dll	3.4.1	34
lpoptTL	The layer two interface routine called by the TOMLAB driver routine tomRun. This routine then calls lpopt.m.	3.4.2	37
qpopt	The layer one Matlab interface routine, calls the MEX-file interface qpopt.dll	3.5.1	41
qpoptTL	The layer two interface routine called by the TOMLAB driver routine tomRun. This routine then calls qpopt.m.	3.5.2	45

The MINOS control parameters are possible to set from Matlab.
They can be set as inputs to the interface routine minos and the others. The user sets fields in a structure called Prob.SOL.optPar, where the subfield names follow the SOL standard for setting solver options. The following example shows how to set the maximum number of iterations.

Prob.SOL.optPar(30) = 500; \% Setting maximum number of iterations

3 TOMLAB /MINOS Solver Reference

The MINOS solvers are a set of Fortran solvers that were developed by the Stanford Systems Optimization Laboratory (SOL). Table 2 lists the solvers included in TOMLAB /MINOS. The solvers are called using a set of MEX-file interfaces developed as part of TOMLAB. All functionality of the SOL solvers are available and changeable in the TOMLAB framework in Matlab.

Detailed descriptions of the TOMLAB /MINOS solvers are given in the following sections. Also see the M-file help for each solver.

The solvers reference guide for TOMLAB /MINOS is available for download from the TOMLAB home page http://tomopt.com. There is also detailed instruction for using the solvers in Section 4. Extensive TOMLAB m -file help is also available, for example help minosTL in Matlab will display the features of the MINOS solver using the TOMLAB format.

TOMLAB /MINOS solves nonlinear optimization problems (con) defined as

$$
\begin{array}{rl}
\min _{x} & f(x) \\
& \tag{1}\\
s / t & x_{L} \leq x \leq x_{U} \\
& b_{L} \leq A x \leq b_{U} \\
& c_{L} \leq c(x) \leq c_{U}
\end{array}
$$

where $x, x_{L}, x_{U} \in \mathbb{R}^{n}, f(x) \in \mathbb{R}, A \in \mathbb{R}^{m_{1} \times n}, b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$ and $c_{L}, c(x), c_{U} \in \mathbb{R}^{m_{2}}$.
quadratic programming (qp) problems defined as

$$
\begin{array}{rl}
\min _{x} & f(x)=\frac{1}{2} x^{T} F x+c^{T} x \\
s / t & x_{L} \leq x \leq x_{U} \tag{2}\\
& b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, F \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.
and linear programming (lp) problems defined as

$$
\begin{array}{rl}
\min _{x} & f(x)=c^{T} x \\
s / t & x_{L} \leq x \leq x_{U} \tag{3}\\
& b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.

Table 2: The SOL optimization solvers in TOMLAB /MINOS.

Function	Description	Reference	Page
MINOS 5.5	Sparse linear and nonlinear programming with linear and nonlin- ear constraints.	$[11]$	
LP-MINOS	A special version of the MINOS 5.5 MEX-file interface for sparse linear programming.	$[11]$	
QP-MINOS	A special version of the MINOS 5.5 MEX-file interface for sparse	$[11]$	
LPOPT 1.0-10	quadratic programming.	Dense linear programming.	$[7]$
$Q P O P T ~ 1.0-10 ~$	Non-convex quadratic programming with dense constraint matrix and sparse or dense quadratic matrix.	$[7]$	

3.1 MINOS

3.1.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100% sure that no other solvers will be used for the problem. Please refer to Section 3.1.2 for information on how to use MINOS with TOMLAB.

Purpose

minos solves nonlinear optimization problems defined as

$$
\begin{align*}
& \min _{x} f(x) \\
& s / t \quad b_{L} \leq \begin{array}{c}
x \\
c(x)
\end{array} \quad \leq b_{U} \tag{4}
\end{align*}
$$

where $x \in \mathbb{R}^{n}, f(x) \in \mathbb{R}, A \in \mathbb{R}^{m_{1} \times n}, b_{L}, b_{U} \in \mathbb{R}^{n+m_{1}+m_{2}}$ and $c(x) \in \mathbb{R}^{m_{2}}$. or quadratic optimization problems defined as

$$
\begin{array}{rl}
\min _{x} & f(x)=\frac{1}{2} x^{T} F x+c^{T} x \\
s / t & b_{L} \tag{5}
\end{array}
$$

where $c, x \in \mathbb{R}^{n}, F \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.
The full input matrix A has three parts $A=\left[d / d x g(x) ; A ; c^{\prime}\right]$;

Calling Syntax

The file 'funfdf.m' must be defined and contain: function [mode, $\mathrm{f}, \mathrm{g}]=\mathrm{funfdf}(\mathrm{x}$, Prob, mode, nstate) to compute the objective function f and the gradient g at the point x.

The file 'funcdc.m' must be defined and contain: function [mode ,c , dcS] $=$ funcdc(x , Prob, mode, nstate) to compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the point x .

NOTE: The matrix dcS MUST be a SPARSE MATLAB matrix. Do dcS $=$ sparse (dcS); after dcS has been computed.
[hs, xs, pi, rc, Inform, nS, nInf, sInf, Obj, iwCount, gObj, fCon, gCon] $=\operatorname{minos}(\mathrm{H}, \mathrm{A}, \mathrm{bl}, \mathrm{bu}, \mathrm{nnCon}, \mathrm{nnObj}$, nnJac, Prob, iObj, optPar, Warm, hs, xs, pi, nS, SpecsFile, PrintFile, SummFile, PriLev, ObjAdd, moremem, ProbName);

Description of Inputs

The following fields are used:
$H \quad$ Matrix $\mathrm{n} x \mathrm{n}$ in a quadratic programming (QP) problem. DENSE or SPARSE. Leave empty if LP, or NLP problem.
$A \quad$ Constraint matrix, $\mathrm{m} x \mathrm{n}$ SPARSE (nonlinear, linear and objective) $\mathrm{m}>0$ always!!! Define dummy constraint for unconstrained problems.
$b l \quad$ Lower bounds on $\left(\mathrm{x}, \mathrm{g}(\mathrm{x}), \mathrm{Ax}, \mathrm{c}^{\prime}\right)$.
bu Upper bounds on ($\left.\mathrm{x}, \mathrm{g}(\mathrm{x}), \mathrm{Ax}, \mathrm{c}^{\prime}\right)$.
NOTE! The bl and bu values for the last nonlinear constraint c must have reverse signs and be put in each other places: If $c_{L}<=c(x)<=c_{U}$, then $b l=-c_{U}$ and $b u=-c_{L}$. This is because the bounds acts as the constraints on the slack variables for the nonlinear constraints.
nnCon \quad Number of nonlinear constraints.
$n n O b j \quad$ Number of nonlinear objective variables.
$n n J a c \quad$ Number of nonlinear Jacobian variables.

Prob Must be a structure. No check is made in the MEX interface. If TOMLAB calls minos, then Prob is the standard TOMLAB problem structure, otherwise the user should set:

Prob. $\mathrm{P}=$ ProblemNumber, where ProblemNumber is some integer.

If the problem is a LP or QP problem (H defined), the user does not have to specify anything else in the structure.

The following fields are used:, continued

For a general nonlinear objective or nonlinear constraints names of two user written routines must be given:
funfdf, actual name stored in Prob.FUNCS.fg, with syntax [mode, f, g] = funfdf(x , Prob, mode, nstate).
funcdc, actual name stored in Prob.FUNCS.cdc, with syntax $[$ mode, $\mathrm{c}, \mathrm{dcS}]=$ funcdc(x, Prob, mode, nstate).

MINOS is calling the TOMLAB routines nlp_fg.m and nlp_cdcS.m in the callback, and they call funfdf and funcdc, respectively.

If these fields in Prob are empty (Prob.FUNCS.fg, Prob.FUNCS.cdc), the TOMLAB callback routines calls the usual function routines. Then the Prob struct should be normally defined, and the fields Prob.FUNCS.f, Prob.FUNCS.g, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way (e.g. by the routine mFiles.m, or one of the Assign-routines like conAssign.m).

If the mode parameter is 0 , funfdf should return f, otherwise both f and the gradient vector g. If the mode parameter is 0 , funcdc should return c , otherwise both c and dcS. Note that each row in dcS corresponds to a constraint, and that dcS must be a SPARSE matrix.

The user could also write his own versions of the routines nlp_fg.m and nlp_cdcS.m and put them before in the path.
iObj Says which row of A is a free row containing a linear objective vector c. If there is no such vector, $\mathrm{iObj}=0$. Otherwise, this row must come after any nonlinear rows, so that $\mathrm{nnCon}<=\mathrm{iObj}<=\mathrm{m}$.
optPar Vector with optimization parameters overriding defaults and the optionally specified SPECS file. If using only default options, set optPar as an empty matrix.

Warm Flag, if true: warm start. Default cold start (if empty). If 'Warm Start' xs, nS and hs must be supplied with correct values.
$h s \quad$ Basis status of variables + constraints $(\mathrm{n}+\mathrm{m} \times 1$ vector). State of variables: $0=$ nonbasic (on bl), $1=$ nonbasic (on bu) $2=$ superbasic (between bounds), $3=$ basic (between bounds).

Initial vector, optionally including m slacks at the end. If warm start, full $x s$ must be supplied.

The following fields are used:, continued
pi Lagrangian multipliers for the nnCon nonlinear constraints. If empty, set as 0 .
$n S \quad \#$ of superbasics. Only used if calling again with a Warm Start.

SpecsFile Name of the SPECS input parameter file, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters $=500$.

SummFile Name of the Summary file. Name includes the path, maximal number of characters $=500$.

PriLev Printing level in the minos m-file and minos MEX-interface.
$=0$ Silent
= 1 Summary information
$=2$ More detailed information

ObjAdd Constant added to the objective for printing purposes, typically 0.
moremem Add extra memory for the sparse LU, might speed up the optimization. 1E6 is 10 MB of memory. If empty, set as 0 .

ProbName Name of the problem. $\mathrm{i}=100$ characters are used in the MEX interface. In the MINOS solver the first 8 characters are used in the printed solution and in some routines that output BASIS files. Blank is OK.

Description of Outputs

The following fields are used:
$h s \quad$ Basis status of variables + constraints ($\mathrm{n}+\mathrm{m} \mathrm{x} 1$ vector). State of variables: $0=$ nonbasic (on bl), $1=$ nonbasic (on bu) $2=$ superbasic (between bounds), $3=$ basic (between bounds).
Basic and superbasic variables may be outside their bounds by as much as the Feasibility tolerance. Note that if scaling is specified, the Feasibility tolerance applies to the variables of the scaled problem. In this case, the variables of the original problem may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is very badly scaled. Check the "Primal infeasibility" printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much as the Feasibility tolerance, and there may be some nonbasics for which $\mathrm{xn}(j)$ lies strictly between its bounds.

The following fields are used:, continued

If ninf >0, some basic and superbasic variables may be outside their bounds by an arbitrary amount (bounded by sinf if scaling was not used).
$r c \quad$ Vector of reduced costs, $g-\left(\begin{array}{ll}A & I\end{array}\right)^{T} \pi$, where g is the gradient of the objective function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If ninf $=0$, the last m entries are $-\pi$. Reduced costs vector is of $n+m$ length.

Inform Result of MINOS run.

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a large number of iterations (e.g. 1000).

5 The Superbasics limit is too small.
6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as inform $=9$.
13 Near-optimal solution found. Should probably be treated as inform $=9$.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
$n S \quad \#$ of superbasics.
nInf Number of infeasibilities.

The following fields are used:, continued
sInf \quad Sum of infeasibilities.

Obj Objective function value at optimum.
iwCount Number of iterations (major and minor), function and constraint calls.
$g O b j \quad$ Gradient of the nonlinear objective.
fCon Nonlinear constraint vector.
$g C o n \quad$ Gradient vector (non-zeros) of the nonlinear constraint vector.

3.1.2 Using TOMLAB

Purpose

minos $T L$ solves nonlinear optimization problems defined as

$$
\begin{array}{ll}
\min _{x} f(x) & \\
& \tag{6}\\
s / t & x_{L} \leq x \leq x_{U} \\
& b_{L} \leq A x \leq b_{U} \\
& c_{L} \leq c(x) \leq c_{U}
\end{array}
$$

where $x, x_{L}, x_{U} \in \mathbb{R}^{n}, f(x) \in \mathbb{R}, A \in \mathbb{R}^{m_{1} \times n}, b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$ and $c_{L}, c(x), c_{U} \in \mathbb{R}^{m_{2}}$.

Calling Syntax

Using the driver routine tomRun:

Prob $=\diamond \operatorname{Assign}(\ldots)$;
Result $=$ tomRun('minos', Prob, 1);

Description of Inputs

Prob, The following fields are used:
$x_{-} L, x_{-} U \quad$ Bounds on variables.
$b_{-} L, b_{-} U \quad$ Bounds on linear constraints.
$c_{-} L, c_{-} U \quad$ Bounds on nonlinear constraints.
$A \quad$ Linear constraint matrix.
QP.c Linear coefficients in objective function.

PriLevOpt Print level.
WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.
SOL.hs State for solution and slacks from previous run.
SOL.nS Number of superbasics from previous run.
SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is 10 MB of memory. Default $\mathrm{n}+\mathrm{m} 1+\mathrm{m} 2$ (number of variables + linear + nonlinear constraints).

Prob, The following fields are used:, continued

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.
SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.
SOL.optPar Elements >-999 takes precedence over corresponding TOMLAB params. See Table 24.

Description of Outputs

Result, The following fields are used:

Result	The structure with results (see ResultDef.m).
$f_{-} k$	Function value at optimum.
$x _k$	Solution vector.
x _0	Initial solution vector.
$g_{-} k$	Gradient of the function.
$c_{-} k$	Nonlinear constraint residuals.
cJac	Nonlinear constraint gradients.
xState	State of variables. Free $==0$; On lower $==1$; On upper $==2$; Fixed $==3$;
bState	State of linear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
cState	State of nonlinear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
$v _k$	Lagrangian multipliers (for bounds + dual solution vector).
ExitFlag	Exit status from minos.m (similar to TOMLAB).
Inform	Result of MINOS run.
	0 Optimal solution found.
	1 The problem is infeasible.
	2 The problem is unbounded (or badly scaled).
	3 Too many iterations.
	4 Apparent stall. The solution has not changed for a large number of iterations (e.g. 1000).
	5 The Superbasics limit is too small.
	6 User requested termination (by returning bad value).

Result, The following fields are used:, continued
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as inform $=9$.
13 Near-optimal solution found. Should probably be treated as inform $=9$.
20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
rc

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.
MinorIter Number of minor iterations.
Solver \quad Name of the solver (minos).
SolverAlgorithm Description of the solver.
SOL.xs Solution and slack variables.
SOL.hs Basis status of variables + constraints $(\mathrm{n}+\mathrm{m} \times 1$ vector). State of variables: $0=$ nonbasic (on bl), $1=$ nonbasic (on bu) $2=$ superbasic (between bounds), $3=$ basic (between bounds).

Result, The following fields are used:, continued

Basic and superbasic variables may be outside their bounds by as much as the Feasibility tolerance. Note that if scaling is specified, the Feasibility tolerance applies to the variables of the scaled problem. In this case, the variables of the original problem may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is very badly scaled. Check the "Primal infeasibility" printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much as the Feasibility tolerance, and there may be some nonbasics for which $\mathrm{xn}(j)$ lies strictly between its bounds.

If ninf >0, some basic and superbasic variables may be outside their bounds by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS \# of superbasics.

SOL.nInf \# of infeasibilities.

SOL.sInf Sum of infeasibilities.

3.1.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be used by MINOS, unless the value is altered in the SPECS file.
Definition: $n n L=\max (n n O b j, n n J a c))$
Description of Inputs
Table 7: The following fields are used:

| $\#$ | SPECS keyword text | Lower | Default | Upper |
| :--- | :--- | :--- | :--- | :--- | Comment

LU I

Table 7: The following fields are used:, continued

\#	SPECS keyword text	Lower	Default	Upper	Comment
23.	LU FACTORIZATION TOLERANCE	1	100 or 5		100 if LP
24.	LU UPDATE TOLERANCE	1	10 or 5		10 if LP
25.	LU SWAP TOLERANCE	>0	$1.22 \mathrm{E}-4$		$e p s^{1 / 4}$
26.	LU SINGULARITY TOLERANCE	>0	$3.25 \mathrm{E}-11$		$e p s^{0.67}$
LP or LC subproblems					
27.	PIVOT TOLERANCE	>0	$3.25 \mathrm{E}-11$		eps ${ }^{0.67}$
28.	CRASH OPTION	0	3	3	0,1,2,3
29.	WEIGHT ON LINEAR OBJECTIVE	0.0	0.0		during Phase 1
30.	ITERATIONS LIMIT	0	$3(\mathrm{~m}+\mathrm{m} 3)$	$+10 \mathrm{nnL}$	
$\mathrm{m} 3=1$ if length(Prob.QP.c) >0, otherwise $\mathrm{m} 3=0$.					
TOMLAB default: $\max (10000,3(\mathrm{~m}+\mathrm{m} 3)+10 \mathrm{nnL})$.					
31.	PARTIAL PRICE	1	10 or 1		10 for LP
SLC method					
32.	MAXIMIZE	0	0	1	$1=$ maximize
33.	LAGRANGIAN	0	1	1	$1=\mathrm{YES}, 0=\mathrm{NO}$
34.	PENALTY PARAMETER	0.0	1.0		
35.	MAJOR ITERATIONS LIMIT	>0	50		
36.	MINOR ITERATIONS LIMIT	>0	40		
37.	MAJOR DAMPING PARAMETER	>0	2.0		
38.	MINOR DAMPING PARAMETER	>0	2.0		
39.	DERIVATIVE LEVEL	0	3	3	0,1,2,3
Is always set by minosTL dependent on Prob.ConsDiff, Prob.NumDiff.					
40.	RADIUS OF CONVERGENCE	0.0	0.01		
41.	FUNCTION PRECISION	>0	$3.0 \mathrm{E}-13$		$e p s^{0.8}=e p s_{R}$
42.	DIFFERENCE INTERVAL	>0	$5.48 \mathrm{E}-7$		$e p s^{0.4}$
43.	CENTRAL DIFFERENCE INTERVAL	>0	$6.69 \mathrm{E}-5$		eps ${ }^{0.8 / 3}$
44.	COMPLETION	0	$\begin{aligned} & 1 \mathrm{LC}, 0 \\ & \mathrm{NC} \end{aligned}$		$\begin{aligned} & 0=\text { PARTIAL } \\ & 1=\mathrm{FULL} \end{aligned}$
45.	UNBOUNDED STEP SIZE	>0	1E10		
46.	UNBOUNDED OBJECTIVE	>0	1E20		
Hessian approximation					
47.	HESSIAN DIMENSION	1	50	$1+\mathrm{nnL}$	
48.	SUPERBASICS LIMIT	1	50	$1+\mathrm{nnL}$	
TOMLAB default (to avoid termination with Superbasics Limit too small):					
If $\mathrm{n}<=5000: \max (50, n+1)$					
If $\mathrm{n}>5000: \max \left(500, n+200-\operatorname{size}(A, 1)-\right.$ length $\left.\left(c_{L}\right)\right)$					
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).					

Frequencies II

Table 7: The following fields are used:, continued

\#	SPECS keyword text	Lower	Default	Upper	Comment
51.	CHECK FREQUENCY	>0	60		
52.	EXPAND FREQUENCY	>0	10000		
53.	FACTORIZATION FREQUENCY	>0	50		
LU II					
63.	LU PARTIAL PIVOTING or LU COMPLETE PIVOTING or LU ROOK PIVOTING	0	0	3	$\begin{aligned} & 0=\text { partial } \\ & 1=\text { complete } \\ & 2=\text { rook } \end{aligned}$
Additional parameters					
67.	AIJ TOLERANCE Elements $\|a(i, j)\|<A I J$ TOLERA	$\begin{aligned} & 0 \\ & \text { as } 0 \end{aligned}$	1E-10		
70.	SUBSPACE Convergence tolerance in current su another constraint.	>0 cons	0.5 moving	1	Subspace tolerance

3.2 LP-MINOS

3.2.1 Using TOMLAB

Purpose

minosLPTL solves linear optimization problems defined as

$$
\begin{array}{ll}
\min _{x} & f(x)=c^{T} x \\
& \tag{7}\\
s / t & x_{L} \leq x \leq x_{U}, \\
b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.
Calling Syntax
Using the driver routine tomRun:
Prob $=\operatorname{lpAssign}(. .$.$) ;$
Result = tomRun('lp-minos', Prob ...);
or
Prob $=\operatorname{ProbCheck}(\ldots$.$) ;$
Result $=$ minosLPTL $($ Prob $)$;
Call Prob $=\operatorname{lpAssign}(\ldots)$ or Prob $=$ ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:
$x_{-} L, x_{-} U \quad$ Bounds on variables.
$b_{-} L, b_{-} U \quad$ Bounds on linear constraints.
$A \quad$ Linear constraint matrix.
QP.c Linear coefficients in objective function.
PriLevOpt Print level.
WarmStart If true, use warm start, otherwise cold start.
SOL.xs Solution and slacks from previous run.
SOL.hs State for solution and slacks from previous run.
SOL.nS Number of superbasics from previous run (always 0 for LP).

Prob, The following fields are used:, continued

SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is 10 MB of memory. Default $\mathrm{n}+\mathrm{m}$ (number of variables + linear constraints).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.
SOL.optPar Elements >-999 takes precedence over corresponding TOMLAB params. See Table 24.

Description of Outputs

Result, The following fields are used:

Result	The structure with results (see ResultDef.m).
$f_{-} k$	Function value at optimum.
$x _k$	Solution vector.
x _0	Initial solution vector.
$g_{-} k$	Gradient c (linear objective).
xState bState	State of variables. Free $==0$; On lower $==1$; On upper $==2$; Fixed $==3$; State of linear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
$v_{-} k$	Lagrangian multipliers (for bounds + dual solution vector).
ExitFlag	Exit status from minos.m (similar to TOMLAB).
Inform	Result of MINOS run.
	0 Optimal solution found. 1 The problem is infeasible. 2 The problem is unbounded (or badly scaled). 3 Too many iterations. 4 Apparent stall. The solution has not changed for a large number of iterations (e.g. 1000). 5 The Superbasics limit is too small. 6 User requested termination (by returning bad value). 7 Gradient seems to be giving incorrect derivatives. 8 Jacobian seems to be giving incorrect derivatives. 9 The current point cannot be improved.

Result, The following fields are used:, continued

10 Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as inform $=9$.
13 Near-optimal solution found. Should probably be treated as inform $=9$.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
rc

Iter Number of iterations.
FuncEv Number of function evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver \quad Name of the solver (minos).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.
SOL.hs Basis status of variables + constraints ($\mathrm{n}+\mathrm{m} \times 1$ vector). State of variables: $0=$ nonbasic (on bl), $1=$ nonbasic (on bu) $2=$ superbasic (between bounds), $3=$ basic (between bounds).
Basic and superbasic variables may be outside their bounds by as much as the Feasibility tolerance. Note that if scaling is specified, the Feasibility tolerance applies to the variables of the scaled problem. In this case, the variables of the original problem may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is very badly scaled. Check the "Primal infeasibility" printed after the EXIT message.

Result, The following fields are used:, continued

Very occasionally some nonbasic variables may be outside their bounds by as much as the Feasibility tolerance, and there may be some nonbasics for which $\mathrm{xn}(j)$ lies strictly between its bounds.

If ninf >0, some basic and superbasic variables may be outside their bounds by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS \# of superbasics.

SOL.nInf \# of infeasibilities.

SOL.sInf Sum of infeasibilities.

