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1 Introduction

1.1 Overview

Welcome to the TOMLAB /MINOS User’s Guide. TOMLAB /MINOS includes a set of solvers and MATLAB
embedded interfaces. The solver package includes binaries for the following solvers:

MINOS - For large-scale sparse general nonlinear programming problems.
LP-MINOS - For large-scale sparse linear programming problems.
QP-MINOS - For large-scale sparse quadratic programming problems.
LPOPT - For dense linear programming problems.

QPOPT - For dense convex quadratic programming problems.

Please visit http://tomopt.com/tomlab/products/minos/ for more information.

The interface between TOMLAB /MINOS, Matlab and TOMLAB consists of two layers. The first layer gives
direct access from Matlab to MINOS, via calling one Matlab function that calls a pre-compiled MEX file (DLL
under Windows, shared library in UNIX) that defines and solves the problem in MINOS . The second layer is a
Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the
function creates the output in the TOMLAB format.

1.2 Contents of this Manual

e Section 2 gives the basic information needed to run the Matlab interface.
e Section 3 provides all the solver references for MINOS, LP-MINOS, QP-MINOS, LPOPT and QPOPT.

e Section 4 discusses the use of TOMLAB /MINOS in more detail.

1.3 Prerequisites

In this manual we assume that the user is familiar with MINOS, the MINOS Reference Manual, TOMLAB and
the Matlab language.
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2 Using the Matlab Interface

The main routines in the two-layer design of the interface are shown in Table 1. Page and section references are
given to detailed descriptions on how to use the routines.

Table 1: The interface routines.

Function Description Section Page

minos The layer one Matlab interface routine, calls the MEX-file interface 3.1.1 8
mainos.dll

minosTL ~ The layer two interface routine called by the TOMLAB driver routine 3.1.2 14
tomRun. This routine then calls minos.m.

minosLPTL The layer two TOMLAB interface routine that calls minosLPTL.m. 3.2.1 21

Converts the input Prob format before calling minos.m and converts
back to the output Result structure. This option only handles linear
programming problems
minos@QPTL The layer two TOMLAB interface routine that calls minos@QPT L.m. 3.3.1 27
Converts the input Prob format before calling minos.m and con-
verts back to the output Result structure. This option only handles
quadratic programming problems

lpopt The layer one Matlab interface routine, calls the MEX-file interface 3.4.1 34
Ipopt.dll

lpoptTL The layer two interface routine called by the TOMLAB driver routine 3.4.2 37
tomRun. This routine then calls Ipopt.m.

gpopt The layer one Matlab interface routine, calls the MEX-file interface 3.5.1 41
gpopt.dll

gpoptTL The layer two interface routine called by the TOMLAB driver routine 3.5.2 45

tomRun. This routine then calls gpopt.m.

The MINOS control parameters are possible to set from Matlab.

They can be set as inputs to the interface routine minos and the others. The user sets fields in a structure called
Prob.SOL.optPar, where the subfield names follow the SOL standard for setting solver options. The following
example shows how to set the maximum number of iterations.

Prob.SOL.optPar(30) = 500; % Setting maximum number of iterations



3 TOMLAB /MINOS Solver Reference

The MINOS solvers are a set of Fortran solvers that were developed by the Stanford Systems Optimization
Laboratory (SOL). Table 2 lists the solvers included in TOMLAB /MINOS. The solvers are called using a set
of MEX-file interfaces developed as part of TOMLAB. All functionality of the SOL solvers are available and
changeable in the TOMLAB framework in Matlab.

Detailed descriptions of the TOMLAB /MINOS solvers are given in the following sections. Also see the M-file
help for each solver.

The solvers reference guide for TOMLAB /MINOS is available for download from the TOMLAB home page
http://tomopt.com. There is also detailed instruction for using the solvers in Section 4. Extensive TOMLAB
m-file help is also available, for example help minosTL in Matlab will display the features of the MINOS solver
using the TOMLAB format.

TOMLAB /MINOS solves nonlinear optimization problems (con) defined as

min f(x)

rxzr < © < oy, (1)
S/t b, < Az < by

c, < cr) £ v

where z,x, 2y € R, f(z) € R, A € R™*" by, by € R™ and cp,c(x),cy € R™2.

quadratic programming (gp) problems defined as

min  f(z) = 32T Fa + Tz
x

(2)
s/t z, < z < ay,
bL S Ax S bU
where ¢, z,x,zy € R", F € R"*", A e R™*" and by,by € R™:,
and linear programming