3.2.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 10: The following fields are used:

\# SPECS keyword text	Lower	Default	Upper	Comment
Printing				
1. PRINT LEVEL	0	0	1	$0=$ brief $1=\mathrm{LU}$ stats
Frequencies I				
5. PRINT FREQUENCY	0	100		
6. SUMMARY FREQUENCY	0	100		
7. SOLUTION YES/NO	0	1	1	$1=\mathrm{YES} ; 0=\mathrm{NO}$
8. SUPPRESS PARAMETERS	0	0	1	$1=$ True
Convergence Tolerances				
10. OPTIMALITY TOLERANCE	>0	1E-6		
11. FEASIBILITY TOLERANCE	>0	1E-6		
Scaling				
18. SCALE OPTION	0	2	2	0,1,2
See Section 6.2 for more information.				
19. SCALE TOLERANCE	>0	0.9	<1	
20. SCALE PRINT	0	0	1	$1=$ True
21. CRASH TOLERANCE	0	0.1	<1	
LU I				
23. LU FACTORIZATION TOLERANCE	1	100		
24. LU UPDATE TOLERANCE	1	10		
25. LU SWAP TOLERANCE	>0	$1.22 \mathrm{e}-4$		$e p s^{1 / 4}$
26. LU SINGULARITY TOLERANCE	>0	$3.25 \mathrm{E}-11$		$e p s^{0.67}$
LP parameters				
27. PIVOT TOLERANCE	>0	$3.25 \mathrm{E}-11$		eps ${ }^{0.67}$
28. CRASH OPTION	0	3	3	0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE	0.0	0.0		during Phase 1
30. ITERATIONS LIMIT	0	3 m		
31. PARTIAL PRICE	1	10		

Table 10: The following fields are used:, continued

$\#$	SPECS keyword text	Lower	Default	Upper	Comment

Solve with tight or loose tols (applies to LP but probably not useful)
44. COMPLETION
$0 \quad 1$
$10=$ PARTIAL
$1=$ FULL

Frequencies II

51.	CHECK FREQUENCY	>0	60
52.	EXPAND FREQUENCY	>0	10000
53.	FACTORIZATION FREQUENCY	>0	100

LU II

| 63.LU PARTIAL PIVOTING
 or LU COMPLETE PIVOTING
 or LU ROOK PIVOTING | 0 | 0 | 3 |
| :--- | :--- | :--- | :--- | | $0=$ partial |
| :--- |
| $1=$ complete |
| $2=$ rook |

Additional parameters
67. AIJ TOLERANCE $0 \quad 1 \mathrm{E}-10$

Elements $|a(i, j)|<A I J$ TOLERANCE are set as 0
70. SUBSPACE $>0 \quad 0.5 \quad 1 \quad$ Subspace tolerance

Convergence tolerance in current subspace before consider moving off another constraint.

3.3 QP-MINOS

3.3.1 Using TOMLAB

Purpose

minos $Q P T L$ solves quadratic optimization problems defined as

$$
\begin{array}{ll}
\min _{x} & f(x)=\frac{1}{2} x^{T} F x+c^{T} x \\
& \tag{8}\\
s / t & x_{L} \leq x \leq x_{U}, \\
b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, F \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.

Calling Syntax

Using the driver routine tomRun:
Prob $=$ qpAssign (...);
Result $=$ tomRun('qp-minos', Prob ...);
or

Prob $=\operatorname{ProbCheck}(\ldots$);
Result $=\operatorname{minosQPTL}($ Prob $) ;$
Call Prob $=$ qpAssign (...) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:
$x_{-} L, x_{-} U \quad$ Bounds on variables.
$b_{-} L, b_{-} U \quad$ Bounds on linear constraints.
$A \quad$ Linear constraint matrix.
QP.c Linear coefficients in objective function.
QP.F Quadratic matrix of size nnObj x nnObj. $\mathrm{nnObj}<\mathrm{n}$ is OK.
PriLevOpt Print level.
WarmStart If true, use warm start, otherwise cold start.
SOL.xs Solution and slacks from previous run.

Prob, The following fields are used:, continued

SOL.hs State for solution and slacks from previous run.
$S O L . n S \quad$ Number of superbasics from previous run.
SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is 10 MB of memory. Default $\mathrm{n}+\mathrm{m}$ (number of variables + linear constraints).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.
SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.
SOL.optPar Elements >-999 takes precedence over corresponding TOMLAB params. See Table 24.

Description of Outputs

Result, The following fields are used:

Result	The structure with results (see ResultDef.m).
$f_{-} k$	Function value at optimum.
$x _k$	Solution vector.
x_0	Initial solution vector.
$g_{-} k$	Gradient c (linear objective).
xState bState	State of variables. Free $==0$; On lower $==1$; On upper $==2$; Fixed $==3$; State of linear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
$v_{-} k$	Lagrangian multipliers (for bounds + dual solution vector).
ExitFlag	Exit status from minos.m (similar to TOMLAB).
Inform	Result of MINOS run.
	0 Optimal solution found. 1 The problem is infeasible. 2 The problem is unbounded (or badly scaled). 3 Too many iterations. 4 Apparent stall. The solution has not changed for a large number of iterations (e.g. 1000). 5 The Superbasics limit is too small.

Result, The following fields are used:, continued

6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as inform $=9$.
13 Near-optimal solution found. Should probably be treated as inform $=9$.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
$r c \quad$ Vector of reduced costs, $g-(A I)^{T} \pi$, where g is the gradient of the objective function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If ninf $=0$, the last m entries are $-\pi$. Reduced costs vector is of $n+m$ length.

Iter Number of iterations.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0 .

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. NOT SET.

Solver \quad Name of the solver (minos).
SolverAlgorithm Description of the solver.
SOL.xs Solution and slack variables.

SOL.hs Basis status of variables + constraints $(\mathrm{n}+\mathrm{m} \times 1$ vector $)$. State of variables: $0=$ nonbasic (on bl), $1=$ nonbasic (on bu) $2=$ superbasic (between bounds), $3=$ basic (between bounds).

Result, The following fields are used:, continued

Basic and superbasic variables may be outside their bounds by as much as the Feasibility tolerance. Note that if scaling is specified, the Feasibility tolerance applies to the variables of the scaled problem. In this case, the variables of the original problem may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is very badly scaled. Check the "Primal infeasibility" printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much as the Feasibility tolerance, and there may be some nonbasics for which $\mathrm{xn}(j)$ lies strictly between its bounds.

If ninf >0, some basic and superbasic variables may be outside their bounds by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS \# of superbasics.

SOL.nInf \# of infeasibilities.

SOL.sInf Sum of infeasibilities.

3.3.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 13: The following fields are used:

\# SPECS keyword text	Lower	Default	Upper	Comment
Printing				
1. PRINT LEVEL	0	0	1	$0=$ brief $1=\mathrm{LU}$ stats
Frequencies I				
5. PRINT FREQUENCY	0	100		
6. SUMMARY FREQUENCY	0	1		
7. SOLUTION YES/NO	0	1	1	$1=\mathrm{YES} ; 0=\mathrm{NO}$
8. SUPPRESS PARAMETERS	0	0	1	$1=$ True
Convergence Tolerances				
10. OPTIMALITY TOLERANCE	>0	$\max \left(1 E-6,\left(10 e p s_{R}\right)^{0.5}\right)=1.73 \mathrm{E}-6$		
11. FEASIBILITY TOLERANCE	>0	1E-6		
Derivative checking				
13. VERIFY LEVEL	-1	-1	3	$-1,0,1,2,3$
14. START OBJECTIVE CHECK AT COL	0	1	nnObj	
15. STOP OBJECTIVE CHECK AT COL	0	nnObj	nnObj	
Scaling				
18. SCALE OPTION	0	1	2	
See Section 6.2 for more information.				
19. SCALE TOLERANCE	>0	0.9	<1	
20. SCALE PRINT	0	0	1	$1=$ True
21. CRASH TOLERANCE	0	0.1	<1	
Other Tolerances				
22. LINESEARCH TOLERANCE	>0	0.1	<1	
LU I				
23. LU FACTOR TOLERANCE	1	5.0		
24. LU UPDATE TOLERANCE	1	5.0		
25. LU SWAP TOLERANCE	>0	$1.22 \mathrm{E}-4$		$e p s^{1 / 4}$
26. LU SINGULARITY TOLERANCE	>0	$3.25 \mathrm{E}-11$		$e p s^{0.67}$

Table 13: The following fields are used:, continued

\#	SPECS keyword text	Lower	Default	Upper	Comment
LP parameters					
27.	PIVOT TOLERANCE	>0	$3.25 \mathrm{E}-11$		eps ${ }^{0.67}$
28.	CRASH OPTION	0	3	3	0,1,2,3
29.	WEIGHT ON LINEAR OBJECTIVE	0.0	0.0		during Phase 1
30.	ITERATIONS LIMIT	0	$3(\mathrm{~m}+\mathrm{m} 3)$	$+10 \mathrm{nnL}$	
$\mathrm{m} 3=1$ if length(Prob.QP.c) >0, otherwise $\mathrm{m} 3=0$.					
TOMLAB default: $\max (10000,3(\mathrm{~m}+\mathrm{m} 3)+10 \mathrm{nnL})$.					
31.	PARTIAL PRICE	1	1		
32.	MAXIMIZE	0	0	1	$1=$ maximize
Reduced-gradient method					
	DERIVATIVE LEVEL	0	3	3	0,1,2,3
Is always set by minosqpTL to 3 .					
41.	FUNCTION PRECISION	>0	$3.0 \mathrm{E}-13$		$e p s^{0.8}=e p s_{R}$
42.	DIFFERENCE INTERVAL	>0	$5.48 \mathrm{E}-8$		$e p s^{0.4}$
43.	CENTRAL DIFFERENCE INTERVAL	>0	$6.69 \mathrm{E}-5$		eps ${ }^{0.8 / 3}$
44.	COMPLETION	0	$\begin{aligned} & 1 \mathrm{LC}, 0 \\ & \mathrm{NC} \end{aligned}$		$\begin{aligned} & 0=\text { PARTIAL } \\ & 1=\text { FULL } \end{aligned}$
45.	UNBOUNDED STEP SIZE	>0	1E10		
46.	UNBOUNDED OBJECTIVE	>0	1E20		
Hessian approximation					
	HESSIAN DIMENSION	1	50	$1+\mathrm{nnL}$	
48.	SUPERBASICS LIMIT	1	50	$1+\mathrm{nnL}$	
TOMLAB default (to avoid termination with Superbasics Limit too small):					
If $\mathrm{n}<=5000: \max (50, n+1)$					
If $\mathrm{n}>5000: \max \left(500, n+200-\operatorname{size}(A, 1)-\right.$ length $\left.\left(c_{L}\right)\right)$					
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).					
It will then be set to the same value as the SUPERBASICS LIMIT by MINOS.					
Frequencies II					
	CHECK FREQUENCY	>0	60		
	EXPAND FREQUENCY	>0	10000		
53.	FACTORIZATION FREQUENCY	>0	50		
LU II					
	LU PARTIAL PIVOTING or LU COMPLETE PIVOTING or LU ROOK PIVOTING	0	0	3	$\begin{aligned} & 0=\text { partial } \\ & 1=\text { complete } \\ & 2=\text { rook } \end{aligned}$
Additional parameters					
Elements $\|a(i, j)\|<A I J$ TOLERANCE are set as 0					

Table 13: The following fields are used:, continued

$\#$	SPECS keyword text	Lower	Default	Upper	Comment

70. SUBSPACE $\quad>0 \quad 0.5 \quad 1 \quad$ Subspace tolerance

Convergence tolerance in current subspace before consider moving off another constraint.

3.4 LPOPT

3.4.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100% sure that no other solvers will be used for the problem. Please refer to Section 3.4.2 for information on how to use LPOPT with TOMLAB.

Purpose

lpopt solves dense linear optimization problems defined as

$$
\begin{array}{ll}
\min _{x} & f(x)=c^{T} x \\
s / t & b_{L} \leq x \tag{9}\\
\leq x \leq b_{U}
\end{array}
$$

where $c, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{n+m_{1}}$.

If isempty (c) (or all($\mathrm{c}==0$), then a feasible point problem is solved (FP). Otherwise a standard linear programming problem is solved (LP)

Calling Syntax

[Inform, Iter, iState, Ax, cLamda, Obj, x] = lpopt(A, bl, bu, c, Warm, x, iState, SpecsFile, PrintFile, SummFile, PriLev, optPar);

Description of Inputs

The following fields are used:
$A \quad$ Constraint matrix, $\mathrm{m} x \mathrm{n}$ (DENSE).
$b l \quad$ Lower bounds on $(\mathrm{x}, \mathrm{Ax}), \mathrm{m}+\mathrm{n} \times 1$ vector (DENSE).
$b u \quad$ Upper bounds on $(\mathrm{x}, \mathrm{Ax}), \mathrm{m}+\mathrm{n} \mathrm{x} 1$ vector (DENSE).
$c \quad$ Linear objective function cost coeffs, $\mathrm{n} \times 1$ (DENSE). If length(c) $<\mathrm{n}$, setting $c(1: n)=0$;

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start, then x and iState must be set properly. Normally the values from last call to lpopt are used.
$x \quad$ Initial estimate of solution vector x . (DENSE) If length(x) i n , the rest of the elements in x are set to 0 .
iState Working set (if Warm start) $(\mathrm{n}+\mathrm{m}) \mathrm{x} 1$ (DENSE) If length(iState) i $\mathrm{n}+\mathrm{m}$, setting iState $(1: n+m)=0$;

The following fields are used:, continued
iState $(i)=0$: Corresponding constraint not in the initial QP working set.
iState $(i)=1$: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState $(i)=3$: Equality constraint in the initial QP working set, $\mathrm{bl}(\mathrm{i})==\mathrm{bu}(\mathrm{i})$.

SpecsFile \quad Name of the OPTIONS File, see TOMLAB Guide.
PrintFile Name of the Print file. Name includes the path, maximal number of characters $=500$.

SummFile Name of the Summary file. Name includes the path, maximal number of characters $=500$.

PriLev Print level in the lpopt MEX-interface.
$=0$ Silent.
$=1$ Summary information.
$=2$ More detailed information.
if isempty(PriLev), set as 0 .
optPar Vector with optimization parameters overriding defaults and the optionally specified SPECS file. If length(optPar) ; 62, lpopt sets the rest of the values to missing value (-999).

Description of Outputs

The following fields are used:

Inform Result of LPOPT run.
$0=$ Optimal solution with unique minimizer found.
$1=$ A dead point was reached.
$2=$ The solution appears to be unbounded (or badly scaled).
$3=$ The constraints could not be satisfied. The problem has no feasible solu-
tion.
$4=$ Too many iterations, in either phase.
$5=$ The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is too be made.
$6=$ An input parameter was invalid.
$7=$ The problem type was not recognized.
Other $=$ UNKNOWN LPOPT Inform value.

Iter Number of iterations.
iState Status of working set, se input description of iState.

The following fields are used:, continued
$A x \quad \mathrm{~A}^{*} \mathrm{x}$.
$c L a m d a$ Lagrangian multipliers (dual solution vector) (m x 1 vector).

Obj Objective function value at optimum.
x
Solution vector with decision variable values (n x 1 vector).

3.4.2 Using TOMLAB

Purpose

lpoptTL solves dense linear optimization problems defined as

$$
\begin{array}{rl}
\min _{x} & f(x)=c^{T} x \\
s / t \quad & x_{L} \leq x \leq x_{U} \tag{10}\\
& b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.

Calling Syntax

Using the driver routine tomRun:

Prob $=\operatorname{lpAssign}(\ldots)$;
Result $=$ tomRun('lpopt', Prob...);
or

Prob = ProbCheck (...);
Result $=$ lpoptTL(Prob);
Call Prob $=\operatorname{lpAssign}(\ldots)$ or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:
$x_{-} L, x_{-} U \quad$ Bounds on variables.
$b_{-} L, b_{-} U \quad$ Bounds on linear constraints.
$A \quad$ Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.
SOL.xs Solution and slacks from previous run.
SOL.iState Working set (if Warm start) ($\mathrm{n}+\mathrm{m}$) x 1 (DENSE) If length (iState) i $\mathrm{n}+\mathrm{m}$, setting iState $(1: n+m)=0$;
iState (i)=0: Corresponding constraint not in the initial QP working set.
iState (i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: \quad Inequality constraint at its upper bound in QP working set.

Prob, The following fields are used:, continued
iState $(i)=3: \quad$ Equality constraint in the initial QP working set, $\mathrm{bl}(\mathrm{i})==\mathrm{bu}(\mathrm{i})$.

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See Table 24.

Description of Outputs

Result, The following fields are used:

Result	The structure with results (see ResultDef.m).
$f_{-} k$	Function value at optimum.
$x _k$	Solution vector.
x_0	Initial solution vector.
$g_{-} k$	Gradient c (linear objective).
xState bState	State of variables. Free $==0$; On lower $==1$; On upper $==2$; Fixed $==3$; State of linear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
$v_{-} k$	Lagrangian multipliers (for bounds + dual solution vector).
ExitFlag	Exit status from lpopt.m (similar to TOMLAB).
Inform	LPOPT information parameter.
	$0=$ Optimal solution with unique minimizer found.
	$1=$ A dead point was reached.
	$2=$ The solution appears to be unbounded (or badly scaled).
	$3=$ The constraints could not be satisfied. The problem has no feasible solution.
	$4=$ Too many iterations, in either phase.
	$5=$ The Maximum degrees of freedom is too small. The reduced Hessian must expand if further progress is too be made.
	$6=$ An input parameter was invalid.
	$7=$ The problem type was not recognized.
	Other $=$ UNKNOWN LPOPT Inform value.

Result, The following fields are used:, continued
\(\left.$$
\begin{array}{ll}\text { Iter } & \text { Number of iterations. } \\
\text { FuncEv } \\
\text { ConstrEv }\end{array}
$$ \quad \begin{array}{l}Number of function evaluations.

Number of constraint evaluations.\end{array}\right\}\)| QP.B | Basis vector in TOMLAB QP standard. |
| :--- | :--- |
| MinorIter | Number of minor iterations. Not Set. |
| Solver
 SolverAlgorithm | Name of the solver (lpopt).
 Description of the solver. |
| SOL.xs | Solution and slack variables. |
| SOL.iState | State for variables and constraints in iState. |

3.4.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. No call is then done to internal routines lpprmi, lpprmr and lpprm. The default value will then be used by LPOPT, unless the value is altered in the SPECS file.

Description of Inputs

Table 18: The following fields are used:

\#	SPECS keyword text	Lower	Default	Upper	Comment
Printing					
1.	PRINT LEVEL	0	10		0,1,5,10,20,30
Convergence Tolerances					
In LPOPT/QPOPT: macheps $=2^{-53}$; eps in Matlab is $=2^{-52}$;					
10.	OPTIMALITY TOLERANCE	>0	$1.05 \mathrm{E}-8$		sqrt(macheps)
11.	FEASIBILITY TOLERANCE	>0	$1.05 \mathrm{E}-8$		sqrt(macheps)
Other Tolerances					
21.	CRASH TOLERANCE	>0	0.01	<1	
27.	RANK TOLERANCE	>0	$1.11 \mathrm{E}-14$		100*macheps
30.	ITERATION LIMIT	>0	$\max (2000$	$(\mathrm{n}+\mathrm{m})$)	
33.	MIN SUM YES (or NO)	0	0	1	$1=\mathrm{min}$ infeas.
IF 1 (MIN SUM YES), minimize the infeasibilities before return.					
36.	FEASIBILITY PHASE ITERATIONS	>0	$\max (2000$	$(\mathrm{n}+\mathrm{m})$)	
45.	INFINITE STEP SIZE	>0	1E20		
Frequencies					
51.	CHECK FREQUENCY	>0	50		
52.	EXPAND FREQUENCY	>0	5		

3.5 QPOPT

3.5.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100% sure that no other solvers will be used for the problem. Please refer to Section 3.5.2 for information on how to use QPOPT with TOMLAB.

Purpose

qpopt solves dense quadratic optimization problems defined as

$$
\begin{array}{ll}
\min _{x} & f(x)=\frac{1}{2} x^{T} F x+c^{T} x+d^{T} x \\
s / t & b_{L} \leq A x \leq b_{U} \tag{11}
\end{array}
$$

where $c, x \in \mathbb{R}^{n}, F \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{n+m_{1}}$.
If isempty (H) and isempty (c), then a feasible point problem is solved (FP).
If isempty (H), then a linear programming problem is solved (LP).
If isempty (c), then a quadratic programming problem is solved (QP1).
Otherwise a standard quadratic programming problem is solved (QP2).

Calling Syntax

[Inform, Iter, iState, Ax, cLamda, Obj, x] = qpopt (H, A, bl, bu, c, Warm, x, iState, SpecsFile, PrintFile, SummFile, PriLev, optPar);

Description of Inputs

The following fields are used:
$H \quad$ Matrix H in quadratic part of objective function (SPARSE or DENSE).
$A \quad$ Constraint matrix, mx n . (DENSE).
$b l \quad$ Lower bounds on (x, Ax), m+n x 1 vector (DENSE).
$b u \quad$ Upper bounds on (x, Ax), m+n x 1 vector (DENSE).
$c \quad$ Linear objective function cost coeffs, $\mathrm{n} \times 1$. (DENSE) If length $(\mathrm{c})<\mathrm{n}$, setting $\mathrm{c}(1: \mathrm{n})=0$;

Warm If Warm >0, then warm start, otherwise cold Start. Default 0. If warm start, then x and iState must be set properly. Normally the values from last call to qpopt are used.
x
Initial estimate of solution vector x . (DENSE) If length(x) i , the rest of the elements in x are set to 0 .

The following fields are used:, continued
iState Working set (if Warm start) ($\mathrm{n}+\mathrm{m}$) x 1 (DENSE) If length(iState) i $\mathrm{n}+\mathrm{m}$, setting iState $(1: n+m)=0$;
iState $(i)=0$: Corresponding constraint not in the initial QP working set.
iState (i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState $(i)=3: \quad$ Equality constraint in the initial QP working set, $\mathrm{bl}(\mathrm{i})==\mathrm{bu}(\mathrm{i})$.
SpecsFile \quad Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters $=500$.

SummFile Name of the Summary file. Name includes the path, maximal number of characters $=500$.

PriLev Print level in the qpopt MEX-interface.
$=0$ Silent.
$=1$ Summary information.
$=2$ More detailed information.
if isempty(PriLev), set as 0 .
optPar Vector with optimization parameters overriding defaults and the optionally specified SPECS file. If length(optPar) ; 62, qpopt sets the rest of the values to missing value (-999).

Description of Outputs

The following fields are used:

Inform Result of QPOPT run. $0=$ Optimal solution found.

0: x is a unique local minimizer. This means that x is feasible (it satisfies the constraints to the accuracy requested by the Feasibility tolerance), the reduced gradient is negligible, the Lagrange multipliers are optimal, and the reduced Hessian is positive definite. If H is positive definite or positive semidefinite, x is a global minimizer. (All other feasible points give a higher objective value.) Otherwise, the solution is a local minimizer, which may or may not be global. (All other points in the immediate neighborhood give a higher objective.)

The following fields are used:, continued

1: A dead-point was reached. This might occur if H is not sufficiently positive definite. If H is positive semidefinite, the solution is a weak minimizer. (The objective value is a global optimum, but there may be infinitely many neighboring points with the same objective value.) If H is indefinite, a feasible direction of decrease may or may not exist (so the point may not be a local or weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is feasible, the reduced gradient is negligible, the Lagrange multipliers are optimal, and the reduced Hessian is positive semidefinite.) However, the reduced Hessian is nearly singular, and/or there are some very small multipliers. If H is indefinite, x is not necessarily a local solution of the problem. Verification of optimality requires further information, and is in general an NP-hard problem [20].

2: The solution appears to be unbounded. The objective is not bounded below in the feasible region, if the elements of x are allowed to be arbitrarily large. This occurs if a step larger than Infinite Step would have to be taken in order to continue the algorithm, or the next step would result in a component of x having magnitude larger than Infinite Bound. It should not occur if H is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred. See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must expand if further progress is to be made.

6: An input parameter was invalid.

7: The Problem type was not recognized.

Iter Number of iterations.
iState Status of working set, se input description of iState.
$A x \quad \mathrm{~A}^{*} \mathrm{x}$.
cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).
Obj Objective function value at optimum.
$x \quad$ Solution vector with decision variable values (n x 1 vector).

The following fields are used:, continued

3.5.2 Using TOMLAB

Purpose

qpoptTL solves quadratic optimization problems defined as

$$
\begin{array}{rl}
\min _{x} & f(x)=\frac{1}{2} x^{T} F x+c^{T} x \\
s / t & x_{L} \leq x \leq x_{U} \tag{12}\\
& b_{L} \leq A x \leq b_{U}
\end{array}
$$

where $c, x, x_{L}, x_{U} \in \mathbb{R}^{n}, F \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{m_{1} \times n}$, and $b_{L}, b_{U} \in \mathbb{R}^{m_{1}}$.

Calling Syntax

Using the driver routine tomRun:
Prob $=\mathrm{qpAssign}(. .$.$) ;$
Result $=$ tomRun('qpopt', Prob...);
or

Prob $=$ ProbCheck(...);
Result $=$ qpoptTL(Prob);

Call Prob $=\mathrm{qpAssign}(\ldots)$ or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:
$x_{-} L, x_{-} U \quad$ Bounds on variables.
$b_{-} L, b_{-} U \quad$ Bounds on linear constraints.
$A \quad$ Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj $\mathrm{x} n \mathrm{nnObj} . \mathrm{nnObj}<\mathrm{n}$ is OK.
PriLevOpt Print level.
WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.
SOL.iState Working set (if Warm start) ($\mathrm{n}+\mathrm{m}$) x 1 (DENSE) If length(iState) i $\mathrm{n}+\mathrm{m}$, setting iState $(1: n+m)=0$;

Prob, The following fields are used:, continued
iState $(i)=0$: Corresponding constraint not in the initial QP working set.
iState (i)=1: Inequality constraint at its lower bound in QP working set.
iState (i)=2: \quad Inequality constraint at its upper bound in QP working set.
iState $(i)=3: \quad$ Equality constraint in the initial QP working set, $\mathrm{bl}(\mathrm{i})==\mathrm{bu}(\mathrm{i})$.

SOL.cLamda Lagrangian multipliers from previous run (Warm start).
SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.
SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See Table 24.

Description of Outputs

Result, The following fields are used:
Result The structure with results (see ResultDef.m).
$f_{-} k \quad$ Function value at optimum.
$x _k \quad$ Solution vector.
$x_{-} 0 \quad$ Initial solution vector.
$g_{-} k \quad$ Exact gradient computed at optimum.
x State \quad State of variables. Free $==0$; On lower $==1 ;$ On upper $==2$; Fixed $==3$;
b State \quad State of linear constraints. Free $==0$; Lower $==1$; Upper $==2$; Equality $==3$;
$v_{-} k \quad$ Lagrangian multipliers (for bounds + dual solution vector).
ExitFlag Exit status from qpopt.m (similar to TOMLAB).
Inform \quad Result of QPOPT run. $0=$ Optimal solution found.

Result, The following fields are used:, continued
$0: \mathrm{x}$ is a unique local minimizer. This means that x is feasible (it satisfies the constraints to the accuracy requested by the Feasibility tolerance), the reduced gradient is negligible, the Lagrange multipliers are optimal, and the reduced Hessian is positive definite. If H is positive definite or positive semidefinite, x is a global minimizer. (All other feasible points give a higher objective value.) Otherwise, the solution is a local minimizer, which may or may not be global. (All other points in the immediate neighborhood give a higher objective.)
1: A dead-point was reached. This might occur if H is not sufficiently positive definite. If H is positive semidefinite, the solution is a weak minimizer. (The objective value is a global optimum, but there may be infinitely many neighboring points with the same objective value.) If H is indefinite, a feasible direction of decrease may or may not exist (so the point may not be a local or weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is feasible, the reduced gradient is negligible, the Lagrange multipliers are optimal, and the reduced Hessian is positive semidefinite.) However, the reduced Hessian is nearly singular, and/or there are some very small multipliers. If H is indefinite, x is not necessarily a local solution of the problem. Verification of optimality requires further information, and is in general an NP-hard problem [20].

2: The solution appears to be unbounded. The objective is not bounded below in the feasible region, if the elements of x are allowed to be arbitrarily large. This occurs if a step larger than Infinite Step would have to be taken in order to continue the algorithm, or the next step would result in a component of x having magnitude larger than Infinite Bound. It should not occur if H is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred. See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must expand if further progress is to be made.

6: An input parameter was invalid.

7: The Problem type was not recognized.
rc
Reduced costs. If $\operatorname{ninf}=0$, last $\mathrm{m}==-\mathrm{v} \mathrm{_k}$.

Iter Number of iterations.

Result, The following fields are used:, continued

FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0 .

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. Not Set.

Solver \quad Name of the solver (QPOPT).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.cLamda Lagrangian multipliers.

SOL.iState State for variables and constraints in iState.

3.5.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be used by QPOPT, unless the value is altered in the SPECS file.

Description of Inputs

Table 23: The following fields are used:

\#	SPECS keyword text	Lower	Default	Upper	Comment
Printing					
1.	PRINT LEVEL	0	10		0,1,5,10,20,30
Convergence Tolerances					
In LPOPT/QPOPT: macheps $=2^{-53}$; eps in Matlab is $=2^{-52}$;					
10.	OPTIMALITY TOLERANCE	>0	$1.05 \mathrm{E}-8$		sqrt(macheps)
11.	FEASIBILITY TOLERANCE	>0	$1.05 \mathrm{E}-8$		sqrt(macheps)
Other Tolerances					
21.	CRASH TOLERANCE	0	0.01	<1	
27.	RANK TOLERANCE	>0	1.1E-14		$100 *$ macheps
30.	ITERATION LIMIT	>0	$\max (200$	($\mathrm{n}+\mathrm{m}$) $)$	
33.	MIN SUM YES (or NO)	0	0	1	$1=\mathrm{min}$ infeas.
IF 1 (MIN SUM YES), minimize the infeasibilities before return.					
36.	FEASIBILITY PHASE ITERATIONS	>0	$\max (200$	($\mathrm{n}+\mathrm{m}$) $)$	
45.	INFINITE STEP SIZE	>0	1E20		
47.	HESSIAN ROWS	0	n	n	0 if FP or LP
Implicitly given by the dimensions of H in the call from Matlab					
ONLY USED IF HESSIAN ROWS $==\mathrm{N}$					
Frequencies					
51.	CHECK FREQUENCY	>0	50		
52.	EXPAND FREQUENCY	>0	5		

4 Using the TOMLAB /MINOS Solvers

This section discusses the use of the TOMLAB solvers from Stanford System Optimization Laboratory (SOL). In order to use these solvers efficiently, it is recommended to read the corresponding solver details as well. It is important to do help on the m-files corresponding to each solver as well as the TOMLAB interface routine. The names for MINOS solver are minos.m and minosTL.m, and similar for other solvers.

To learn all the different parameter settings for a solver it is useful to run the GUI, where all parameters are selectable, and all default values are shown. Furthermore there are short help available for the different solver parameters in the drag menus. Even if the user is not using the GUI to solve the particular user problem, it might be useful to run the test problems defined in TOMLAB to learn how to use the SOL solvers in the most efficient way.

4.1 Setting Solver Parameters

To handle the use of the SOL solvers, a special field in the Prob structure, Prob.SOL, is used to send information to the SOL solvers. It is also used to store the information needed for warm starts of the SOL solvers.
The vector Prob.SOL.optPar of length 71 holds most of the different parameters that control the performance of the SOL solvers. All parameters have default values. If calling the SOL solver directly, not using TOMLAB, the user should set the values wanted in the optPar vector. The rest should have the value -999 , which gives the default value used by the solver. For information on other parameters that could effect the solution process see the Table 24. The TOMLAB interface routine always has the name of the routine, with the additional two letters $T L$, e.g. for MINOS the TOMLAB interface routine is minosTL.
Other important fields to set when using the SOL solvers are the print and summary files that the solvers create. These files are very important to look through if any problems are occurring, to find what the causes might be, and if any warnings or errors are reported from the SOL solvers. To create a print and summary file, one example when running MINOS is the following statements

```
Prob.SOL.optPar(1) = 111111; % Maximal print level
Prob.SOL.PrintFile = 'minos.pri' % Print file called minos.pri
Prob.SOL.SummFile = 'minos.sum' % Summary file called minos.sum
Prob.NumDiff = 6; % Tell TOMLAB that minos is estimating
Prob.ConsDiff = 6; % all derivatives (gradient and Jacobian)
```

If $M I N O S$ is told that no derivatives are given, then $M I N O S$ will try to estimate them, and then TOMLAB must not do the same, i.e. Prob.NumDiff and Prob.ConsDiff must be set to six (internal solver estimation of derivatives). If MINOS is told that all derivatives are given, then TOMLAB might estimate them for MINOS using any of the five methods possible, or by using automatic differentiation.

4.2 Derivatives for the Solvers

The TOMLAB solvers from Stanford System Optimization Laboratory (SOL), have some useful special features, which influence the way that input is prepared to the solvers.

When defining the gradient vector and the constraint Jacobian matrix it is often the case that they are only partially known. The SOL solvers give the possibility to mark these elements. They will then be estimated by finite differences.

In TOMLAB the gradient and the constraint Jacobian matrix are defined in two separate routines. If any element is unknown, it is just marked with the standard Matlab element $N a N$. The TOMLAB SOL interface routines will estimate the NaN elements if Prob.CheckNaN is set to 1 .

If any gradient or constraint Jacobian element is infinite, in Matlab set as Inf or -Inf, this element is converted to a big number, 10^{20}, in the TOMLAB SOL interface.
The following applies to the sparse nonlinear programming solvers MINOS. When the constraint Jacobian matrix is sparse, then only the nonzero elements should be given. The sparse pattern is given as a sparse matrix Prob.ConsPattern. In this matrix nonzero elements are marking nonzero elements in the constraint Jacobian. This pattern is static, i.e. given once before the call to the SOL solver. One problem is that a sparse matrix in Matlab is dynamic, i.e. only the nonzero elements of the matrix are stored. As soon as an element becomes zero, the vector of nonzeros are decreased one element. A gradient element that is normally nonzero might become zero during the optimization. Therefore care must be taken by the interface to return the correct values, because the SOL solvers assume the possible non-zero elements of the constraint Jacobian to be returned in the correct order.
The TOMLAB interface assumes the following conventions for the constraint Jacobian matrix:

- If the user returns a sparse matrix, and the number of nonzeros are equal to the number of nonzeros in Prob.ConsPattern, no checks are done.
- If the user returns a sparse matrix, and the number of nonzeros are not equal to the number of nonzeros in Prob.ConsPattern, the interface is matching all elements in the sparse array to find which nonzeros they represent, and returns the correct vector of static nonzeros.
- If the user returns a sparse matrix, and has given no pattern of nonzeros in Prob.ConsPattern, i.e. it is an empty array, then the solver and the interface assumes a full, dense matrix and the interface makes a full matrix before returning the elements, column by column, to the solver.
- If the user returns a dense matrix, the interface just feeds all elements, column by column, back to the solver.
- If too few elements are returned, the solver will estimate the rest using finite differences.

4.3 Solver Output to Files

The SOL solvers print different amount of information on ASCII files, one Print File with more information, and one Summary File with less information. MINOS is using minospri.txt and minossum.txt as default names. The following example shows how to set new names, other than the default, for these files.

```
Prob.SOL.PrintFile = 'minosp.out'; % New name for Print File
Prob.SOL.SummFile = 'minoss.out'; % New name for Summary File
```

The other SOL solvers $\angle P O P T$ and $Q P O P T$, only define the Print File and Summary File if the user has defined names for them. See the help for each solver on how to set the correct print level and other parameters.

4.4 Warm Starts for the Solvers

In TOMLAB warm starts for the SOL solvers are automatically handled. The only thing needed is to call the routine WarmDefSOL after having solved the problem the first time, as the following principal example shows doing repeated calls to MINOS.

```
... % Define first problem
Result = tomRun('minos',Prob); % Solve problem at t=1
...
for t=2:N
    ... % Changes at time t in Prob structure
    Prob = WarmDefSOL('minos', Prob, Result(t-1));
    Result(t) = tomRun('minos',Prob); % Call tomRun to solve again
    ... % Postprocessing
end
```

The WarmDefSOL routine are setting the warm start flag Prob. WarmStart, as true.

Prob. WarmStart = 1;

It is also moving subfields on the Result.SOL structure into Prob.SOL for the next run. For MINOS the following commands are needed.

Prob.SOL.xs = Result. SOL.xs
Prob.SOL.hs = Result. SOL.hs
Prob.SOL.nS = Result.SOL.nS

For $\angle P O P T$ and $Q P O P T$ the commands are

Prob.SOL.xs = Result.SOL.xs
Prob.SOL.iState = Result.SOL.iState

Note that for all solvers the new initial value are taken from the field Prob.SOL.xs and any user change in the standard initial value Prob. $x_{-} 0$ is neglected.

4.5 Memory for the Solvers

Some users have encountered problems where SOL solvers report insufficient memory on machines where memory should not be an issue. The solvers estimate their internal memory requirements at startup. This estimate is not always large enough so the user might have to specify additional memory. This can be accomplished by

Prob.SOL.moremem $=1000$; \% or even larger if necessary

4.6 Parameters in Prob.optParam

Table 24: Information stored in the structure Prob.optParam. Default values in parenthesis.

Field	Description
PreSolve	Flag if presolve analysis is to be applied on linear constraints (0).
DiffInt	Difference interval in derivative estimates (used for Prob.NumDiff/ConsDiff -1 or 1).

Table 24: Information stored in the structure Prob.optParam, continued.

Field	Description		
CentralDiff	Central difference interval in derivative estimates (used for Prob.NumDiff/ConsDiff-2 or 2).		
splineSmooth	Smoothness parameter sent to the SPLINE Toolbox routine csaps.m when computing numerical approximations of the derivatives (0.4) (used for Prob.NumDiff/ConsDiff -3 or 3).		
VARsplineTol	Tolerance parameter sent to the SPLINE Toolbox routine spaps.m when computing numerical approximations of the derivatives (10-3) (used for Prob.NumDiff/ConsDiff -4 or 4).		If true, no more check is done on the structure. Set to true (=1) after first
:---			
call to solver (which then calls optParamSet).			

5 QPOPT details

5.1 Introduction

TOMLAB /QPOPT (hereafter referred to as QPOPT) is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced Hessian (see below). The method follows Gill and Murray [6] and is described in [17]. Here we briefly summarize the main features of the method.

5.1.1 Overview

QPOPT's method has a feasibility phase (finding a feasible point by minimizing the sum of infeasibilities) and an optimality phase (minimizing the quadratic objective function within the feasible region). The computations in both phases are performed by the same subroutines, but with different objective functions. The feasibility phase does not perform the standard simplex method; i.e., it does not necessarily find a vertex (with n constraints active), except in the LP case if $m_{L} \leq n$. Once an iterate is feasible, all subsequent iterates remain feasible. Once a vertex is reached, all subsequent iterates are at a vertex.

QPOPT is designed to be efficient when applied to a sequence of related problems-for example, within a sequential quadratic programming method for nonlinearly constrained optimization (e.g., the NPOPT package [18]). In particular, the user may specify an initial working set (the indices of the constraints believed to be satisfied exactly at the solution); see the discussion of Warm Start.

In general, an iterative process is required to solve a quadratic program. Each new iterate \bar{x} is defined by

$$
\begin{equation*}
\bar{x}=x+\alpha p, \tag{13}
\end{equation*}
$$

where the step length α is a non-negative scalar, and p is called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to the iteration index.)

5.1.2 The working set

At each point x, a working set of constraints is defined to be a linearly independent subset of the constraints that are satisfied "exactly" (to within the Feasibility tolerance). The working set is the current prediction of the constraints that hold with equality at a solution of LCQP. Let m_{w} denote the number of constraints in the working set (including bounds), and let W denote the associated $m_{w} \times n$ matrix of constraint gradients.
The definition of the search direction ensures that constraints in the working set remain unaltered for any value of the step length. Thus,

$$
\begin{equation*}
W p=0 . \tag{14}
\end{equation*}
$$

In order to compute p, a $T Q$ factorization of W is used:

$$
W Q=\left(\begin{array}{ll}
0 & T \tag{15}
\end{array}\right)
$$

where T is a nonsingular $m_{w} \times m_{w}$ upper-triangular matrix, and Q is an $n \times n$ nonsingular matrix constructed from a product of orthogonal transformations(see [13]). If the columns of Q are partitioned so that

$$
Q=\left(\begin{array}{ll}
Z & Y
\end{array}\right)
$$

where Y is $n \times m_{w}$ and Z is $n \times n_{Z}\left(\right.$ where $\left.n_{z}=n-m_{w}\right)$, then the columns of Z form a basis for the null space of W. Let n_{R} be an integer such that $0 \leq n_{R} \leq n_{Z}$, and let Z_{R} denote a matrix whose n_{R} columns are a subset
of the columns of Z. (The integer n_{R} is the quantity " Zr " in the printed output from qpopt). In many cases, Z_{R} will include all the columns of Z. The direction p will satisfy (14) if

$$
\begin{equation*}
p=Z_{R} p_{R} \tag{16}
\end{equation*}
$$

where p_{R} is any n_{R}-vector.

5.1.3 The reduced Hessian

Let g_{Q} and H_{Q} denote the transformed gradient and transformed Hessian:

$$
g_{Q}=Q^{T} g(x) \quad \text { and } \quad H_{Q}=Q^{T} H Q
$$

The first n_{R} elements of the vector g_{Q} will be denoted by g_{R}, and the first n_{R} rows and columns of the matrix H_{Q} will be denoted by H_{R}. The quantities g_{R} and H_{R} are known as the reduced gradient and reduced Hessian of $q(x)$, respectively. Roughly speaking, g_{R} and H_{R} describe the first and second derivatives of an unconstrained problem for the calculation of p_{R}.

At each iteration, a triangular factorization of H_{R} is available. If H_{R} is positive definite, $H_{R}=R^{T} R$, where R is the upper-triangular Cholesky factor of H_{R}. If H_{R} is not positive definite, $H_{R}=R^{T} D R$, where $D=\operatorname{diag}(1,1, \ldots$, $1, \omega)$, with $\omega \leq 0$.
In QPOPT, the computation is arranged so that the reduced-gradient vector is a multiple of e_{R}, a vector of all zeros except in the last (n_{R} th) position. This allows p_{R} in (16) to be computed from a single back-substitution,

$$
\begin{equation*}
R p_{R}=\gamma e_{R} \tag{17}
\end{equation*}
$$

where γ is a scalar whose definition depends on whether the reduced Hessian is positive definite at x. In the positive-definite case, $x+p$ is the minimizer of the objective function subject to the working-set constraints being treated as equalities. If H_{R} is not positive definite, p_{R} satisfies

$$
p_{R}^{T} H_{R} p_{R}<0 \operatorname{and} g_{R}^{T} p_{R} \leq 0
$$

allowing the objective function to be reduced by any step of the form $x+\alpha p, \alpha>0$.

5.1.4 Optimality conditions

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced gradient implies that x minimizes the quadratic objective when the constraints in the working set are treated as equalities. At a constrained stationary point, Lagrange multipliers λ are defined from the equations

$$
\begin{equation*}
W^{T} \lambda=g(x) \tag{18}
\end{equation*}
$$

A Lagrange multiplier λ_{j} corresponding to an inequality constraint in the working set is said to be optimal if $\lambda_{j} \leq \sigma$ when the associated constraint is at its upper bound, or if $\lambda_{j} \geq-\sigma$ when the associated constraint is at its lower bound, where σ depends on the Optimality tolerance. If a multiplier is non-optimal, the objective function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from the working set (with index Jdel; see Section 5.6).

If optimal multipliers occur during the feasibility phase but the sum of infeasibilities is not zero, there is no feasible point. The user can request QPOPT to continue until the sum of infeasibilities is minimized (see the discussion of Min sum). At such a point, the Lagrange multiplier λ_{j} corresponding to an inequality constraint in the working set will be such that $-(1+\sigma) \leq \lambda_{j} \leq \sigma$ when the associated constraint is at its upper bound, and $-\sigma \leq \lambda_{j} \leq 1+\sigma$ when the associated constraint is at its lower bound. Lagrange multipliers for equality constraints will satisfy $\left|\lambda_{j}\right| \leq 1+\sigma$.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction p is given by $Z_{R} p_{R}$ (see (17)). The step length is chosen to maintain feasibility with respect to the satisfied constraints. If H_{R} is positive definite and $x+p$ is feasible, α is defined to be one. In this case, the reduced gradient at \bar{x} will be zero, and Lagrange multipliers are computed. Otherwise, α is set to α_{M}, the step to the "nearest" constraint (with index Jadd; see Section 5.6). This constraint is added to the working set at the next iteration.
If the reduced Hessian H_{R} is not positive definite and α_{M} does not exist (i.e., no positive step α_{M} reaches the boundary of a constraint not in the working set), then QPOPT terminates at x and declares the problem to be unbounded.

5.2 Further Details of the Method

The following sections are not essential knowledge for normal users. They give background on the active-set strategy and the anti-cycling procedure.

5.2.1 Treatment of simple upper and lower bounds

Bound constraints $\ell \leq x \leq u$ are treated specially by qpopt. The presence of a bound constraint in the working set has the effect of fixing the corresponding component of the search direction to zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x into fixed and free variables. For some permutation P, the working-set matrix satisfies

$$
W P=\left(\begin{array}{cc}
F & N \\
& I_{N}
\end{array}\right)
$$

where $\left(\begin{array}{ll}F & N\end{array}\right)$ is part of the matrix A, and I_{N} corresponds to some of the bounds. The matrices F and N contain the free and fixed columns of the general constraints in the working set. A $T Q$ factorization $F Q_{F}=\left(\begin{array}{ll}0 & T_{F}\end{array}\right)$ of the smaller matrix F provides the required T and Q as follows:

$$
Q=P\left(\begin{array}{cc}
Q_{F} & \\
& I_{N}
\end{array}\right), \quad T=\left(\begin{array}{cc}
T_{F} & N \\
& I_{N}
\end{array}\right)
$$

The matrix Q_{F} is implemented as a dense orthogonal matrix. Each change in the working set leads to a simple change to F : if the status of a general constraint changes, a row of F is altered; if a bound constraint enters or leaves the working set, a column of F changes. The matrices T_{F}, Q_{F} and R are held explicitly; together with the vectors $Q^{T} g$, and $Q^{T} c$. Products of plane rotations are used to update Q_{F} and T_{F} as the working set changes. The triangular factor R associated with the reduced Hessian is updated only during the optimality phase.

5.2.2 The initial working set

For a cold start, the initial working set includes equality constraints and others that are close to being satisfied at the starting point. ("Close" is defined under Crash tolerance.) For a warm start, the initial working is specified by the user (and possibly revised to improve the condition of W).
At the start of the optimality phase, QPOPT must ensure that the initial reduced Hessian H_{R} is positive-definite. It does so by including a suitably large number of constraints (real or artificial) in the initial working set. (When W contains n constraints, H_{R} has no rows and columns. Such a matrix is positive definite by definition.)
Let H_{z} denote the first n_{z} rows and columns of $H_{Q}=Q^{T} H Q$ at the beginning of the optimality phase. A partial Cholesky factorization with interchanges is used to find an upper-triangular matrix R that is the factor of the largest positive-definite leading submatrix of H_{Z}. The use of interchanges tends to maximize the dimension of R. (The condition of R may be controlled by setting the Rank Tolerance.) Let Z_{R} denote the columns of Z corresponding to R, and let Z be partitioned as $Z=\left(\begin{array}{ll}Z_{R} & Z_{A}\end{array}\right)$. A working set for which Z_{R} defines the null space can be obtained by including the rows of Z_{A}^{T} as "artificial constraints" (with bounds equal to the current value of $\left.Z_{A}^{T} x\right)$. Minimization of the objective function then proceeds within the subspace defined by Z_{R}, as described in Section 5.1.

The artificially augmented working set is given by

$$
\bar{W}=\binom{Z_{A}^{T}}{W}
$$

so that p will satisfy $W p=0$ and $Z_{A}^{T} p=0$. By definition of the $T Q$ factors of W, we have

$$
\bar{W} Q=\binom{Z_{A}^{T}}{W} Q=\binom{Z_{A}^{T}}{W}\left(\begin{array}{lll}
Z_{R} & Z_{A} & Y
\end{array}\right)=\left(\begin{array}{ll}
0 & \bar{T}
\end{array}\right)
$$

where

$$
\bar{T}=\left(\begin{array}{cc}
I & 0 \\
0 & T
\end{array}\right)
$$

Hence the $T Q$ factors of \bar{W} are available trivially.
The matrix Z_{A} is not kept fixed, since its role is purely to define an appropriate null space; the $T Q$ factorization can therefore be updated in the normal fashion as the iterations proceed. No work is required to "delete" the artificial constraints associated with Z_{A} when $Z_{R}^{T} g=0$, since this simply involves repartitioning Q. The "artificial" multiplier vector associated with the rows of Z_{A}^{T} is equal to $Z_{A}^{T} g$, and the multipliers corresponding to the rows of the "true" working set are the multipliers that would be obtained if the artificial constraints were not present. If an artificial constraint is "deleted" from the working set, an A appears alongside the entry in the Jdel column of the printed output (see Section 5.6). The multiplier may have either sign.
The number of columns in Z_{A} and Z_{R}, the Euclidean norm of $Z_{R}^{T} g$, and the condition estimator of R appear in the printed output as Art, Zr, Norm gZ and Cond Rz (see Section 5.6).
Under some circumstances, a different type of artificial constraint is used when solving a linear program. Although the algorithm of qpopt does not usually perform simplex steps (in the traditional sense), there is one exception: a linear program with fewer general constraints than variables (i.e., $m_{L} \leq n$). (Use of the simplex method in this situation leads to savings in storage.) At the starting point, the "natural" working set (the set of constraints exactly or nearly satisfied at the starting point) is augmented with a suitable number of "temporary" bounds, each of which has the effect of temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is treated similarly to normal constraints until it is deleted from the working set, in which case it is never added again. If a temporary bound is "deleted" from the working set, an F (for "Fixed") appears alongside the entry in the Jdel column of the printed output (see Section 5.6). Again, the multiplier may have either sign.

5.2.3 The anti-cycling procedure

The EXPAND procedure [15] is used to reduce the possibility of cycling at a point where the active constraints are nearly linearly dependent. The main feature of EXPAND is that the feasibility tolerance is increased slightly at the start of every iteration. This allows a positive step to be taken every iteration, perhaps at the expense of violating the constraints slightly.
Suppose that the Feasibility tolerance is δ. Over a period of K iterations (where K is defined by the Expand frequency), the feasibility tolerance actually used by QPOPT-the working feasibility tolerance - increases from 0.5δ to δ (in steps of $0.5 \delta / K$).
At certain stages the following "resetting procedure" is used to remove constraint infeasibilities. First, all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds. A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative refinement is used to give variables that satisfy the working set to (essentially) machine precision. Finally, the working feasibility tolerance is reinitialized to 0.5δ.
If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of iterations is started with K incremented by 10. (The decision to resume the feasibility phase or optimality phase is based on comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked when QPOPT reaches an apparently optimal, infeasible or unbounded solution, unless this situation has already occurred twice. If any nontrivial adjustments are made, iterations are continued.
The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a potential choice of constraints to be added to the working set. Let α_{M} denote the maximum step at which $x+\alpha_{M} p$ does not violate any constraint by more than its feasibility tolerance. All constraints at distance $\alpha\left(\alpha \leq \alpha_{M}\right)$ along p from the current point are then viewed as acceptable candidates for inclusion in the working set. The constraint whose normal makes the largest angle with the search direction is added to the working set. This strategy helps keep the working-set matrix W well-conditioned.

5.3 The Options File

Observe that options are normally set in Prob.SOL.optPar.
Several choices in QPOPT's algorithm logic may be defined by various optional parameters (more briefly known as options or parameters).

In order to reduce the number of subroutine parameters for qpopt, the options have default values that are appropriate for most problems. Options need be specified only if their values should be different from the default.

5.3.1 Format of option strings

Each optional parameter is defined by an option string of up to 72 characters, containing one or more items separated by spaces or equal signs ($=$). Alphabetic characters may be in upper or lower case. An example option string is Print level $=5$. In general, an option string contains the following items:

1. A keyword such as Print.
2. A phrase such as level that qualifies the keyword. (Typically 0,1 or 2 words.)
3. A number that specifies either an integer or a real value (only for some options). Such numbers may be up to 16 contiguous characters in Fortran 77 's F, E or D formats, terminated by a space.

Blank strings and comments may be used to improve readability. A comment begins with an asterisk (*) and all subsequent characters are ignored. Synonyms are recognized for some of the keywords, and abbreviations may be used if there is no ambiguity.

The following are examples of valid option strings for QPOPT:

```
NOLIST
COLD START
Warm start
Problem type = LP
Problem type = Quadratic Program * Same as QP or QP2
Problem Type QP4
Min sum Yes
Feasibility Phase iteration limit 100
Feasibility tolerance 1.0e-8 * for IEEE double precision
Crash tolerance 0.002
Defaults
* This string will be ignored. So will a blank line.
```


5.4 Description of the optional parameters

Permissible options are defined below in alphabetical order. For each option, we give the keyword, any essential qualifiers, the default value, and the definition. The minimum abbreviation of each keyword and qualifier is underlined. If no characters of a qualifier are underlined, the qualifier may be omitted. The letters i and r denote integer and real values required for certain options. The letter a denotes a character string value. The number \mathbf{u} represents unit roundoff for floating-point arithmetic (typically about 10^{-16}).

Check frequency
i
Default $=50$
Every i th
iteration, a numerical test is made to see if the current solution x satisfies the constraints in the working set. If the largest residual of the constraints in the working set is judged to be too large, the working-set matrix is refactorized and the variables are recomputed to satisfy the constraints more accurately.

Cold start
Default $=$ Coldstart
Warm start
This option specifies how the initial working set is chosen. With a cold start, QPOPT chooses the initial working set based on the values of the variables and constraints at the initial point. Broadly speaking, the first working set will include all equality constraints and also any bounds or inequality constraints that are "nearly" satisfied (to within the Crash tolerance).
With a warm start, the user must provide a valid definition of every element of the array istate. The specification of istate will be overridden if necessary, so that a poor choice of the working set will not cause a fatal error. A warm start will be advantageous if a good estimate of the initial working set is available - for example, when qpopt is called repeatedly to solve related problems.

Crash tolerance $r \quad$ Default $=0.01$
This value is used for cold starts when QPOPT selects an initial working set. Bounds and inequality constraints are selected if they are satisfied to within r. More precisely, a constraint of the form $a_{j}^{T} x \geq l$ will be included in the initial working set if $\left|a_{j}^{T} x-l\right| \leq r(1+|l|)$. If $r<0$ or $r>1$, the default value is used.

Defaults

This is a special option to reset all options to their default values.

Expand frequency
i
Default $=5$
This defines the initial value of an integer K that is used in an anti-cycling procedure designed to guarantee progress even on highly degenerate problems. See Section 5.2.3.

If $i \geq 9999999$, no anti-cycling procedure is invoked.

Feasibility tolerance
r

$$
\text { Default }=\sqrt{\mathbf{u}}
$$

This defines the maximum acceptable absolute violation in each constraint at a "feasible" point. For example, if the variables and the coefficients in the general constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify r as 10^{-6}. If $r<\mathbf{u}$, the default value is used.

Before optimizing the objective function, QPOPT must find a feasible point for the constraints. If the sum of infeasibilities cannot be reduced to zero and Min sum $=$ Yes is requested, QPOPT will find the minimum value of the sum. Let sinf be the corresponding sum of infeasibilities. If sinf is quite small, it may be appropriate to raise r by a factor of 10 or 100 . Otherwise, some error in the data should be suspected.

Feasibility $\underline{\text { Phase Iteration Limit }}$	i_{1}	Default $=\max \left(50,5\left(n+m_{L}\right)\right)$
Optimality	$\underline{\text { Phase Iteration Limit }}$	i_{2}

The scalars i_{1} and i_{2} specify the maximum number of iterations allowed in the feasibility and optimality phases. Optimality Phase iteration limit is equivalent to Iteration limit. Setting $i_{1}=0$ and PrintLevel >0 means that the workspace needed will be computed and printed, but no iterations will be performed.

Hessian rows $i \quad$ Default $=0$ or n
This specifies m, the number of rows in the Hessian matrix H or its trapezoidal factor G (as used by the default subroutine qpHess).

For problem type FP or LP, the default value is $m=0$.
For problems QP1 or QP2, the first m rows and columns of H are obtained from H, and the remainder are assumed to be zero. For problems QP3 or QP4, the factor G is assumed to have m rows and n columns. They are obtained from the associated rows of H .

If a nonstandard subroutine qpHess is provided, it may access the problem type and m via the lines
integer $\left.\begin{array}{l}\text { lqptyp, mHess } \\ \text { common }\end{array}\right]$ /sol1qp/ lqptyp, mHess

For example, Problem type FP, LP or QP4 sets lqptyp $=1,2$ or 6 respectively, and Hessian rows 20 sets mHess $=$ 20. Infinite Bound size $r \quad$ Default $=10^{20}$

If $r>0, r$ defines the "infinite" bound bigbnd in the definition of the problem constraints. Any upper bound greater than or equal to bigbnd will be regarded as plus infinity (and similarly for a lower bound less than or equal to - bigbnd). If $r \leq 0$, the default value is used.

```
Infinite Step size r Default = max(bigbnd, 10 20)
```

If $r>0, r$ specifies the magnitude of the change in variables that will be considered a step to an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is not positive definite.) If the change in x during an iteration would exceed the value of Infinite Step, the objective function is considered to be unbounded below in the feasible region. If $r \leq 0$, the default value is used.

```
Iteration limit
    i
    Default = max(50,5(n+m
Iters
Itns
```

This is equivalent to Optimality Phase iteration limit. See Feasibility Phase.

List

If Nolist was previously specified, List restores output to the Print file whenever an optional parameter is reset.

Maximum degrees of freedom $\quad i$
Default $=n$
This places a limit on the storage allocated for the triangular factor R of the reduced Hessian H_{R}. Ideally, i should be set slightly larger than the value of n_{R} expected at the solution. (See Sections 5.1.2 and 5.1.3.) It need not be larger than $m_{N}+1$, where m_{N} is the number of variables that appear nonlinearly in the quadratic objective function. For many problems it can be much smaller than m_{N}.

For quadratic problems, a minimizer may lie on any number of constraints, so that n_{R} may vary between 1 and n. The default value of i is therefore the number of variables n. If Hessian rows m is specified, the default value of i is the same number, m.

Min sum
a
Default $=$ No
This option comes into effect if the constraints cannot be satisfied. If Min sum $=$ No, QPOPT terminates as soon as it is evident that no feasible point exists. The final point will generally not be the point at which the sum of infeasibilities is minimized. If Min sum $=$ Yes, QPOPT will continue until either the sum of infeasibilities is minimized or the iteration limit is reached, whichever occurs first.

Nolist
This suppresses output to the Print file whenever an optional parameter is reset.
$\begin{array}{lll}\text { Optimality tolerance } & r & \text { Default }=\sqrt{\mathbf{u}}\end{array}$
This affects the tolerance used to determine if the Lagrange multipliers associated with the bounds and general constraints have the right "sign" for the solution to be judged optimal. Increasing r tends to cause earlier termination. For example, if $r=1.0 \mathrm{e}-4$, the final objective value will probably agree with the true optimum to about 4 digits.

Print level
i
Default $=10$
This controls the amount of printing produced by QPOPT as follows.
i
0 No output.
1 The final solution only, sent to the Print file.
5 One line of output for each iteration (no printout of the final solution).
≥ 10 The final solution and one line of output for each iteration (Print file only).
≥ 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values $A x$ and the constraint status (Print file only).
$\geq 30 \quad$ At each iteration, the diagonal elements of the upper-triangular matrix T associated with the $T Q$ factorization (15) of the working set, and the diagonal elements of the upper-triangular matrix R (Print file only).

Problem type

a
Default $=$ QP2
This option specifies the type of objective function to be minimized during the optimality phase. The following are the six values of a and the dimensions of the arrays that must be specified to define the objective function:

FP	H and cvec not accessed;
LP	H not accessed, cvec (n) required;
QP1	H(ldH,*) symmetric, cvec not referenced;
QP2	H(ldH,*) symmetric, cvec (n);
QP3	H(ldH,*) upper-trapezoidal, cvec not referenced;
QP4	H(ldH,*) upper-trapezoidal, cvec $(\mathrm{n}) ;$

Linear program is equivalent to LP. Quadratic program and QP are equivalent to the default option QP2. For the QP options, the default subroutine qpHess requires array $H(l d H, *)$ as shown. If a non-standard qpHess is provided, $\mathrm{H}(*, *)$ may be used in any convenient way.

Rank tolerance
Default $=100 \mathbf{u}$
This parameter enables the user to control the condition number of the triangular factor R (see Section 5.1). If ρ_{i} denotes the function $\rho_{i}=\max \left\{\left|R_{11}\right|,\left|R_{22}\right|, \ldots,\left|R_{i i}\right|\right\}$, the dimension of R is defined to be smallest index i such that $\left|R_{i+1, i+1}\right| \leq \sqrt{r}\left|\rho_{i+1}\right|$. If $r \leq 0$, the default value is used.
$\begin{array}{lll}\text { Summary file } & i & \text { Default }=6\end{array}$
This specifies the unit number for the Summary file (see Section 5.6).
If $i>0$ and PrintLevel >0, a brief \log in 80 -column format is output to unit i. On many systems, the default value refers to the screen. Summary file $=0$ suppresses output, including error messages.

Warm start
See Cold start.

5.5 Optional parameter checklist and default values

For easy reference, the following list shows all valid options and their default values. The quantity u represents floating-point precision $\left(\approx 1.1 \times 10^{-16}\right.$ in IEEE double-precision arithmetic).

```
Check frequency
Cold start
Crash tolerance
Expand frequency
Feasibility tolerance
Feasibility Phase iteration limit
Optimality Phase iteration limit
Hessian rows
Infinite bound size
Infinite step size
Iteration limit
List
Maximum degrees of freedom
Min sum
Optimality tolerance
Print file
Print level
Problem type
Rank tolerance
Summary file
```

```
    50 *
```

 50 *
 *
 *
 .01 *
 .01 *
 5 *
 5 *
 1.1e-8 * \sqrt{}{\mathbf{u}}
1.1e-8 * \sqrt{}{\mathbf{u}}
50* or 5 (n+m}\mp@subsup{m}{L}{}
50* or 5 (n+m}\mp@subsup{m}{L}{}
50* or 5 (n+m
50* or 5 (n+m
n *
n *
1.0e+20 * Plus infinity
1.0e+20 * Plus infinity
1.0e+20 *
1.0e+20 *
50* or 5 (n+m
50* or 5 (n+m
*
*
n *
n *
No *
No *
1.1e-8 * \sqrt{}{\mathbf{u}}
1.1e-8 * \sqrt{}{\mathbf{u}}
9 *
9 *
10 *
10 *
QP * or QP2
QP * or QP2
1.1e-14 * 100u
1.1e-14 * 100u
6*

```
    6*
```

Other options may be set as follows:

Defaults
Nolist
Warm start

5.6 The Summary File

The Summary file records an iteration \log and error messages. The file name is set in Prob.SOL.SummFile.

5.6.1 Constraint numbering and status

For items Jdel and Jadd in the iteration log, indices 1 through n refer to the bounds on the variables, and indices $\mathrm{n}+1$ through $\mathrm{n}+\mathrm{nclin}$ refer to the general constraints.

When the status of a constraint changes, the index of the constraint is printed, along with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed variable) or A (artificial constraint).

5.6.2 The iteration log

The following items are printed after each iteration.
$\begin{array}{ll}\text { Itn } & \text { is the iteration count (including those from the feasibility phase). } \\ \text { Jdel } & \text { is the index of the constraint deleted from the working set. If Jdel is zero, no constraint was }\end{array}$ deleted.
Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint was added.
Step is the step taken along the computed search direction. If a constraint is added during the current iteration (i.e., Jadd is positive), Step will be the step to the nearest constraint. During the optimality phase, the step can be greater than one only if the reduced Hessian is not positive definite.

Ninf is the number of violated constraints (infeasibilities). This number will be zero during the optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a weighted sum of the magnitudes of constraint violations. If x is feasible, Objective is the value of the objective function. The output line for the final iteration of the feasibility phase (i.e., the first iteration for which Ninf is zero) will give the value of the true objective at the first feasible point.

During the feasibility phase, the number of constraint infeasibilities will not increase until either a feasible point is found, or the optimality of the multipliers implies that no feasible point exists. Note that the sum of the infeasibilities may increase or decrease during this part of the feasibility phase. However, once optimal phase-one multipliers are obtained, the number of infeasibilities can increase, but the sum of infeasibilities must either remain constant or be reduced until the minimum sum of infeasibilities is found.
In the optimality phase, the value of the objective is non-increasing.
Norm gZ is $\left\|Z_{R}^{T} g\right\|$, the Euclidean norm of the reduced gradient with respect to Z_{R}. During the optimality phase, this norm will be approximately zero after a unit step.
$\mathrm{Zr} \quad$ is the number of columns of Z_{R} (see Section 5.1). Zr is the dimension of the subspace in which the objective is currently being minimized. The value of Zr is the number of variables minus the number of constraints in the working set.
Art is the number of artificial constraints in the working set, i.e., the number of columns of Z_{A} (see Section 5.2). At the start of the optimality phase, Art provides an estimate of the number of nonpositive eigenvalues in the reduced Hessian.

5.6.3 Summary file from the example problem

Following is a Summary file example.

5.7 The Print File

The Print file records specified options, error messages, a detailed iteration log, and the final solution. The print file is specified in Prob.SOL.PrintFile.

5.7.1 Constraint numbering and status

Items Jdel and Jadd in the iteration log are the same as in the Summary file. Please see Section 5.6.1.

5.7.2 The iteration \log

When PrintLevel ≥ 5, a line of output is produced at every iteration. The quantities printed are those in effect on completion of the iteration. Several items are the same as in the Summary file. Please see Section 5.6.2.

Itn	Same as Summary file.
Jdel	Same as Summary file.
Jadd	Same as Summary file.
Step	Same as Summary file.
Ninf	Same as Summary file.
Sinf/Objective	Same as Summary file.

Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general linear constraints in the current working set.
Art Same as Summary file.
Zr Same as Summary file. $\mathrm{Zr}=\mathrm{n}-($ Bnd $+\mathrm{Lin}+$ Art $)$.
The number of columns of Z (see Section 5.1) can be calculated as $\mathrm{Nz}=\mathrm{n}-(\operatorname{Bnd}+\mathrm{Lin})=\mathrm{Zr}+\mathrm{Art}$. If Nz is zero, x lies at a vertex of the feasible region.
Norm gZ Same as Summary file.
NOpt is the number of nonoptimal Lagrange multipliers at the current point. NOpt is not printed if the current x is infeasible or no multipliers have been calculated. At a minimizer, NOpt will be zero.

Min LM is the value of the Lagrange multiplier associated with the deleted constraint. If the Min LM is negative, a lower bound constraint has been deleted, if Min LM is positive, an upper bound constraint has been deleted. If no multipliers are calculated during a given iteration, Min LM will be zero.

Cond T is a lower bound on the condition number of the working-set matrix W.
Cond $\mathrm{Rz} \quad$ is a lower bound on the condition number of the triangular factor R (the Cholesky factor of the current reduced Hessian H_{R}, whose dimension is Zr). If the problem type is LP, Cond Rz is not printed.
is the last diagonal element ω of the matrix D associated with the $R^{T} D R$ factorization of the reduced Hessian H_{R} (see Section 5.1). Rzz is only printed if H_{R} is not positive definite (in which case $\omega \neq 1$). If the printed value of Rzz is small in absolute value, then H_{R} is approximately singular. A negative value of Rzz implies that the objective function has negative curvature on the current working set.

5.7.3 Printing the solution

When PrintLevel $=1$ or PrintLevel ≥ 10, the final output from qpopt includes a listing of the status of every variable and constraint. Numerical values that are zero are printed as ".". In the "Variables" section, the following output is given for each variable $x_{j}(j=1$ to n$)$.

Variable	gives j, the number of the variable.
State	gives the state of the variable. The possible states are as follows, where δ is the Feasibility
tolerance.	

FR The variable lies between its upper and lower bound.
EQ The variable is a fixed variable, with x_{j} equal to its upper and lower bound.
LL The variable is active at its lower bound (to within δ).
UL The variable is active at its upper bound (to within δ).
TF The variable is temporarily fixed at its current value.
-- The lower bound is violated by more than δ.
$++\quad$ The upper bound is violated by more than δ.
A key is sometimes printed before the State to give some additional information about the state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange multiplier is essentially zero. This means that if the variable were allowed to start moving away from its bound, there would be no change to the objective function. The values of the other free variables might change, giving a genuine alternative solution. However, if there are any degenerate variables (labeled D), the actual change might prove to be zero, since one of them could encounter a bound immediately. In either case, the values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.
I Infeasible. The variable is currently violating one of its bounds by more than δ.
Value is the final value of the variable x_{j}.
Lower bound
is the lower bound specified for x_{j}. "None" indicates that $\mathrm{bl}(j) \leq-\mathrm{bigbnd}$.
Upper bound is the upper bound specified for x_{j}. "None" indicates that bu $(j) \geq$ bigbnd.
Lagr multiplier is the Lagrange multiplier for the associated bound. This will be zero if State is FR. If x is optimal, the multiplier should be non-negative if State is LL, and non-positive if State is UL.

Slack is the difference between the variable "Value" and the nearer of its (finite) bounds $\mathrm{bl}(j)$ and $\mathrm{bu}(j)$. A blank entry indicates that the associated variable is not bounded (i.e., bl $(j) \leq$ -bigbnd and bu(j) \geq bigbnd $)$.

In the "Constraints" section, similar output is given for each constraint $a_{i}^{T} x, i=1$ to nclin. The word "variable" must be replaced by "constraint", and x_{j} should be changed to $a_{i}^{T} x$, and (j) should be changed to (nclin $+i$). "Movement off a constraint" means allowing the entry in the slack column to become positive.

5.7.4 Interpreting the printout

The input data for qpopt should always be checked (even if it terminates with inform $=0!$). Two common sources of error are uninitialized variables and incorrectly dimensioned array arguments. The user should check that all components of A, bl, bu and x are defined on entry to qpopt , and that qpHess computes all relevant components of Hx .
In the following, we list the different ways in which qpopt terminates abnormally and discuss what further action may be necessary.

Underflow A single underflow will always occur if machine constants are computed automatically (as in the distributed version of QPOPT). Other floating-point underflows may occur occasionally, but can usually be ignored.

Overflow If the printed output before the overflow error contains a warning about serious ill-conditioning in the working set when adding the j th constraint, it may be possible to avoid the difficulty by increasing the Feasibility tolerance. If the message recurs, the offending linearly dependent constraint (with index " j ") must be removed from the problem. If a warning message did not precede the fatal overflow, contact the authors.
inform $=3$ The problem appears to have no feasible point. Check that there are no conflicting constraints, such as $x_{1} \geq 1, x_{2} \geq 2$ and $x_{1}+x_{2}=0$. If the data for the constraints are accurate to the absolute precision σ, make sure that the Feasibility tolerance is greater than σ. For example, if all elements of A are of order unity and are accurate to only three decimal places, the Feasibility tolerance should be at least 10^{-3}.
inform $=4$ One of the iteration limits may be too small. (See Feasibility Phase and Optimality Phase.) Increase the appropriate limit and rerun qpopt.
inform $=5$ The Maximum Degrees of Freedom is too small. Rerun qpopt with a larger value (possibly using the warm start facility to specify the initial working set).
inform $=6$ An input parameter is invalid. The printed output will indicate which parameter(s) must be redefined. Rerun with corrected values.
inform $=7$ The specified problem type was not FP, LP, QP1, QP2, QP3, or QP4. Rerun qpopt with Problem type set to one of these values.

6 MINOS details

6.1 Introduction

TOMLAB /MINOS (hereafter referred to as MINOS) is a linear and nonlinear programming system, designed to solve large-scale constrained optimization problems of the following form:

$$
\begin{equation*}
 \tag{19}
\end{equation*}
$$

where the vectors b_{i}, c, d, l, u and the matrices A_{i} are constant, $F(x)$ is a nonlinear function of some of the variables, and $f(x)$ is a vector of nonlinear functions. The nonlinearities (if present) may be of a general nature but must be smooth and preferably "almost linear", in the sense that they should not change radically with small changes in the variables. We make the following definitions:

x	the nonlinear variables
y	the linear variables
(x, y)	the vector $\binom{x}{y}$
(1.1)	the objective function
(1.2)	the nonlinear constraints
(1.3)	the linear constraints
(1.4)	the bounds on the variables
m	the total number of general constraints in (2) and (3)
n	the total number of variables in x and y
m_{1}	the number of nonlinear constraints (the dimension of $f(x))$
n_{1}	the number of nonlinear variables (the dimension of $x)$
n_{1}^{\prime}	the number of nonlinear objective variables (in $F(x))$
$n_{1}^{\prime \prime}$	the number of nonlinear Jacobian variables (in $f(x))$

A large-scale problem is one in which m and n are several hundred or several thousand. MINOS takes advantage of the fact that the constraint matrices A_{i} and the partial derivatives $\partial f_{i}(x) / \partial x_{j}$ are typically sparse (contain many zeros).

The dimensions n_{1}^{\prime} and $n_{1}^{\prime \prime}$ allow for the fact that $F(x)$ and $f(x)$ may involve different sets of nonlinear variables " x ". The two sets of variables always overlap, in the sense that the shorter " x " is always the same as the beginning of the other. If x is the same in both cases, we have $n_{1}=n_{1}^{\prime}=n_{1}^{\prime \prime}$. Otherwise, we define the number of nonlinear variables to be $n_{1}=\max \left(n_{1}^{\prime}, n_{1}^{\prime \prime}\right)$.
In the following sections we introduce more terminology and give an overview of the MINOS optimization algorithms and the main system features.

6.1.1 Linear Programming

When $F(x)$ and $f(x)$ are absent, the problem becomes a linear program. Since there is no need to distinguish between linear and nonlinear variables, we use x rather than y. We also convert all general constraints into
equalities with the aid of slack variables s, so that the only inequalities are simple bounds on the variables. Thus, we write linear programs in the form

$$
\begin{equation*}
\underset{x, s}{\operatorname{minimize}} c^{T} x \text { subject to } A x+s=b, \quad l \leq(x, s) \leq u \tag{23}
\end{equation*}
$$

When the constraints are linear, the bounds on the slacks are defined so that $b=0$. When there are nonlinear constraints, some elements of b are nonzero.

In the mathematical programming world, x and s are sometimes called structural variables and logical variables. Their upper and lower bounds are fundamental to problem formulations and solution algorithms. Some of the components of l may be $-\infty$ and those of u may be $+\infty$. If $l_{j}=u_{j}$, a variable is said to be fixed, and if its bounds are $-\infty$ and $+\infty$, the variable is called free.

Within MINOS, a point (x, s) is said to be feasible if the following are true:

- The constraints $A x+s=b$ are satisfied to within machine precision $\approx 10^{-15}$.
- The bounds $l \leq(x, s) \leq u$ are satisfied to within a feasibility tolerance $\delta_{\text {fea }} \approx 10^{-6}$.
- The nonlinear constraints (20) are satisfied to within a row tolerance $\delta_{\text {row }} \approx 10^{-6}$.

Tolerances such as $\delta_{\text {fea }}$ and $\delta_{\text {row }}$ may be specified by setting Feasibility tolerance and Row tolerance.

MINOS solves linear programs using a reliable implementation of the primal simplex method [3], in which the constraints $A x+s=b$ are partitioned into the form

$$
\begin{equation*}
B x_{B}+N x_{N}=b, \tag{24}
\end{equation*}
$$

where the basis matrix B is a square and nonsingular submatrix of ($A \quad I$). The elements of x_{B} and x_{N} are called the basic and nonbasic variables respectively. Together, they are a permutation of the vector (x, s). Certain dual variables π and reduced costs d_{N} are defined by the equations

$$
\begin{equation*}
B^{T} \pi=c_{B}, \quad d_{N}=c_{N}-N^{T} \pi \tag{25}
\end{equation*}
$$

where $\left(c_{B}, c_{N}\right)$ is a permutation of the objective vector $(c, 0)$.
At a feasible point, nonbasic variables are typically equal to one of their bounds, and basic variables are somewhere between their bounds. To reach an optimal solution, the simplex method performs a sequence of iterations of the following general nature. With guidance from d_{N}, a nonbasic variable is chosen to move from its current value, and the basic variables are adjusted to satisfy the constraints in (23). Usually one of the basic variables reaches a bound. The basis partition is then redefined with a column of B being replaced by a column of N. When no such interchange can be found to reduce the value of $c^{T} x$, the current solution is optimal.

The simplex method

For convenience, let x denote the variables (x, s). The main steps in a simplex iteration are as follows:

Compute dual variables: Solve $B^{T} \pi=c_{B}$.
Price: Compute some or all of the reduced costs $d_{N}=c_{N}-N^{T} \pi$ to determine if a favorable nonbasic column a_{q} exists.

Compute search direction: Solve $B p_{B}= \pm a_{q}$ to determine the basic components of a search direction p along which the objective is improved. (The nonbasic elements of p are $p_{N}=0$, except for ± 1 for the element corresponding to a_{q}.)
Find maximum steplength: Find the largest steplength $\alpha_{\max }$ such that $x+\alpha_{\max } p$ continues to satisfy the bounds on the variables. The steplength may be determined by the new nonbasic variable reaching its opposite bound, but normally some basic variable will reach a bound first.
Update: Take the step $\alpha_{\max }$. If this was determined by a basic variable, interchange the corresponding column of B with column a_{q} from N.

When a starting basis is chosen and the basic variables x_{B} are first computed, if any components of x_{B} lie significantly outside their bounds, we say that the current point is infeasible. In this case, the simplex method uses a "Phase 1" procedure to reduce the sum of infeasibilities. This is similar to the subsequent "Phase 2" procedure just described.

The feasibility tolerance $\delta_{\text {fea }}$ is used to determine which Phase is in effect. A similar optimality tolerance $\delta_{\text {opt }}$ is used during pricing to judge whether any reduced costs are significantly large. (This tolerance is scaled by $\|\pi\|$, a measure of the size of the current π.)
If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between their bounds: $l_{j}<x_{j}<u_{j}$. In addition, at a "feasible" or "optimal" solution, some of the basic variables may lie slightly outside their bounds: $l_{j}-\delta_{\text {fea }} \leq x_{j} \leq u_{j}+\delta_{\text {fea }}$. In rare cases, even a few nonbasic variables might lie outside their bounds by as much as $\delta_{\text {fea }}$.
MINOS maintains a sparse $L U$ factorization of the basis matrix B, using a Markowitz ordering scheme and BartelsGolub updates, as implemented in the Fortran package LUSOL [14]; see [2, 1, 21, 22]. The basis factorization is central to the efficient handling of sparse linear and nonlinear constraints.

6.1.2 Problems with a Nonlinear Objective

When nonlinearities are confined to the term $F(x)$ in the objective function, the problem is a linearly constrained nonlinear program. MINOS solves such problems using a reduced-gradient method [24] combined with a quasiNewton method $[4,8]$ that generally leads to superlinear convergence. The implementation follows that described in Murtagh and Saunders [9].
As a slight generalization of (24), the constraints $A x+s=b$ are partitioned into the form

$$
\begin{equation*}
B x_{B}+S x_{S}+N x_{N}=b, \tag{26}
\end{equation*}
$$

where x_{S} is a set of superbasic variables. As before, the nonbasic variables are normally equal to one of their bounds, while the basic and superbasic variables lie somewhere between their bounds (to within $\delta_{\text {fea }}$). Let the number of superbasic variables be n_{S}, the number of columns in S. At a solution, n_{S} will be no more than n_{1}, the number of nonlinear variables, and it is often much smaller than this. In many real-life cases we have found that n_{S} remains reasonably small, say 200 or less, regardless of the size of the problem. This is one reason why MINOS has proved to be a practical tool.
In the reduced-gradient method, x_{S} is regarded as a set of "independent variables" that are allowed to move in any desirable direction to reduce the objective function (or the sum of infeasibilities). The basic variables are then adjusted in order to continue satisfying the linear constraints. If it appears that no improvement can be made with the current definition of B, S and N, one of the nonbasic variables is selected to be added to S, and the process is repeated with an increased value of n_{S}. At all stages, if a basic or superbasic variable encounters one of its bounds, that variable is made nonbasic and the value of n_{S} is reduced by one.

For linear programs, we may interpret the simplex method as being the same as the reduced-gradient method, with the number of superbasic variables oscillating between 0 and 1. (In general, a step of the simplex method or the reduced-gradient method is called a minor iteration.)
A certain matrix Z is needed for descriptive purposes. It takes the form

$$
Z=\left(\begin{array}{c}
-B^{-1} S \tag{27}\\
I \\
0
\end{array}\right)
$$

though it is never computed explicitly. Given $L U$ factors of the basis matrix B, it is possible to compute products of the form $Z q$ and $Z^{T} g$ by solving linear equations involving B or B^{T}. This in turn allows optimization to be performed on the superbasic variables, while the basic variables are adjusted to satisfy the general linear constraints. (In the description below, the reduced-gradient vector satisfies $d_{S}=Z^{T} g$, and the search direction satisfies $p=Z p_{S}$.)
An important part of MINOS is the quasi-Newton method used to optimize the superbasic variables. This can achieve superlinear convergence during any sequence of iterations for which the B, S, N partition remains constant. It requires a dense upper-triangular matrix R of dimension n_{S}, which is updated in various ways to approximate the reduced Hessian:

$$
\begin{equation*}
R^{T} R \approx Z^{T} H Z \tag{28}
\end{equation*}
$$

where H is the Hessian of the objective function, i.e. the matrix of second derivatives of $F(x)$. As for unconstrained optimization, the storage required for R is sometimes a limiting factor.

The reduced-gradient method

Let g be the gradient of the nonlinear objective (19). The main steps in a reduced-gradient iteration are as follows:
Compute dual variables and reduced gradient: Solve $B^{T} \pi=g_{B}$ and compute the reduced-gradient vector $d_{S}=g_{S}-S^{T} \pi$.
Price: If $\left\|d_{S}\right\|$ is sufficiently small, compute some or all of the reduced costs $d_{N}=g_{N}-N^{T} \pi$ to determine if a favorable nonbasic column a_{q} exists. If so, move that column from N into S, expanding R accordingly.
Compute search direction: Solve $R^{T} R p_{S}=-d_{S}$ and $B p_{B}=-S p_{S}$ to determine the superbasic and basic components of a search direction p along which the objective is improved. (The nonbasic elements of p are $p_{N}=0$.)
Find maximum steplength: Find the largest steplength $\alpha_{\max }$ such that $x+\alpha_{\max } p$ continues to satisfy the bounds on the variables.
Perform linesearch: Find an approximate solution to the one-dimensional problem

$$
\underset{\alpha}{\operatorname{minimize}} F(x+\alpha p) \text { subject to } 0 \leq \alpha \leq \alpha_{\max }
$$

Update (quasi-Newton): Take the step α. Apply a quasi-Newton update to R to account for this step.
Update (basis change): If a superbasic variable reached a bound, move it from S into N. If a basic variable reached a bound, find a suitable superbasic variable to move from S into B, and move the basic variable into N. Update R if necessary.

At an optimum, the reduced gradient d_{S} should be zero. MINOS terminates when $\left\|d_{S}\right\| \leq \delta_{\text {opt }}\|\pi\|$ and the reduced costs (component of d_{N}) are all sufficiently positive or negative, as judged by the same quantity $\delta_{\text {opt }}\|\pi\|$.
In the linesearch, $F(x+\alpha p)$ really means the objective function (19) evaluated at the point $(x, y, s)+\alpha p$. This steplength procedure is another important part of MINOS. Two different procedures are used, depending on whether or not all gradients are known analytically; see [12, 19]. The number of nonlinear function evaluations required may be influenced by setting the Linesearch tolerance in the SPECS file.
Normally, the objective function $F(x)$ will never be evaluated at a point x unless that point satisfies the linear constraints and the bounds on the variables. An exception is during a finite-difference check on the calculation of gradient elements. This check is performed at the starting point x_{0}, which takes default values or may be specified. MINOS ensures that the bounds $l \leq x_{0} \leq u$ are satisfied, but in general the starting point will not satisfy the general linear constraints. If $F\left(x_{0}\right)$ is undefined, the gradient check should be suppressed (Verify level -1), or the starting point should be redefined.

6.1.3 Problems with Nonlinear Constraints

If any of the constraints are nonlinear, MINOS employs a projected Lagrangian algorithm, based on a method due to Robinson [23]; see Murtagh and Saunders [10]. This involves a sequence of major iterations, each of which requires the solution of a linearly constrained subproblem. Each subproblem contains linearized versions of the nonlinear constraints, as well as the original linear constraints and bounds.
At the start of the k-th major iteration, let $\left(x_{k}, y_{k}\right)$ be an estimate of the variables, and let λ_{k} be an estimate of the Lagrange multipliers (dual variables) associated with the nonlinear constraints. The constraints are linearized by changing $f(x)$ in Equation (2) to its linear approximation:

$$
\bar{f}\left(x, x_{k}\right)=f\left(x_{k}\right)+J\left(x_{k}\right)\left(x-x_{k}\right),
$$

or more briefly $\bar{f}=f_{k}+J_{k}\left(x-x_{k}\right)$, where $J\left(x_{k}\right)$ is the Jacobian matrix evaluated at x_{k}. (The i-th row of the Jacobian is the gradient vector for the i-th nonlinear constraint function.) The subproblem to be solved during the k-th major iteration is then

$$
\begin{align*}
& \underset{x, y}{\operatorname{minimize}} \quad F(x)+c^{T} x+d^{T} y-\lambda_{k}^{T} f_{d}+\frac{1}{2} \rho_{k}\left\|f_{d}\right\|^{2} \tag{29}\\
& \text { subject to } b_{1} \leq \bar{f}+A_{1} y \leq b_{2}, \tag{30}\\
& b_{3} \leq A_{2} x+A_{3} y \leq b_{4}, \tag{31}\\
& l \leq(x, y) \leq u, \tag{32}
\end{align*}
$$

where $f_{d}=f-\bar{f}$ is the difference between $f(x)$ and its linearization. The objective function (29) is called an augmented Lagrangian. The scalar ρ_{k} is a penalty parameter, and the term involving ρ_{k} is a modified quadratic penalty function. MINOS uses the reduced-gradient method to solve each subproblem. As before, slack variables are introduced and the vectors b_{i} are incorporated into the bounds on the slacks. The linearized constraints take the form

$$
\left(\begin{array}{ll}
J_{k} & A_{1} \\
A_{2} & A_{3}
\end{array}\right)\binom{x}{y}+\binom{s_{1}}{s_{2}}=\binom{J_{k} x_{k}-f_{k}}{0}
$$

We refer to this system as $A x+s=b$ as in the linear case. The Jacobian J_{k} is treated as a sparse matrix, the same as the matrices A_{1}, A_{2} and A_{3}. The quantities J_{k}, b, λ_{k} and ρ_{k} change each major iteration.

The projected Lagrangian method

For convenience, suppose that all variables and constraints are nonlinear. The main steps in a major iteration are as follows:

Solve subproblem: Find an approximate solution $(\bar{x}, \bar{\lambda})$ to the k th subproblem (29)-(32).
Compute search direction: Adjust the elements of $\bar{\lambda}$ if necessary (if they have the wrong sign). Define a search direction $(\Delta x, \Delta \lambda)=\left(\bar{x}-x_{k}, \bar{\lambda}-\lambda_{k}\right)$.
Find steplength: Choose a steplength σ such that some merit function $M(x, \lambda)$ has a suitable value at the point $\left(x_{k}+\sigma \Delta x, \lambda_{k}+\sigma \Delta \lambda\right)$.
Update: Take the step σ to obtain $\left(x_{k+1}, \lambda_{k+1}\right)$. In some cases, adjust ρ_{k}.
For the first major iteration, the nonlinear constraints are ignored and minor iterations are performed until the original linear constraints are satisfied.
The initial Lagrange multiplier estimate is typically $\lambda_{k}=0$ (though it can be provided by the user). If a subproblem terminates early, some elements of the new estimate $\bar{\lambda}$ may be changed to zero.
The penalty parameter initially takes a certain default value $\rho_{k}=100.0 / m_{1}$, where m_{1} is the number of nonlinear constraints. (A value r times as big is obtained by specifying Penalty parameter r.) For later major iterations, ρ_{k} is reduced in stages when it appears that the sequence $\left\{x_{k}, \lambda_{k}\right\}$ is converging. In many cases it is safe to specify Penalty parameter 0.0 at the beginning, particularly if a problem is only mildly nonlinear. This may improve the overall efficiency.
In the output from MINOS, the term Feasible subproblem indicates that the linearized constraints (30)-(32) have been satisfied. In general, the nonlinear constraints are satisfied only in the limit, so that feasibility and optimality occur at essentially the same time. The nonlinear constraint violation is printed every major iteration. Even if it is zero early on (say at the initial point), it may increase and perhaps fluctuate before tending to zero. On "well behaved" problems, the constraint violation will decrease quadratically (i.e., very quickly) during the final few major iterations.
For certain rare classes of problem it is safe to request the values $\lambda_{k}=0$ and $\rho_{k}=0$ for all subproblems by specifying Lagrangian $=$ No (in which case the nonlinear constraint functions are evaluated only once per major iteration). However for general problems, convergence is much more likely with the default setting, Lagrangian $=$ Yes.

The merit function

Unfortunately, it is not known how to define a merit function $M(x, \lambda)$ that can be reduced at every major iteration. As a result, there is no guarantee that the projected Lagrangian method described above will converge from an arbitrary starting point. This has been the principal theoretical gap in MINOS, finally resolved by the PhD research of Michael Friedlander [5]. The main features needed to stabilize MINOS are:

- To relax the linearized constraints via an ℓ_{1} penalty function.
- To repeat a major iteration with increased ρ_{k} (and more relaxed linearized constraints) if the nonlinear constraint violation would increase too much.

In practice, the method of MINOS 5.51 often does converge and a good rate of convergence is often achieved in the final major iterations, particularly if the constraint functions are "nearly linear". As a precaution, MINOS
prevents radical changes from one major iteration to the next. Where possible, the steplength is chosen to be $\sigma=1$, so that each new estimate of the solution is $\left(x_{k+1}, \lambda_{k+1}\right)=(\bar{x}, \bar{\lambda})$, the solution of the subproblem. If this point is "too different", a shorter steplength $\sigma<1$ is chosen.
If the major iterations for a particular model do not appear to be converging, some of the following actions may help:

1. Specify initial activity levels for the nonlinear variables as carefully as possible.
2. Include sensible upper and lower bounds on all variables.
3. Specify a Major damping parameter that is lower than the default value. This tends to make σ smaller.
4. Specify a Penalty parameter that is higher than the default value. This tends to prevent excessive departures from the constraint linearization.

6.1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the constraints completely linear if at all possible. Sometimes a simple transformation will suffice. For example, a pipeline optimization problem has pressure drop constraints of the form

$$
\frac{K_{1}}{d_{1}^{4.814}}+\frac{K_{2}}{d_{2}^{4.814}}+\cdots \leq P_{T}^{2}-P_{0}^{2}
$$

where d_{i} are the design variables (pipe diameters) and the other terms are constant. These constraints are highly nonlinear, but by redefining the decision variables to be $x_{i}=1 / d_{i}^{4.814}$ we can make the constraints linear. Even if the objective function becomes more nonlinear by such a transformation (and this usually happens), the advantages of having linear constraints greatly outweigh this.
Similarly, it is usually best not to move nonlinearities from the objective function into the constraints. For example, we should not replace "minimize $F(x)$ " by

$$
\operatorname{minimize} \quad z \quad \text { subject to } F(x)-z=0
$$

Scaling is a very important matter during problem formulation. A general rule is to scale both the data and the variables to be as close to 1.0 as possible. In general we suggest the range 1.0 to 10.0 . When conflicts arise, one should sacrifice the objective function in favor of the constraints. Real-world problems tend to have a natural scaling within each constraint, as long as the variables are expressed in consistent physical units. Hence it is often sufficient to apply a scale factor to each row. MINOS has options to scale the rows and columns of the constraint matrix automatically. By default, only the linear rows and columns are scaled, and the procedure is reliable. If you request that the nonlinear constraints and variables be scaled, bear in mind that the scale factors are determined by the initial Jacobian $J\left(x_{0}\right)$, which may differ considerably from $J(x)$ at a solution.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely useful for confining the region over which optimization has to be performed. If sensible values are known, they should always be used. They are also important for avoiding singularities in the nonlinear functions. Note that bounds may be violated slightly by as much as the feasibility tolerance $\delta_{\text {fea }}$. Hence, if $\sqrt{x_{2}}$ or $\log x_{2}$ appear (for example) and if $\delta_{\text {fea }}=10^{-6}$, the lower bound on x_{2} would normally have to be at least 10^{-5}. If it is known that x_{2} will be at least 0.5 (say) at a solution, then its lower bound should be 0.5 .

For a detailed discussion of many aspects of numerical optimization, see Gill, Murray and Wright [19]; in particular, see Chapter 8 for much invaluable advice on problem formulation and assessment of results.

6.1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem must be smooth (i.e., their first derivatives must exist), especially near the desired solution. The functions need not be separable.

A certain "feasible" region is defined by the general constraints and the bounds on the variables. If the objective is convex within this region and if the feasible region itself is convex, any optimal solution obtained will be a global optimum. Otherwise there may be several local optima, and some of these may not be global. In such cases the chances of finding a global optimum are usually increased by choosing a starting point that is "sufficiently close", but there is no general procedure for determining what "close" means, or for verifying that a given local optimum is indeed global.
Integer restrictions cannot be imposed directly. If a variable x_{j} is required to be 0 or 1 , a common ploy is to include a quadratic term $x_{j}\left(1-x_{j}\right)$ in the objective function. MINOS will indeed terminate with $x_{j}=0$ or 1 , but inevitably the final solution will just be a local optimum. (Note that the quadratic is negative definite. MINOS will find a global minimum for quadratic functions that are positive definite or positive semidefinite, assuming the constraints are linear.)

6.2 Solver Options

The following sections describes some of the solver options depending on problem type.

6.2.1 Options for Linear Programming

The following options apply specifically to linear programs.

```
Crash option i Default = 3
Crash tolerance t Default = 0.1
```

Except on restarts, a Crash procedure is used to select an initial basis from certain rows and columns of the constraint matrix ($A I$). The Crash option i determines which rows and columns of A are eligible initially, and how many times Crash is called. Columns of I are used to pad the basis where necessary.
$i=0$ The initial basis contains only slack variables: $B=I$.
1 Crash is called once, looking for a triangular basis in all rows and columns of A.
2 Crash is called twice (if there are nonlinear constraints). The first call looks for a triangular basis in linear rows, and the first major iteration proceeds with simplex iterations until the linear constraints are satisfied. The Jacobian is then evaluated for the second major iteration and Crash is called again to find a triangular basis in the nonlinear rows (retaining the current basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two calls treat linear equalities and linear inequalities separately. As before, the last call treats nonlinear rows at the start of the second major iteration.

If $i \geq 1$, certain slacks on inequality rows are selected for the basis first. (If $i \geq 2$, numerical values are used to exclude slacks that are close to a bound.) Crash then makes several passes through the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned to "pivot" on a particular row if the column contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to complete the basis.

The Crash tolerance allows Crash to ignore certain "small" nonzeros in each column of A. If $a_{\text {max }}$ is the largest element in column j, other nonzeros $a_{i j}$ in the column are ignored if $\left|a_{i j}\right| \leq a_{\max } \times t$. (To be meaningful, t should be in the range $0 \leq t<1$.)
When $t>0.0$, the bases obtained by Crash may not be strictly triangular, but are likely to be nonsingular and almost triangular. The intention is to choose a basis containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.
For example, suppose the first m columns of A are the matrix shown under LU factor tolerance; i.e., a tridiagonal matrix with entries $-1,4,-1$. To help Crash choose all m columns for the initial basis, we would specify Crash tolerance t for some value of $t>1 / 4$.

6.2.2 Options for All Problems

The following options have the same purpose for all problems, whether they linear or nonlinear.

```
Check frequency
\(k\)
Default \(=60\)
```

Every k-th minor iteration after the most recent basis factorization, a numerical test is made to see if the current solution x satisfies the general linear constraints (including linearized nonlinear constraints, if any). The constraints are of the form $A x+s=b$, where s is the set of slack variables. To perform the numerical test, the residual vector $r=b-A x-s$ is computed. If the largest component of r is judged to be too large, the current basis is refactorized and the basic variables are recomputed to satisfy the general constraints more accurately.
Check frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Cycle limit	l	Default $=1$
Cycle print	p	Default $=1$
Cycle tolerance	t	Default $=0.0$
Phantom columns	c	Default $=0$
Phantom elements	e	Default $=0$

Debug level $l \quad$ Default $=0$
This causes various amounts of information to be output to the Print file. Most debug levels are not helpful to normal users, but they are listed here for completeness.
$l=0 \quad$ No debug output.
$l=2 \quad$ (or more) Output from m5setx showing the maximum residual after a row check.
$l=40 \quad$ Output from lu8rpc (which updates the $L U$ factors of the basis matrix), showing the position of the last nonzero in the transformed incoming column.
$l=50 \quad$ Output from lu1mar (which computes the $L U$ factors each refactorization), showing each pivot row and column and the dimensions of the dense matrix involved in the associated elimination.
$l=100 \quad$ Output from m 2 bfac and m 5 log listing the basic and superbasic variables and their values at every iteration.

Expand frequency $\quad k \quad$ Default $=10000$
This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate problems. See [16].
"Cycling" can occur only if zero steplengths are allowed. Here, the strategy is to force a positive step at every iteration, at the expense of violating the bounds on the variables by a small amount. Suppose that the Feasibility tolerance is δ. Over a period of k iterations, the tolerance actually used by MINOS increases from 0.5δ to δ (in steps of $0.5 \delta / k)$.
Every k iterations, or when feasibility and optimality are first detected, a resetting procedure eliminates any infeasible nonbasic variables. Some additional iterations may be needed to restore feasibility and optimality. Increasing k reduces that likelihood, but it gives less freedom to choose large pivot elements during basis changes. (See Pivot tolerance.)

Factorization frequency $\quad k \quad$ Default $=100$ (LP) or 50 (NLP)
With linear programs, most iterations cause a basis change, in which one column of the basis matrix B is replaced by another. The $L U$ factors of B must be updated accordingly. At most k updates are performed before the current B is factorized directly.

Each update tends to add nonzeros to the $L U$ factors. Since the updating method is stable, k mainly affects the efficiency of minor iterations, rather than stability.

High values of k (such as 100 or 200) may be more efficient on "dense" problems, when the factors of B tend to have two or three times as many nonzeros as B itself. Lower values of k may be more efficient on problems that are very sparse.

Feasibility tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$
This sets the feasibility tolerance $\delta_{\text {fea }}=t$ (see $\S 6.2 .1$). A variable or constraint is considered feasible if it does not lie outside its bounds by more than $\delta_{\text {fea }}$.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced to zero, the problem is declared infeasible. Let sinf be the corresponding sum of infeasibilities. If sinf is quite small, it may be appropriate to raise t by a factor of 10 or 100 . Otherwise, some error in the data should be suspected. If sinf is not small, there may be other points that have a significantly smaller sum of infeasibilities. MINOS does not attempt to find a solution that minimizes the sum.

For Scale option 1 or 2 , feasibility is defined in terms of the scaled problem (since it is then more likely to be meaningful). The final unscaled solution can therefore be infeasible by an unpredictable amount, depending on the size of the scale factors. Precautions are taken so that in a "feasible solution" the original variables will never be infeasible by more than 0.1 . Values that large are very unlikely.

Iterations limit $\quad k \quad$ Default $=3 m$
MINOS stops after k iterations even if the simplex method has not yet reached a solution. If $k=0$, no iterations are performed, but the starting point is tested for both feasibility and optimality.

LU factor tolerance	t_{1}	Default $=100.0(\mathrm{LP})$ or $5.0(\mathrm{NLP})$
LU update tolerance	t_{2}	Default $=10.0(\mathrm{LP})$ or $5.0(\mathrm{NLP})$

These tolerances affect the stability and sparsity of the basis factorization $B=L U$ during refactorization and updating, respectively. They must satisfy $t_{1}, t_{2} \geq 1.0$. The matrix L is a product of matrices of the form

$$
\left(\begin{array}{ll}
1 & \\
\mu & 1
\end{array}\right)
$$

where the multipliers μ satisfy $|\mu| \leq t_{i}$. Values near 1.0 favor stability, while larger values favor sparsity. The default values usually strike a good compromise. For large and relatively dense problems, $t_{1}=10.0$ or 5.0 (say) may give a useful improvement in stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t_{1} and/or t_{2} in order to
achieve stability. For example, if the columns of A include a submatrix of the form

$$
\left(\begin{array}{rrrrr}
4 & -1 & & & \\
-1 & 4 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 4 & -1 \\
& & & -1 & 4
\end{array}\right)
$$

one should set both t_{1} and t_{2} to values in the range $1.0 \leq t_{i}<4.0$.

```
LU density tolerance }\quad\mp@subsup{t}{3}{}\quad\mathrm{ Default }=0.
LU singularity tolerance }\quad\mp@subsup{t}{4}{}\quad\mathrm{ Default }=\mp@subsup{\epsilon}{}{0.67}\approx3.25e-1
```

The density tolerance t_{3} is used during $L U$ factorization of the basis matrix. Columns of L and rows of U are formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At any stage, if the density of the remaining matrix exceeds t_{3}, the Markowitz strategy for choosing pivots is altered to reduce the time spent searching for each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser $L U$ factors, with a slight increase in factorization time.

The singularity tolerance t_{4} helps guard against ill-conditioned basis matrices. When the basis is refactorized, the diagonal elements of U are tested as follows: if $\left|U_{j j}\right| \leq t_{4}$ or $\left|U_{j j}\right|<t_{4} \max _{i}\left|U_{i j}\right|$, the j-th column of the basis is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could become very ill-conditioned and the optimization could progress very slowly (if at all). Setting $t_{4}=1.0 \mathrm{e}-5$, say, may help cause a judicious change of basis.

```
Maximize
Minimize Default
```

This specifies the required direction of optimization.

Multiple price $\quad k \quad$ Default $=1$
It is not normal to set $k>1$ for linear programs, as it causes MINOS to use the reduced-gradient method rather than the simplex method. The number of iterations, and the total work, are likely to increase.

The reduced-gradient iterations do not correspond to the very efficient multiple pricing "minor iterations" carried out by certain commercial linear programming systems. Such systems require storage for k dense vectors of dimension m, so that k is usually limited to 5 or 6 . In MINOS, the total storage requirements increase only slightly with k. (The Superbasics limit must be at least k.)

Optimality tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$
This is used to judge the size of the reduced gradients $d_{j}=g_{j}-\pi^{T} a_{j}$, where g_{j} is the gradient of the objective
function corresponding to the j-th variable, a_{j} is the associated column of the constraint matrix (or Jacobian), and π is the set of dual variables.
By construction, the reduced gradients for basic variables are always zero. Optimality is declared if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy $d_{j} /\|\pi\| \geq-t$ or $d_{j} /\|\pi\| \leq t$ respectively, and if $\left|d_{j}\right| /\|\pi\| \leq t$ for superbasic variables.
In those tests, $\|\pi\|$ is a measure of the size of the dual variables. It is included to make the tests independent of a large scale factor on the objective function. The quantity actually used is defined by $\sigma=\sum_{i=1}^{m}\left|\pi_{i}\right|,\|\pi\|=$ $\max \{\sigma / \sqrt{m}, 1.0\}$, so that only scale factors larger than 1.0 are allowed for. If the objective is scaled down to be very small, the optimality test reduces to comparing d_{j} against t.

Partial price $\quad p \quad$ Default $=10(\mathrm{LP})$ or 1 (NLP)
This parameter is recommended for large problems that have significantly more variables than constraints. It reduces the work required for each "pricing" operation (when a nonbasic variable is selected to become basic or superbasic).

When $p=1$, all columns of the constraint matrix ($A I$) are searched. Otherwise, A and I are partitioned to give p roughly equal segments $A_{j}, I_{j}(j=1$ to $p)$. If the previous pricing search was successful on A_{j}, I_{j}, the next search begins on the segments A_{j+1}, I_{j+1}. (Subscripts are modulo p.)
If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest such reduced gradient (of appropriate sign) is selected to become superbasic. (Several may be selected if multiple pricing has been specified.) If nothing is found, the search continues on the next segments A_{j+2}, I_{j+2}, and so on.
Partial price t (or $t / 2$ or $t / 3$) may be appropriate for time-stage models having t time periods.

Pivot tolerance $t \quad$ Default $=\epsilon^{2 / 3} \approx 10^{-11}$
Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the basis to become almost singular. When x changes to $x+\alpha p$ for some search direction p, a "ratio test" is used to determine which component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot tolerance t. For nonlinear problems, elements smaller than $t\|p\|$ are ignored.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the Feasibility tolerance provides some freedom to maximize the pivot element and thereby improve numerical stability. Excessively small Feasibility tolerances should therefore not be specified.
To a lesser extent, the Expand frequency also provides some freedom to maximize the pivot element. Excessively large Expand frequencies should therefore not be specified.

Scale option	l	Default $=2$ (LP) or 1 (NLP)
Scale	Yes	
Scale	No	
Scale linear variables		Same as Scale option 1
Scale nonlinear variables Scale all variables	Same as Scale option 2 Scale tolerance as Scale option 2	
Scale, Print t		
Scale, Print, Tolerance	t	Default $=0.9$

Three scale options are available as follows:
$l=0 \quad$ No scaling. If storage is at a premium, this option saves $m+n$ words of workspace.
$l=1 \quad$ Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix coefficients as close as possible to 1.0 (see Fourer, 1982). This sometimes improves the performance of the solution procedures.
$l=2 \quad$ All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling is performed that may be helpful if the right-hand side b or the solution x is large. This takes into account columns of $\left(\begin{array}{ll}A & I\end{array}\right)$ that are fixed or have positive lower bounds or negative upper bounds.

Scale Yes sets the default scaling. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing, because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

If nonlinear constraints are present, Scale option 1 or 0 should generally be tried at first. Scale option 2 gives scales that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is provided, and (b) the problem is not highly nonlinear.
Scale, Print causes the row-scales $r(i)$ and column-scales $c(j)$ to be printed. The scaled matrix coefficients are $\bar{a}_{i j}=a_{i j} c(j) / r(i)$, and the scaled bounds on the variables and slacks are $\bar{l}_{j}=l_{j} / c(j), \bar{u}_{j}=u_{j} / c(j)$, where $c(j) \equiv r(j-n)$ if $j>n$.
All forms except Scale option may specify a tolerance t, where $0<t<1$ (for example: Scale, Print, Tolerance $=0.99$). This affects how many passes might be needed through the constraint matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero coefficients in each column:

$$
\rho_{j}=\max _{i}\left|a_{i j}\right| / \min _{i}\left|a_{i j}\right| \quad\left(a_{i j} \neq 0\right)
$$

If $\max _{j} \rho_{j}$ is less than t times its previous value, another scaling pass is performed to adjust the row and column scales. Raising t from 0.9 to 0.99 (say) usually increases the number of scaling passes through A. At most 10 passes are made.

If a Scale option has not already been specified, Scale, Print or Scale tolerance both set the default scaling.

Weight on linear objective $w \quad$ Default $=0.0$
This keyword invokes the so-called composite objective technique, if the first solution obtained is infeasible, and if the objective function contains linear terms. While trying to reduce the sum of infeasibilities, the method also
attempts to optimize the linear objective. At each infeasible iteration, the objective function is defined to be

$$
\underset{x}{\operatorname{minimize}} \sigma w\left(c^{T} x\right)+(\text { sum of infeasibilities })
$$

where $\sigma=1$ for minimization, $\sigma=-1$ for maximization, and c is the linear objective. If an "optimal" solution is reached while still infeasible, w is reduced by a factor of 10 . This helps to allow for the possibility that the initial w is too large. It also provides dynamic allowance for the fact that the sum of infeasibilities is tending towards zero.

The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.
The Weight option is intended mainly for linear programs. It is unlikely to be helpful on nonlinear problems.

6.2.3 Options for Nonlinear Objectives

The following options apply to nonlinear programs whose constraints are linear.

Crash option	l	Default $=3$
Crash tolerance	t	Default $=0.1$

These options are the same as for linear programs.

6.2.4 Options for All Nonlinear problems

Expand frequency $\quad k \quad$ Default $=10000$
This option is used the same as for linear programs, but takes effect only when there is just one superbasic variable. (Cycling can occur only when the current solution is at a vertex of the feasible region. Thus, zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are enforced.) Increasing k helps reduce the number of slightly infeasible nonbasic basic variables (most of which are eliminated during a resetting procedure). However, it also diminishes the freedom to choose a large pivot element (see Pivot tolerance).

Feasibility tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$
When the constraints are linear, a feasible solution is one in which all variables, including slacks, satisfy their upper and lower bounds to within the absolute tolerance t. (Since slacks are included, this means that the general linear constraints are also satisfied to within t.)

When nonlinear constraints are present, a feasible subproblem is one in which the linear constraints and bounds, as well as the current linearization of the nonlinear constraints, are satisfied to within the tolerance t.
MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced to zero, the problem is declared infeasible.

Normally, the nonlinear functions $F(x)$ and $f(x)$ are evaluated only at points x that satisfy the linear constraints and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these regions from the problem. For example, for a function $F(x)=\sqrt{x_{1}}+\log x_{2}$, it would be essential to place lower bounds on both variables. If Feasibility tolerance $=10^{-6}$, the bounds $x_{1} \geq 10^{-5}$ and $x_{2} \geq 10^{-4}$ might
be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as possible.)
An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place. The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If this causes difficulty, gradient checking should be suppressed by setting Verify level -1 .
If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and it may be necessary to increase the Penalty parameter or alter the starting point.
Note: Feasibility with respect to the nonlinear constraints is measured against the Row tolerance, not the Feasibility tolerance.

Hessian dimension $r \quad$ Default $=50$
This specifies that an $r \times r$ triangular matrix R is to be available for use by the quasi-Newton algorithm (to approximate the reduced Hessian matrix according to $Z^{T} H Z \approx R^{T} R$). Suppose there are s superbasic variables at a particular iteration. Whenever possible, r should be greater than s.
If $r \geq s$, the first s columns of R are used to approximate the reduced Hessian in the normal manner. If there are no further changes to the set of superbasic variables, the rate of convergence is usually superlinear. If $r<s$, a matrix of the form

$$
R=\left(\begin{array}{cc}
R_{r} & 0 \\
& D
\end{array}\right)
$$

is used to approximate the reduced Hessian, where R_{r} is an $r \times r$ upper triangular matrix and D is a diagonal matrix of order $s-r$. The rate of convergence is no longer superlinear (and may be arbitrarily slow).
The storage required is of order $\frac{1}{2} r^{2}$, which is substantial if r is as large as 1000 (say). In general, r should be a slight over-estimate of the final number of superbasic variables, whenever storage permits. It need not be larger than $n_{1}+1$, where n_{1} is the number of nonlinear variables. For many problems it can be much smaller than n_{1}.

Iterations limit $\quad k \quad$ Default $=3 m+10 n_{1}$
If the constraints are linear, this is the maximum number of iterations allowed for the simplex method or the reduced-gradient method. Otherwise, it is the maximum number of minor iterations, summed over all major iterations.

If $k=0$, no minor iterations are performed, but the starting point is tested for both feasibility and optimality.

Linesearch tolerance $\quad t \quad$ Default $=0.1$
For nonlinear problems, this controls the accuracy with which a steplength α is located during one-dimensional searches of the form

$$
\underset{\alpha}{\operatorname{minimize}} F(x+\alpha p) \text { subject to } 0<\alpha \leq \beta
$$

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are nonlinear, the function being minimized is the augmented Lagrangian in equation (5).)

The value of t must satisfy $0.0 \leq t<1.0$. The default value $t=0.1$ requests a moderately accurate search, and should be satisfactory in most cases. If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try $t=0.01$ or $t=0.001$. The number of iterations should decrease, and this will reduce total run time if there are many linear or nonlinear constraints. If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate; try $t=0.5$ or perhaps $t=0.9$. (The number of iterations will probably increase, but the total number of function evaluations may decrease enough to compensate.)

```
LU singularity tolerance }\quad\mp@subsup{t}{3}{}\quad\mathrm{ Default }=\mp@subsup{\epsilon}{}{0.67}\approx3.25e-1
LU swap tolerance }\quad\mp@subsup{t}{4}{}\quad\mathrm{ Default }=\mp@subsup{\epsilon}{}{1/4}\approx1\mp@subsup{0}{}{-4
```

The singularity tolerance t_{3} helps guard against ill-conditioned basis matrices. When the basis is refactorized, the diagonal elements of U are tested as follows: if $\left|U_{j j}\right| \leq t_{3}$ or $\left|U_{j j}\right|<t_{3} \max _{i}\left|U_{i j}\right|$, the j-th column of the basis is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a major iteration.)
In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could become very ill-conditioned and the optimization could progress very slowly (if at all). Setting $t_{3}=1.0 \mathrm{e}-5$, say, may help cause a judicious change of basis.
The LU swap tolerance is somewhat similar but can take effect more easily. It is again used only after a basis factorization, and normally just at the start of a major iteration. If a diagonal of U seems to be rather small (as measured by t_{4}) relative to the biggest diagonal of U, a basis change is made in which the basic variable associated with the small diagonal of U is swapped with a carefully chosen superbasic variable (if there are any). The number of superbasic variables stays the same. A message is printed to advise that a swap has occurred.
In practice this tends to help problems whose basis is becoming ill-conditioned. If the number of swaps becomes excessive, set LU swap tolerance $1.0 \mathrm{e}-6$, say, or perhaps smaller.

Minor damping parameter $\quad d \quad$ Default $=2.0$
This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once a "feasible solution" or "feasible subproblem" has been found.
A linesearch of the form minimize ${ }_{\alpha} F(x+\alpha p)$ is performed over the range $0<\alpha \leq \beta$, where β is the step to the nearest upper or lower bound on x. Normally, the first steplength tried is $\alpha_{1}=\min (1, \beta)$, but in some cases, such as $F(x)=a e^{b x}$ or $F(x)=a x^{b}$, even a moderate change in the components of x can lead to floating-point overflow.
The parameter d is therefore used to define a limit $\bar{\beta}=d(1+\|x\|) /\|p\|$, and the first evaluation of $F(x)$ is at the potentially smaller steplength $\alpha_{1}=\min (1, \bar{\beta}, \beta)$.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions at meaningless points. The Minor damping parameter provides an additional safeguard. The default value $d=2.0$ should not affect progress on well behaved problems, but setting $d=0.1$ or 0.01 may be helpful when rapidly varying functions are present. A "good" starting point may be required. An important application is to the class of nonlinear least-squares problems.

In cases where several local optima exist, specifying a small value for d may help locate an optimum near the starting point.

Multiple price $\quad k \quad$ Default $=1$
"Pricing" refers to a scan of the current nonbasic variables to determine if any should be changed from their current value (by allowing them to become superbasic or basic).

If multiple pricing is in effect, the k best nonbasic variables are selected for admission to the superbasic set. ("Best" means the variables with largest reduced gradients of appropriate sign.) If partial pricing is also in effect, the k best variables are selected from the current partition of A and I.

On large nonlinear problems it may help to set $k>1$ if there are not many superbasic variables at the starting point but many at the optimal solution.

Optimality tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$

Partial price $\quad p \quad$ Default $=10$ (LP) or 1 (NLP)
This parameter may be useful for large problems that have significantly more variables than constraints. Larger values reduce the work required for each "pricing" operation (when a nonbasic variable is selected to become basic or superbasic).

Scale option	l	Default $=2$ (LP) or 1 (NLP)
Scale	Yes	
Scale	No	
Scale linear variables		Same as Scale option 1 Scale nonlinear variables Scale all variables
Scale tolerance Scale option 2 Scale, Print	Same as Scale option 2	
Scale, Print, Tolerance	t	Default $=0.9$

Three scale options are available as follows:
$l=0 \quad$ No scaling. If storage is at a premium, this option saves $m+n$ words of workspace.
$l=1 \quad$ If some of the variables are linear, the constraints and linear variables are scaled by an iterative procedure that attempts to make the matrix coefficients as close as possible to 1.0 .
$l=2 \quad$ The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling is performed that may be helpful if the right-hand side b or the solution x is large. This takes into account columns of ($A I$) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)
Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing, because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

The Scale tolerance and Scale, Print options are the same as for linear programs.

Subspace tolerance
This controls the extent to which optimization is confined to the current set of basic and superbasic variables (Phase 4 iterations), before one or more nonbasic variables are added to the superbasic set (Phase 3). The value specified must satisfy $0<t \leq 1$.

When a nonbasic variable x_{j} is made superbasic, the norm of the reduced-gradient vector (for all superbasics) is recorded. Let this be $\left\|Z^{T} g_{0}\right\|$. (In fact, the norm is $\left|d_{j}\right|$, the size of the reduced gradient for the new superbasic variable x_{j}.)

Subsequent Phase 4 iterations continue at least until the norm of the reduced-gradient vector satisfies $\left\|Z^{T} g\right\| \leq$ $t \times\left\|Z^{T} g_{0}\right\| .\left(\left\|Z^{T} g\right\|\right.$ is the size of the largest reduced-gradient among the superbasic variables.)

A smaller value of t is likely to increase the total number of iterations, but may reduce the number of basis changes. A larger value such as $t=0.9$ may sometimes lead to improved overall efficiency, if the number of superbasic variables is substantially larger at the optimal solution than at the starting point.

Other convergence tests on the change in the function being minimized and the change in the variables may prolong Phase 4 iterations. This helps to make the overall performance insensitive to larger values of t.

Superbasics limit $\quad s \quad$ Default $=50$
This places a limit on the storage allocated for superbasic variables. Ideally, s should be set slightly larger than the "number of degrees of freedom" expected at an optimal solution.
For nonlinear problems, the number of degrees of freedom is often called the "number of independent variables". Normally, s need not be greater than $n_{1}+1$, where n_{1} is the number of nonlinear variables. For many problems, s may be considerably smaller than n_{1}. This saves storage if n_{1} is very large.

If Hessian dimension r is specified, the default value of s is the same number (and conversely). This is a safeguard to ensure superlinear convergence wherever possible. Otherwise, the default for both r and s is 50 .

```
Unbounded objective value }\quad\mp@subsup{r}{1}{}\quad\mathrm{ Default }=1.0\textrm{e}+2
Unbounded step size 
```

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch of the form $\min _{\alpha} F(x+\alpha p)$, if $|F|$ exceeds r_{1} or if α exceeds r_{2}, iterations are terminated with the exit message Problem is unbounded (or badly scaled).

If singularities are present, unboundedness in $F(x)$ may be manifested by a floating-point overflow (during the evaluation of $F(x+\alpha p)$), before the test against r_{1} can be made.
Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables. See also the Minor damping parameter.

```
Verify level
Verify objective gradients
Verify constraint gradients
Verify
Verify gradients
Verify Yes
Verify No
l Default =0
Same as Verify level 1
Same as Verify level 2
Same as Verify level 3
Same as Verify level 3
Same as Verify level 3
Same as Verify level 0
```

These options refer to a check on the gradients computed by your nonlinear function routines funobj and funcon at the starting point (the initial value of the nonlinear variables $\mathrm{x}(*)$). Values output in the gradient array $\mathrm{g}(*)$ are compared with estimates obtained by finite differences.
$l=0 \quad$ Only a "cheap" test is performed, requiring three evaluations of the nonlinear objective (if any) and two evaluations of the nonlinear constraints.
$l=1 \quad$ A more reliable check is made on each component of the objective gradient.
$l=2 \quad$ A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.
$l=3 \quad$ A detailed check is made on both the objective and the Jacobian.
$l=-1 \quad$ No checking is performed. This may be necessary if the functions are undefined at the starting point.
Verify level 3 is recommended for a new function routine, particularly if the "cheap" test indicates error. Missing gradients are not checked (so there is no overhead). If there are many nonlinear variables, the Start and Stop keywords may be used to limit the check to a subset.
As noted, gradient verification occurs at the starting point, before a problem is scaled, and before the first basis is factorized. The bounds on x will be satisfied, but the general linear constraints may not. If the nonlinear objective or constraint functions are undefined, you could initially specify

```
Objective = NONE
Nonlinear objective variables 0
Major iterations 1
Verify level -1
```

to obtain a point that satisfies the linear constraints, and then restart with the correct linear and nonlinear objective, along with

```
Verify level
    3
```


6.2.5 Options for Nonlinear Constraints

The following options apply to problems with nonlinear constraints.

```
Completion Partial Default
Completion
Full
```

When there are nonlinear constraints, this determines whether subproblems should be solved to moderate accuracy
(partial completion), or to full accuracy (full completion). MINOS implements the option by using two sets of convergence tolerances for the subproblems.
Use of partial completion may reduce the work during early major iterations, unless the Minor iterations limit is active. The optimal set of basic and superbasic variables will probably be determined for any given subproblem, but the reduced gradient may be larger than it would have been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major iterations is converging. The switch is made when the nonlinear constraint error is reduced below $100 *$ (Row tolerance), the relative change in λ_{k} is 0.1 or less, and the previous subproblem was solved to optimality.
Full completion tends to give better Lagrange-multiplier estimates. It may lead to fewer major iterations, but may result in more minor iterations.

```
Crash option l Default = 3
Crash tolerance t Default = 0.1
```

Let A refer to the linearized constraint matrix.
$l=0 \quad$ The initial basis contains only slack variables: $B=I$.
$l=1 \quad A$ is evaluated at the starting point. Crash is called once, looking for a triangular basis in all rows and columns of A.
$l=2 \quad A$ is evaluated only after the linear constraints are satisfied. Crash is called twice. The first call looks for a triangular basis in linear rows. The first major iteration proceeds with simplex-type iterations until the linear constraints are satisfied. A is then evaluated for the second major iteration and Crash is called again to find a triangular basis in the nonlinear rows (retaining the current basis for linear rows).
$l=3 \quad$ Crash is called three times, treating linear equalities and linear inequalities separately, with simplextype iterations in between. As before, the last call treats nonlinear rows at the start of the second major iteration.

Feasibility tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$
A "feasible subproblem" is one in which the linear constraints and bounds, as well as the current linearization of the nonlinear constraints, are satisfied to within t.

Note that feasibility with respect to the nonlinear constraints is determined by the Row tolerance (not the Feasibility tolerance).

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced to zero, the problem is declared infeasible.

If Scale option $=1$ or 2 , feasibility is defined in terms of the scaled problem (since it is then more likely to be meaningful).
Normally, the nonlinear functions $F(x)$ and $f(x)$ are evaluated only at points x that satisfy the linear constraints and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these regions from the problem. For example, for a function $F(x)=\sqrt{x_{1}}+\log x_{2}$, it would be essential to place lower bounds on both variables. If Feasibility tolerance $=10^{-6}$, the bounds $x_{1} \geq 10^{-5}$ and $x_{2} \geq 10^{-4}$ might
be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as possible.)
An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place. The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If this causes difficulty, gradient checking should be suppressed by setting Verify level -1.
If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and it may be necessary to increase the Penalty parameter or alter the starting point.

Lagrangian	Yes	Default
Lagrangian	No	

This determines the form of the objective function used for the linearized subproblems. The default value Yes is highly recommended. The Penalty parameter value is then also relevant.

If No is specified, the nonlinear constraint functions are evaluated only twice per major iteration. Hence this option may be useful if the nonlinear constraints are very expensive to evaluate. However, in general there is a great risk that convergence may not be achieved.

Major damping parameter $\quad d \quad$ Default $=2.0$
This parameter may assist convergence on problems that have highly nonlinear constraints. It is intended to prevent large relative changes between subproblem solutions $\left(x_{k}, \lambda_{k}\right)$ and $\left(x_{k+1}, \lambda_{k+1}\right)$. For example, the default value 2.0 prevents the relative change in either x_{k} or λ_{k} from exceeding 200 per cent. It will not be active on well behaved problems. (If all components of x_{k} or λ_{k} are small, the norms of those vectors will not be allowed to increase beyond about 2.0.)

The parameter is used to interpolate between the solutions at the beginning and end of each major iteration. Thus, x_{k+1} and λ_{k+1} are changed to

$$
x_{k}+\sigma\left(x_{k+1}-x_{k}\right) \text { and } \lambda_{k}+\sigma\left(\lambda_{k+1}-\lambda_{k}\right)
$$

for some steplength $\sigma<1$. In the case of nonlinear equations (where the number of constraints is the same as the number of variables) this gives a damped Newton method.

This is a very crude control. If the sequence of major iterations does not appear to be converging, one should first re-run the problem with a higher Penalty parameter (say 2, 4 or 10). (Skip this re-run in the case of a square system of nonlinear equations: there are no degrees of freedom and the Penalty parameter value has essentially no effect.)

If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

Major iterations $\quad k \quad$ Default $=50$
This is the maximum number of major iterations allowed. It is intended to guard against an excessive number of linearizations of the nonlinear constraints, since in some cases the sequence of major iterations may not converge.

The progress of the major iterations can be best monitored using Print level 0 (the default).

```
Minor iterations
Default = 40
```

This is the maximum number of minor iterations allowed during a major iteration, after the linearized constraints for that subproblem have been satisfied. (An arbitrary number of minor iterations may be needed to find a feasible point for each subproblem.) The Iterations limit provides an independent limit on the total minor iterations (across all subproblems).

A moderate value (e.g., $30 \leq k \leq 200$) prevents excessive effort being expended on early major iterations, but allows later subproblems to be solved to completion.

The first major iteration is special: it terminates as soon as the linear constraints and bounds are satisfied (if possible), ignoring the nonlinear constraints.

In general it is unsafe to specify a value as small as $k=1$ or 2 . (Even when an optimal solution has been reached, a few minor iterations may be needed for the corresponding subproblem to be recognized as optimal.)

Optimality tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$

Penalty parameter $\quad r \quad$ Default $=1.0$
This specifies that the initial value of ρ_{k} in the augmented Lagrangian (5) should be r times a certain default value $100 / m_{1}$, where m_{1} is the number of nonlinear constraints. It is used when Lagrangian $=$ Yes (the default setting).

For early runs on a problem with unknown characteristics, the default value should be acceptable. If the problem is highly nonlinear and the major iterations do not converge, a larger value such as 2 or 5 may help. In general, a positive r may be necessary to ensure convergence, even for convex programs.

On the other hand, if r is too large, the rate of convergence may be unnecessarily slow. If the functions are not highly nonlinear or a good starting point is known, it is often safe to specify Penalty parameter 0.0.

If several related problems are to be solved, the following strategy for setting the Penalty parameter may be useful:

1. Initially, use a moderate value for r (such as the default) and a reasonably low Iterations and/or Major iterations limit.
2. If successive major iterations appear to be terminate with radically different solutions, try increasing the penalty parameter. (See also the Major damping parameter.)
3. If there appears to be little progress between major iterations, it may help to reduce the penalty parameter.

Radius of convergence $\quad r \quad$ Default $=0.01$
This determines when the penalty parameter ρ_{k} is reduced (if initialized to a positive value). Both the nonlinear constraint violation (see rowerr below) and the relative change in consecutive Lagrange multiplier estimates must be less than r at the start of a major iteration before ρ_{k} is reduced or set to zero.

A few major iterations later, full completion is requested if not already set, and the remaining sequence of major iterations should converge quadratically to an optimum.

Row tolerance $t \quad$ Default $=1.0 \mathrm{e}-6$
This specifies how accurately the nonlinear constraints should be satisfied at a solution. The default value is usually small enough, since model data is often specified to about that accuracy.

Let viol be the maximum violation of the nonlinear constraints (2), and let rowerr $=\operatorname{viol} /(1+\operatorname{xnorm})$, where $x n o r m$ is a measure of the size of the current solution (x, y). The solution is regarded as acceptably feasible if rowerr $\leq t$.

If the problem functions involve data that is known to be of low accuracy, a larger Row tolerance may be appropriate. On the other hand, nonlinear constraints are often satisfied with rapidly increasing accuracy during the last few major iterations. It is common for the final solution to satisfy rowerr $=O(\epsilon)$.

Scale option	l	Default $=2$ (LP) or 1 (NLP)
Scale	Yes	
Scale	No	
Scale linear variables		Same as Scale option 1
Scale nonlinear variables		Same as Scale option 2
Scale all variables	Same as Scale option 2	
Scale tolerance	r	Default $=0.9$
Scale, Print		
Scale, Print, Tolerance	r	

Three scale options are available as follows:
$l=0 \quad$ No scaling. If storage is at a premium, this option saves $m+n$ words of workspace.
$l=1 \quad$ Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix coefficients as close as possible to 1.0.
$l=2 \quad$ All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling is performed that may be helpful if the right-hand side b or the solution x is large. This takes into account columns of ($A I$) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)
Scale Yes sets the default scaling. Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing, because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).
With nonlinear constraints, Scale option 1 or 0 should generally be tried first. Scale option 2 gives scales that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is provided, and (b) the problem is not highly nonlinear.

Verify level	l	Default $=0$
Verify objective gradients		Same as Verify level 1
Verify constraint gradients		Same as Verify level 2
Verify		Same as Verify level 3
Verify gradients	Same as Verify level 3	
Verify	Yes	Same as Verify level 3
Verify	No	Same as Verify level 0

This option refers to a finite-difference check on the gradients (first derivatives) of each nonlinear function. It occurs before a problem is scaled, and before the first basis is factorized. (Hence, the variables may not yet satisfy the general linear constraints.)
$l=0 \quad$ Only a "cheap" test is performed, requiring three evaluations of the nonlinear objective (if any) and two evaluations of the nonlinear constraints.
$l=1 \quad$ A more reliable check is made on each component of the objective gradient.
$l=2 \quad$ A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.
$l=3 \quad$ A detailed check is made on both the objective and the Jacobian.
$l=-1 \quad$ No checking is performed. This may be necessary if the functions are undefined at the starting point.

6.2.6 Options for Input and Output

The following options specify various files to be used, and the amount of printed output required.

```
Print level l Default = 0
Print frequency }k\quad\mathrm{ Default = 100
```

The PRINT file provides more complete information than the SUMMARY file. It includes a listing of the main options, statistics about the problem, scaling information, the iteration log, the exit condition, and (optionally) the final solution. It also includes error messages.
The files are specified in Prob.SOL.PrintFile and Prob.SOL.SummFile.
For problems with linear constraints, Print level 0 gives most of the normal output. Print level 1 produces statistics for the basis matrix B and its $L U$ factors each time the basis is factorized. Print frequency k produces one line of the iteration log every k minor iterations. Print frequency 1 causes every minor iteration to be logged. Print frequency 0 is shorthand for $k=99999$.
For problems with nonlinear constraints, Print level 0 produces just one line of output per major iteration. This provides a short summary of the progress of the optimization. The Print frequency is ignored. If Print level >0, certain quantities are printed at the start of each major iteration, and minor iterations are logged according to the Print frequency.
In the latter case, the value of l is best thought of as a binary number of the form
Print level JFLXB
where each letter stands for a digit that is either 0 or 1 . The quantities referred to are:

B Basis statistics, as mentioned above.
X x_{k}, the nonlinear variables involved in the objective function or the constraints.
L $\quad \lambda_{k}$, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if Lagrangian $=$ No, since then $\lambda_{k}=0$.)

F $\quad f\left(x_{k}\right)$, the values of the nonlinear constraint functions.
J $J\left(x_{k}\right)$, the Jacobian matrix.
To obtain output of any item, set the corresponding digit to 1 , otherwise to 0 . For example, Print level 10 sets $\mathrm{X}=1$ and the other digits equal to zero. The nonlinear variables will be printed each major iteration.

If $\mathrm{J}=1$, the Jacobian is output column-wise. Column j is preceded by the value of the corresponding variable x_{j} and a key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if $\mathrm{J}=1$, there is no reason to specify $\mathrm{X}=1$ unless the objective contains more nonlinear variables than the Jacobian.) A typical line of output is

```
3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00
```

which means that x_{3} is basic at value 12.5 , and the third column of the Jacobian has elements of 1.0 and 2.0 in rows 1 and 4.

```
Solution Yes Default
Solution No
```

The Yes and No options control whether the final solution is output to the PRINT file. Numerical values are printed in f16.5 format where possible.

The special values 0,1 and -1 are printed as ., 1.0 and -1.0 . Bounds outside the range $\left(-10^{20}, 10^{20}\right)$ appear as the word None.

Summary file	f	Default $=6$ (typically)
Summary level	l	Default $=0$
Summary frequency	k	Default $=100$

The SUMMARY file provides a brief form of the iteration log and the exit condition. It also includes error messages. In an interactive environment, the output normally appears at the screen and allows a run to be monitored.

For problems with linear constraints, Summary level 0 produces brief output. Summary level 1 gives a few additional messages. Summary frequency k produces one line of the iteration log every k minor iterations. Summary frequency 1 causes every minor iteration to be logged. Summary frequency 0 is shorthand for $k=99999$.

For problems with nonlinear constraints, Summary level 0 produces one line of output per major iteration. This provides a short summary of the progress of the optimization. The Summary frequency is ignored. If Summary level >0, certain quantities are printed at the start of each major iteration, and minor iterations are logged according to the Summary frequency.

Major minor	total ninf	step	objective	Feasible	Optimal	nsb	ncon	LU penalty BSwap				
1	1 T	1	0	$0.0 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	$0.0 \mathrm{E}+00$	$1.2 \mathrm{E}+01$	8	4	31	$1.0 \mathrm{E}-01$	0
2	13	14	0	$1.0 \mathrm{E}+00$	$2.67011596 \mathrm{E}+00$	$4.4 \mathrm{E}-06$	$2.8 \mathrm{E}-03$	7	23	56	$1.0 \mathrm{E}-01$	8
Completion Full	now	requested										
3	3	17	0	$1.0 \mathrm{E}+00$	$2.67009870 \mathrm{E}+00$	$3.1 \mathrm{E}-08$	$1.4 \mathrm{E}-06$	7	29	41	$1.0 \mathrm{E}-01$	0
4	0	17	0	$1.0 \mathrm{E}+00$	$2.67009863 \mathrm{E}+00$	$5.6 \mathrm{E}-17$	$1.4 \mathrm{E}-06$	7	30	41	$1.0 \mathrm{E}-02$	0

Figure 1: The Major Iteration log

6.3 File Output

6.3.1 The PRINT file

The following information is output to the PRINT file during the solution process. The longest line of output is 124 characters.

- A listing of the SPECS file, if any.
- The selected options.
- An estimate of the storage needed and the amount available.
- Some statistics about the problem data.
- The storage available for the LU factors of the basis matrix.
- A \log from the scaling procedure, if Scaleoption >0.
- Notes about the initial basis obtained from CRASH or a BASIS file.
- The major iteration log.
- The minor iteration log.
- Basis factorization statistics.
- The EXIT condition and some statistics about the solution obtained.
- The printed solution, if requested.

The last five items are described in the following sections.

6.3.2 The major iteration log

Problems with nonlinear constraints require several major iterations to reach a solution, each involving the solution of an LC subproblem (a linearly constrained subproblem that generates search directions for x and λ). If Printlevel $=0$, one line of information is output to the PRINT file each major iteration. An example log is shown in Figure 1.

Label

Description

Major The current major iteration number.
minor is the number of iterations required by both the feasibility and optimality phases of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the correct active set will be identified near the solution.
total The total number of minor iterations.

ninf	The number of infeasibilities in the LC subproblem. Normally 0 , because the bounds on the linearized constraints are relaxed in several stages until the constraints are "feasible".
step	The step length α taken along the current search direction p. The variables x have just been changed to $x+\alpha p$. On reasonably well-behaved problems, step $=1.0$ as the solution is approached, meaning the new estimate of (x, λ) is the solution of the LC subproblem.
objective \quad The value of true objective function.	
Feasible \quadThe value of rowerr, the maximum component of the scaled nonlinear constraint residual. The solution is regarded as acceptably feasible if Feasbl is less than the Row tolerance.	
Optimal \quadThe value of maxgap, the maximum complementarity gap. It is an estimate of the degree of nonop- timality of the reduced costs. Both Feasible and Optimal are small in the neighborhood of a solution.	
nsbThe current number of superbasic variables.	
nconThe number of times subroutine funcon has been called to evaluate the nonlinear constraint functions. The Jacobian has been evaluated or approximated essentially the same number of times. (Function evaluations needed to estimate the Jacobian by finite differences are not included.)	
LU The number of nonzeros in the sparse LU factors of the basis matrix on completion of the LC	
subproblem. (The factors are computed at the start of each major iteration, and updated during	
minor iterations whenever a basis change occurs.)	

Figure 2: The Minor Iteration log

6.3.3 The minor iteration log

If Printlevel ≥ 1, one line of information is output to the PRINT file every k th minor iteration, where k is the specified Print frequency (default $k=100$). A heading is printed periodically. Problem t5weapon gives the log shown in Figure 2.

Label
Description
Itn \quad The current minor iteration number.
ph The current phase of the solution procedure:
1 Phase 1 simplex method, trying to satisfy the linear constraints. The current solution is an infeasible vertex.
2 Phase 2 simplex method, solving a linear program.
3 Reduced-gradient method. A nonbasic variable has just become superbasic.
4 Reduced-gradient method, optimizing the current set of superbasic variables.
pp
The Partial Price indicator. The variable selected by the last PRICE operation came from the ppth partition of A and I. pp is set to zero when the basis is refactored.
A PRICE operation is defined to be the process by which a nonbasic variable is selected to become a new superbasic. The selected variable is denoted by jq. Variable jq often becomes basic immediately.

Otherwise it remains superbasic, unless it reaches its opposite bound and becomes nonbasic again. If Partial price is in effect, variable jq is selected from A_{pp} or I_{pp}, the ppth segments of the constraint matrix ($A \quad I$).
rg In Phase 1, 2 or 3, this is d_{j}, the reduced cost (reduced gradient) of the variable jq selected by PRICE at the start of the present iteration. Algebraically, $d_{j}=g_{j}-\pi^{T} a_{j}$ for $j=j \mathrm{jq}$, where g_{j} is the gradient of the current objective function, π is the vector of dual variables for the problem (or LC subproblem), and a_{j} is the j th column of the current $(A I)$.

In Phase 4, rg is the largest reduced gradient among the superbasic variables.

+ sbs The variable jq selected by PRICE to be added to the superbasic set.
-sbs The variable chosen to leave the set of superbasics. It has become basic if the entry under -bs is nonzero; otherwise it has become nonbasic.
-bs The variable removed from the basis (if any) to become nonbasic.
step The step length α taken along the current search direction p. The variables x have just been changed to $x+\alpha p$.
pivot If column a_{q} replaces the r th column of the basis B, pivot is the r th element of a vector y satisfying $B y=a_{q}$. Wherever possible, step is chosen to avoid extremely small values of pivot (because they cause the basis to be nearly singular). In rare cases, it may be necessary to increase the Pivot tolerance to exclude very small elements of y from consideration during the computation of step.
ninf The number of infeasibilities before the present iteration. This number decreases monotonically.
sinf,objective If ninf >0, this is sinf, the sum of infeasibilities before the present iteration. It usually decreases at each nonzero step, but if ninf decreases by 2 or more, sinf may occasionally increase.
Otherwise it is the value of the current objective function after the present iteration. For linear programs, it means the true linear objective function. For problems with linear constraints, it means the sum of the linear objective and the value returned by subroutine funobj. For problems with nonlinear constraints, it is the quantity just described if Lagrangian $=$ No; otherwise it is the value of the augmented Lagrangian for the current major iterations (which tends to the true objective as convergence is approached).

L The number of nonzeros representing the basis factor L. Immediately after a basis factorization $B=L U$, this is lenL, the number of subdiagonal elements in the columns of a lower triangular matrix. Further nonzeros are added to L when various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U. Immediately after a basis factorization, this is lenU, the number of diagonal and superdiagonal elements in the rows of an upper-triangular matrix. As columns of B are replaced, the matrix U is maintained explicitly (in sparse form). The value of U may fluctuate up or down; in general it will tend to increase.
ncp The number of compressions required to recover storage in the data structure for U. This includes the number of compressions needed during the previous basis factorization. Normally ncp should increase very slowly. If not, the amount of workspace available to MINOS should be increased by a significant amount. As a suggestion, the work array $z(*)$ should be extended by $2(\mathrm{~L}+\mathrm{U})$ elements.

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty (i.e., if the current solution is not a vertex).

Label
 Description

nobj The number of times subroutine funobj has been called.
ncon The number of times subroutine funcon has been called.
nsb The current number of superbasic variables.
Hmod An indication of the type of modifications made to the triangular matrix R that is used to approximate the reduced Hessian matrix. Two integers i_{1} and i_{2} are shown. They will remain zero for linear problems. If $i_{1}=1$, a BFGS quasi-Newton update has been made to R, to account for a move within the current subspace. (This will not occur if the solution is infeasible.) If $i_{2}=1, R$ has been modified to account for a change in basis. This will sometimes occur even if the solution is infeasible (if a feasible point was obtained at some earlier stage).
Both updates are implemented by triangularizing the matrix $R+v w^{T}$ for some vectors v and w. If an update fails for numerical reasons, i_{1} or i_{2} will be set to 2 , and the resulting R will be nearly singular. (However, this is highly unlikely.)
cond(H) An estimate of the condition number of the reduced Hessian. It is the square of the ratio of the largest and smallest diagonals of the upper triangular matrix R-a lower bound on the condition number of the matrix $R^{T} R$ that approximates the reduced Hessian. cond(H) gives a rough indication of whether or not the optimization procedure is having difficulty. The reduced-gradient algorithm will make slow progress if $\operatorname{cond}(\mathrm{H})$ becomes as large as 10^{8}, and will probably fail to find a better solution if cond (H) reaches 10^{12} or more.

To guard against high values of cond(H), attention should be given to the scaling of the variables and the constraints. In some cases it may be necessary to add upper or lower bounds to certain variables to keep them a reasonable distance from singularities in the nonlinear functions or their derivatives.
conv $\quad \mathrm{A}$ set of four logical variables $C_{1}, C_{2}, C_{3}, C_{4}$ that are used to determine when to discontinue optimization in the current subspace (Phase 4) and consider releasing a nonbasic variable from its bound (the PRICE operation of Phase 3). Let rg be the norm of the reduced gradient, as described above. The meaning of the variables C_{j} is as follows:
C_{1} is true if the change in x was sufficiently small;
C_{2} is true if the change in the objective was sufficiently small;
C_{3} is true if rg is smaller than some loose tolerance TOLRG;
C_{4} is true if $r g$ is smaller than some tighter tolerance.
The test used is of the form

$$
\text { if }\left(C_{1} \text { and } C_{2} \text { and } C_{3}\right) \text { or } C_{4} \text { then go to Phase } 3 .
$$

At present, tolrg $=t|\mathrm{dj}|$, where t is the Subspace tolerance (nominally 0.5) and dj is the reducedgradient norm at the most recent Phase 3 iteration. The "tighter tolerance" is the maximum of 0.1 tolrg and $10^{-7}\|\pi\|$. Only the tolerance t can be altered at run-time.

6.3.4 Crash statistics

The following items are output to the PRINT file when no warm start is used. They refer to the number of columns that the CRASH procedure selects during several passes through A while searching for a triangular basis matrix.

Label Description
Slacks is the number of slacks selected initially.
Free cols is the number of free columns in the basis, including those whose bounds are rather far apart.
Preferred is the number of "preferred" columns in the basis (i.e., $\mathrm{hs}(j)=3$ for some $j \leq n$). It will be a subset of the columns for which $\mathrm{hs}(j)=3$ was specified.

Unit is the number of unit columns in the basis.
Double is the number of columns in the basis containing 2 nonzeros.
Triangle is the number of triangular columns in the basis with 3 or more nonzeros.
Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

6.3.5 Basis factorization statistics

If Printlevel ≥ 1, the following items are output to the PRINT file whenever the basis B or the rectangular matrix $B_{S}=\left(\begin{array}{ll}B & S\end{array}\right)^{T}$ is factorized. Note that B_{S} may be factorized at the start of just some of the major iterations. It is immediately followed by a factorization of B itself.
Gaussian elimination is used to compute a sparse LU factorization of B or B_{S}, where $P L P^{T}$ and $P U Q$ are lower and upper triangular matrices for some permutation matrices P and Q.

Label
 Description

Factorize The number of factorizations since the start of the run.
Demand A code giving the reason for the present factorization.
Itn The current iteration number.
Nonlin The number of nonlinear variables in the current basis B.
Linear \quad The number of linear variables in B.
Slacks The number of slack variables in B.
$\mathrm{m} \quad$ The number of rows in the matrix being factorized $\left(B\right.$ or $\left.B_{S}\right)$.
n The number of columns in the matrix being factorized. Preceded by " $=$ " if the matrix is B; by " $>$ " if it is B_{S}.

Elems \quad The number of nonzero elements in B or B_{S}.
Amax \quad The largest nonzero in B or B_{S}.
Density The density of the matrix (percentage of nonzeros).

Merit The average Markowitz merit count for the elements chosen to be the diagonals of $P U Q$. Each merit count is defined to be $(c-1)(r-1)$ where c and r are the number of nonzeros in the column and row containing the element at the time it is selected to be the next diagonal. Merit is the average of m such quantities. It gives an indication of how much work was required to preserve sparsity during the factorization.
lenL \quad The number of nonzeros in the factor L.
$\mathrm{L}+\mathrm{U} \quad$ The number of nonzeros in both L and U.
The number of times the data structure holding the partially factored matrix needed to be compressed to recover unused storage. Ideally this number should be zero. If it is more than 3 or 4 , the amount of workspace available to MINOS should be increased for efficiency.

Incres \quad The percentage increase in the number of nonzeros in L and U relative to the number of nonzeros in B or B_{S}.

Utri The size of the "backward triangle" in B or B_{S}. These top rows of U come directly from the matrix.
lenU
Ltol
Umax
Ugrwth The ratio Umax / Amax.
Ltri The size of the "forward triangle" in B or B_{S}. These initial columns of L come directly from the matrix.
dense1 is the number of columns remaining when the density of the basis matrix being factorized reached 0.3.

Lmax The maximum nonzero in L (no larger than Ltol).
Akmax The maximum nonzero arising during the factorization. (Printed only if Threshold Complete Pivoting is in effect.)

Agrwth The ratio Akmax / Amax. (Printed only if Threshold Complete Pivoting is in effect.)
bump \quad The number of columns of B or B_{S} excluding Utri and Ltri.
dense2 The number of columns remaining when the density of the basis matrix being factorized reached 0.6.
DUmax \quad The largest diagonal of U (really $P U Q$).
DUmin The smallest diagonal of U.
condU The ratio DUmax/DUmin. As long as Ltol is not large (say 10.0 or less), condU is an estimate of the condition number of B. If this number is extremely large, the basis is nearly singular and some numerical difficulties might occur. (However, an effort is made to avoid near-singularity by using slacks to replace columns of B that would have made Umin extremely small. Messages are issued to this effect, and the modified basis is refactored.)

6.3.6 EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to summarize the final result. Here we describe each message and suggest possible courses of action.
The number associated with each EXIT is the output value of the integer variable inform.

The following messages arise when the SPECS file is found to contain no further problems.

```
-2 EXIT -- input error. MINOS encountered end-of-file or an
    endrun card before finding a SPECS file.
```

Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or Endrun may imply that all problems should be ignored.

-1 ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise, the operating system will have intervened for one of many possible reasons (excess time, missing file, arithmetic error in user routines, etc.).

> The following messages arise when a solution exists (though it may not be optimal).

0 EXIT -- optimal solution found

This is the message we all hope to see! It is certainly preferable to every other message, and we naturally want to believe what it says, because this is surely one situation where the computer knows best. There may be cause for celebration if the objective function has reached an astonishing new high (or low).
In all cases, a distinct level of caution is in order, even if it can wait until next morning. For example, if the objective value is much better than expected, we may have obtained an optimal solution to the wrong problem! Almost any item of data could have that effect if it has the wrong value. Verifying that the problem has been defined correctly is one of the more difficult tasks for a model builder. It is good practice in the function subroutines to print any data that is input during the first entry.
If nonlinearities exist, one must always ask the question: could there be more than one local optimum? When the constraints are linear and the objective is known to be convex (e.g., a sum of squares) then all will be well if we are minimizing the objective: a local minimum is a global minimum in the sense that no other point has a lower function value. (However, many points could have the same objective value, particularly if the objective is largely linear.) Conversely, if we are maximizing a convex function, a local maximum cannot be expected to be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave regions. However, the functions of a problem are more likely to be neither convex nor concave. Always specify a good starting point if possible, especially for nonlinear variables, and include reasonable upper and lower bounds on the variables to confine the solution to the specific region of interest. We expect modelers to know something about their problem, and to make use of that knowledge as well as they can.

One other caution about "Optimal solution"s. Some of the variables or slacks may lie outside their bounds more than desired, especially if scaling was requested. Max Primal infeas refers to the largest bound infeasibility and
which variable (or slack) is involved. If it is too large, consider restarting with a smaller Feasibility tolerance (say 10 times smaller) and perhaps Scale option 0.
Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value. Broadly speaking, if

$$
\text { MaxDualinfeas/Normofpi }=10^{-d}
$$

then the objective function would probably change in the d th significant digit if optimization could be continued. If d seems too large, consider restarting with smaller Optimality tolerances.
Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it seems too large, consider restarting with a smaller Row tolerance.

1 EXIT -- the problem is infeasible

When the constraints are linear, this message can probably be trusted. Feasibility is measured with respect to the upper and lower bounds on the variables and slacks. Among all the points satisfying the general constraints $A x+s=0$, there is apparently no point that satisfies the bounds on x and s. Violations as small as the Feasibility tolerance are ignored, but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a feasible solution exists, the current linearization of the constraints may not contain a feasible point. In an attempt to deal with this situation, when solving each linearly constrained (LC) subproblem, MINOS is prepared to relax the bounds on the slacks associated with nonlinear rows.

If an LC subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for the nonlinear constraints become large), MINOS enters so-called "nonlinear elastic" mode. The subproblem includes the original QP objective and the sum of the infeasibilities-suitably weighted using the Elastic weight parameter. In elastic mode, some of the bounds on the nonlinear rows "elastic"-i.e., they are allowed to violate their specified bounds. Variables subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one or both of its original upper or lower bounds. If the original problem has a feasible solution and the elastic weight is sufficiently large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can continue on the subproblem. If the nonlinear problem has no feasible solution, MINOS will tend to determine a "good" infeasible point if the elastic weight is sufficiently large. (If the elastic weight were infinite, MINOS would locally minimize the nonlinear constraint violations subject to the linear constraints and bounds.)
Unfortunately, even though MINOS locally minimizes the nonlinear constraint violations, there may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible, nonlinear constraints should be defined in such a way that feasible points are known to exist when the constraints are linearized.

```
2 EXIT -- the problem is unbounded (or badly scaled)
    EXIT -- violation limit exceeded -- the problem may be unbounded
```

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can apparently be increased or decreased by an arbitrary amount without causing a basic variable to violate a bound. A message prior to the EXIT message will give the index of the nonbasic variable. Consider adding an upper or lower bound to the variable. Also, examine the constraints that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication of unboundedness. Consider using the Scale option.
For nonlinear problems, MINOS monitors both the size of the current objective function and the size of the change in the variables at each step. If either of these is very large (as judged by the Unbounded parameters, the problem
is terminated and declared UNBOUNDED. To avoid large function values, it may be necessary to impose bounds on some of the variables in order to keep them away from singularities in the nonlinear functions.
The second message indicates an abnormal termination while enforcing the limit on the constraint violations. This exit implies that the objective is not bounded below in the feasible region defined by expanding the bounds by the value of the Violation limit.

```
3 EXIT -- major iteration limit exceeded
    EXIT -- minor iteration limit exceeded
    EXIT -- too many iterations
```

Either the Iterations limit or the Major iterations limit was exceeded before the required solution could be found. Check the iteration log to be sure that progress was being made. If so, restart the run using WarmDefSOL at the end of the run.

4 EXIT -- requested accuracy could not be achieved

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not be achieved. An abnormal termination has occurred, but MINOS is within 10^{-2} of satisfying the Major optimality tolerance. Check that the Major optimality tolerance is not too small.

5 EXIT -- the superbasics limit is too small: nnn

The problem appears to be more nonlinear than anticipated. The current set of basic and superbasic variables have been optimized as much as possible and a PRICE operation is necessary to continue, but there are already nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the storage needed for the reduced Hessian (about $\frac{1}{2} s^{2}$ double words).

```
6 EXIT -- constraint and objective values could not be calculated
```

This exit occurs if a value mode ≤-1 is set during some call to funobj or funcon. MINOS assumes that you want the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked to MINOS. If the default versions of funobj and funcon are ever called, they issue a warning message and then set mode to terminate the run.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients

A check has been made on some individual elements of the objective gradient array at the first point that satisfies the linear constraints. At least one component $\operatorname{gObj}(j)$ is being set to a value that disagrees markedly with a forward-difference estimate of $\partial f / \partial x_{j}$. (The relative difference between the computed and estimated values is 1.0 or more.) This exit is a safeguard, since MINOS will usually fail to make progress when the computed gradients are seriously inaccurate. In the process it may expend considerable effort before terminating with EXIT 9 below.
Check the function and gradient computation very carefully in funobj. A simple omission (such as forgetting to divide $f 0 b j$ by 2) could explain everything. If $f 0 b j$ or $\operatorname{gObj}(j)$ is very large, then give serious thought to scaling the function or the nonlinear variables.

If you feel certain that the computed $\operatorname{gObj}(j)$ is correct (and that the forward-difference estimate is therefore wrong), you can specify Verify level 0 to prevent individual elements from being checked. However, the optimization procedure may have difficulty.

8 EXIT -- subroutine funcon seems to be giving incorrect gradients

This is analogous to the preceding exit. At least one of the computed Jacobian elements is significantly different from an estimate obtained by forward-differencing the constraint vector $F(x)$. Follow the advice given above, trying to ensure that the arrays fCon and gCon are being set correctly in funcon.

```
9 EXIT -- the current point cannot be improved upon
```

Several circumstances could lead to this exit.

1. Subroutines funobj or funcon could be returning accurate function values but inaccurate gradients (or vice versa). This is the most likely cause. Study the comments given for EXIT 7 and 8, and do your best to ensure that the coding is correct.
2. The function and gradient values could be consistent, but their precision could be too low. For example, accidental use of a real data type when double precision was intended would lead to a relative function precision of about 10^{-6} instead of something like 10^{-15}. The default Optimality tolerance of 10^{-6} would need to be raised to about 10^{-3} for optimality to be declared (at a rather suboptimal point). Of course, it is better to revise the function coding to obtain as much precision as economically possible.
3. If function values are obtained from an expensive iterative process, they may be accurate to rather few significant figures, and gradients will probably not be available. One should specify
```
Function precision t
Major optimality tolerance \sqrt{}{t}
```

but even then, if t is as large as 10^{-5} or 10^{-6} (only 5 or 6 significant figures), the same exit condition may occur. At present the only remedy is to increase the accuracy of the function calculation.

10 EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic variables x_{B}, given the present values of the superbasic and nonbasic variables. A step of "iterative refinement" has also been applied to increase the accuracy of x_{B}. However, a row check has revealed that the resulting solution does not satisfy the current constraints $A x-s=0$ sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale option 1 if scaling has not yet been used and there are some linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic growth may occur in the factor U. Consult the description of Umax, Umin and Growth in $\S 6.3 .5$, and set the LU factor tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

12 EXIT -- terminated from subroutine s1User

The user has set the value iAbort $=1$ in subroutine s1User. MINOS assumes that you want the problem to be abandoned forthwith.

> If the following exits occur during the first basis factorization, the primal and dual variables x and pi will have their original input values. BASIS files will be saved if requested, but certain values in the printed solution will not be meaningful.

The main integer or real storage array $i w(*)$ or $r w(*)$ is apparently not large enough for this problem. The routine declaring iw and rw should be recompiled with a larger dimensions for those arrays. The new values should also be assigned to leniw and lenrw.
An estimate of the additional storage required is given in messages preceding the exit.

21 EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the current basis has more than one element in row i and column j. This could be caused by a corresponding error in the input parameters $\mathrm{a}(*)$, ha(*), and ka(*).

22 EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the basis to be structurally or numerically singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a certain tolerance.) The associated variables are replaced by slacks and the modified basis is refactorized, but singularity persists. This must mean that the problem is badly scaled, or the LU factor tolerance is too much larger than 1.0 .

If the following messages arise, either an OLD BASIS file could not be loaded properly, or some fatal system error has occurred. New BASIS files cannot be saved, and there is no solution to print. The problem is abandoned.

30 EXIT -- the basis file dimensions do not match this problem

On the first line of the OLD BASIS file, the dimensions labeled m and n are different from those associated with the problem that has just been defined. You have probably loaded a file that belongs to another problem.
Remember, if you have added rows or columns to $\mathrm{a}(*)$, ha $(*)$ and $\mathrm{ka}(*)$, you will have to alter m and n and the map beginning on the third line (a hazardous operation). It may be easier to restart with a PUNCH or DUMP file from an earlier version of the problem.

```
31 EXIT -- the basis file state vector does not match this problem
```

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent within itself. The number of basic entries in the state vector (i.e., the number of 3 's in the map) is not the same as m on the first line, or some of the 2 's in the map did not have a corresponding " $j \quad x_{j}$ " entry following the map.

32 EXIT -- system error. Wrong no. of basic variables: nnn
This exit should never happen. It may indicate that the wrong MINOS source files have been compiled, or incorrect parameters have been used in the call to subroutine minoss.
Check that all integer variables and arrays are declared integer in your calling program (including those beginning with $\mathrm{h}!$), and that all "real" variables and arrays are declared consistently. (They should be double precision on most machines.)

The following messages arise if additional storage is needed to allow optimization to begin. The problem is abandoned.

42 EXIT -- not enough 8-character storage to start solving the problem

The main character storage array cw $(*)$ is not large enough.

43 EXIT -- not enough integer storage to start solving the problem

The main integer storage array $i w(*)$ is not large enough to provide workspace for the optimization procedure. See the advice given for Exit 20.

```
4 4 ~ E X I T ~ - - ~ n o t ~ e n o u g h ~ r e a l ~ s t o r a g e ~ t o ~ s t a r t ~ s o l v i n g ~ t h e ~ p r o b l e m ~
```

The main storage array $\mathrm{rw}(*)$ is not large enough to provide workspace for the optimization procedure. Be sure that the Superbasics limit is not unreasonably large. Otherwise, see the advice for EXIT 20.

6.3.7 Solution output

At the end of a run, the final solution is output to the PRINT file in accordance with the Solution keyword. Some header information appears first to identify the problem and the final state of the optimization procedure. A ROWS section and a COLUMNS section then follow, giving one line of information for each row and column. The format used is similar to certain commercial systems, though there is no industry standard.

An example of the printed solution is given in $\S 6.3$. In general, numerical values are output with format f16.5. The maximum record length is 111 characters, including the first (carriage-control) character.

To reduce clutter, a dot "." is printed for any numerical value that is exactly zero. The values ± 1 are also printed specially as 1.0 and -1.0 . Infinite bounds $\left(\pm 10^{20}\right.$ or larger $)$ are printed as None.

Note: If two problems are the same except that one minimizes an objective $f(x)$ and the other maximizes $-f(x)$, their solutions will be the same but the signs of the dual variables π_{i} and the reduced gradients d_{j} will be reversed.

The ROWS section

General linear constraints take the form $l \leq A x \leq u$. The i th constraint is therefore of the form

$$
\alpha \leq a^{T} x \leq \beta
$$

and the value of $a^{T} x$ is called the row activity. Internally, the linear constraints take the form $A x-s=0$, where the slack variables s should satisfy the bounds $l \leq s \leq u$. For the i th "row", it is the slack variable s_{i} that is directly available, and it is sometimes convenient to refer to its state. Slacks may be basic or nonbasic (but not superbasic).
Nonlinear constraints $\alpha \leq F_{i}(x)+a^{T} x \leq \beta$ are treated similarly, except that the row activity and degree of infeasibility are computed directly from $F_{i}(x)+a^{T} x$ rather than from s_{i}.

Label Description
Number The value $n+i$. This is the internal number used to refer to the i th slack in the iteration log.
Row The name of the i th row.
State \quad The state of the i th row relative to the bounds α and β. The various states possible are as follows.
LL \quad The row is at its lower limit, α.
UL The row is at its upper limit, β.

The limits are the same $(\alpha=\beta)$.
BS
The constraint is not binding. s_{i} is basic.
A key is sometimes printed before the State to give some additional information about the state of the slack variable.

Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essentially zero. This means that if the slack were allowed to start moving from its current value, there would be no change in the objective function. The values of the basic and superbasic variables might change, giving a genuine alternative solution. The values of the dual variables might also change.
D Degenerate. The slack is basic, but it is equal to (or very close to) one of its bounds.
I
Infeasible. The slack is basic and is currently violating one of its bounds by more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger than the Optimality tolerance.
Note: If Scaleoption >0, the tests for assigning A, D, I, N are made on the scaled problem, since the keys are then more likely to be meaningful.

Activity The row value $a^{T} x$ (or $F_{i}(x)+a^{T} x$ for nonlinear rows).
Slack activity The amount by which the row differs from its nearest bound. (For free rows, it is taken to be minus the Activity.)

Lower limit α, the lower bound on the row.
Upper limit β, the upper bound on the row.
Dual activity The value of the dual variable π_{i}, often called the shadow price (or simplex multiplier) for the i th constraint. The full vector π always satisfies $B^{T} \pi=g_{B}$, where B is the current basis matrix and g_{B} contains the associated gradients for the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the "column variables" $x_{j}, j=1: n$. We assume that a typical variable has bounds $\alpha \leq x_{j} \leq \beta$.

Label

Description

Number The column number, j. This is the internal number used to refer to x_{j} in the iteration \log.
Column \quad The name of x_{j}.
State \quad The state of x_{j} relative to the bounds α and β. The various states possible are as follows.
LL $\quad x_{j}$ is nonbasic at its lower limit, α.
UL $\quad x_{j}$ is nonbasic at its upper limit, β.
EQ $\quad x_{j}$ is nonbasic and fixed at the value $\alpha=\beta$.

FR $\quad x_{j}$ is nonbasic at some value strictly between its bounds: $\alpha<x_{j}<\beta$.
BS $\quad x_{j}$ is basic. Usually $\alpha<x_{j}<\beta$.
SBS $\quad x_{j}$ is superbasic. Usually $\alpha<x_{j}<\beta$.
A key is sometimes printed before the State to give some additional information about the state of x_{j}.

A Alternative optimum possible. The variable is nonbasic, but its reduced gradient is essentially zero. This means that if x_{j} were allowed to start moving from its current value, there would be no change in the objective function. The values of the basic and superbasic variables might change, giving a genuine alternative solution. The values of the dual variables might also change.
D Degenerate. x_{j} is basic, but it is equal to (or very close to) one of its bounds.
I Infeasible. x_{j} is basic and is currently violating one of its bounds by more than the Feasibility tolerance.
N Not precisely optimal. x_{j} is nonbasic. Its reduced gradient is larger than the Optimality tolerance.
Note: If Scaleoption >0, the tests for assigning A, D, I, N are made on the scaled problem, since the keys are then more likely to be meaningful.

Activity \quad The value of the variable x_{j}.
Obj Gradient g_{j}, the j th component of the gradient of the (linear or nonlinear) objective function. (If any x_{j} is infeasible, g_{j} is the gradient of the sum of infeasibilities.)

Lower limit α, the lower bound on x_{j}.
Upper limit β, the upper bound on x_{j}.
Reduced gradnt The reduced gradient $d_{j}=g_{j}-\pi^{T} a_{j}$, where a_{j} is the j th column of the constraint matrix (or the j th column of the Jacobian at the start of the final major iteration).

M+J \quad The value $m+j$.

6.3.8 The SUMMARY file

If Summaryfile >0, the following information is output to the SUMMARY file. (It is a brief form of the PRINT file.) All output lines are less than 72 characters.

- The Begin line from the SPECS file, if any.
- The basis file loaded, if any.
- A brief Major iteration log.
- A brief Minor iteration log.
- The EXIT condition and a summary of the final solution.

The following SUMMARY file is from example problem t6wood using Print level 0 and Major damping parameter 0.5 .
-

EXIT -- optimal solution found

blem name WOPLANT			
No. of iterations	80	Objective value -1.5	60112E+01
No. of major iterations	9	Linear objective -1.5	60112E+01
Penalty parameter	0.000100	Nonlinear objective 0.	00000E+00
No. of calls to funobj	0	No. of calls to funcon	165
No. of superbasics	3	No. of basic nonlinears	6
No. of degenerate steps	0	Percentage	0.00
Norm of x (scaled)	9.8E-01	Norm of pi (scaled)	1.8E+02
Norm of x	$3.2 \mathrm{E}+01$	Norm of pi	1.6E+01
Max Prim inf (scaled)	$00.0 \mathrm{E}+00$	Max Dual inf(scaled)	$12.2 \mathrm{E}-06$
Max Primal infeas	$00.0 \mathrm{E}+00$	Max Dual infeas	$15.8 \mathrm{E}-08$
Nonlinear constraint violn	$5.1 \mathrm{E}-14$		
Solution printed on file 9			
funcon called with nstate $=2$			
Time for MPS input		0.00 seconds	
Time for solving problem		0.04 seconds	
Time for solution output		0.00 seconds	
Time for constraint functions		0.00 seconds	
Time for objective function		0.00 seconds	
Endrun			

References

[1] R. H. Bartels. A stabilization of the simplex method. Numerische Mathematik, 16:414-434, 1971.
[2] R. H. Bartels and G. H. Golub. The simplex method of linear programming using the $l u$ decomposition. Communications of the ACM, 12:266-268, 1969.
[3] G. B. Dantzig. Linear programming and extensions. 1963.
[4] W. C. Davidon. Variable metric methods for minimization. A.E.C. Research and Development Report ANL599, 1959.
[5] M. P. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization. 2002.
[6] P. E. Gill and W. Murray. Numerically stable methods for quadratic programming. Mathematical Programming, 14:349-372, 1978.
[7] Philip E. Gill, Walter Murray, and Michael A. Saunders. User's guide for QPOPT 1.0: A Fortran package for Quadratic programming. Technical Report SOL 95-4, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1995.
[8] Jr. J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization. 1983.
[9] B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Mathematical Programming, 14:41-72, 1978.
[10] B. A. Murtagh and M. A. Saunders. A projected lagrangian algorithm and its implementation for sparse nonlinear constraints. Mathematical Programming Study, 16:84-117, 1982.
[11] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.5 USER'S GUIDE. Technical Report SOL 8320R, Revised July 1998, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1998.
[12] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. Two step-length algorithms for numerical optimization. 1979.
[13] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Transactions on Mathematical Software, 10:282-298, 1984.
[14] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. Maintaining lu factors of a general sparse matrix. Linear Algebra and its Applications, 88, 1987.
[15] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. A practical anti-cycling procedure for linearly constrained optimization. Mathematical Programming, 45:437-474, 1989.
[16] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. A practical anti-cycling procedure for linearly constrained optimization. Mathematical Programming, 45:437-474, 1989.
[17] M. A. Saunders P. E. Gill, W. Murray and M. H. Wright. Inertia-controlling methods for general quadratic programming. SIAM Review, 33:1-36, 1991.
[18] W. Murray P. E. Gill and M. A. Saunders. User's guide for npopt: a fortran package for nonlinear programming.
[19] W. Murray P. E. Gill and M. H. Wright. Practical Optimization. 1981.
[20] P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic programming is NP-hard. Operations Research Letters, 7:33-35, 1988.
[21] J. K. Reid. Fortran subroutines for handling sparse linear programming bases. Report R8269, 1976.
[22] J. K. Reid. A sparsity-exploiting variant of the bartels-golub decomposition for linear programming bases. Mathematical Programming, 24:55-69, 1982.
[23] S. M. Robinson. A quadratically convergent algorithm for general nonlinear programming problems. Mathematical Programming, 3:145-156, 1972.
[24] P. Wolfe. The reduced-gradient method. 1962.

[^0]: *More information available at the TOMLAB home page: http://tomopt.com and at the Applied Optimization and Modeling TOM home page http://www.ima.mdh.se/tom. E-mail: tomlab@tomopt.com.
 \dagger Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Västerås, Sweden, kenneth.holmstrom@mdh.se.
 \ddagger Tomlab Optimization AB, Västerås Technology Park, Trefasgatan 4, SE-721 30 Västerås, Sweden, anders@tomopt.com.
 ${ }^{\S}$ Tomlab Optimization Inc., 855 Beech St \#121, San Diego, CA, USA, medvall@tomopt.com.

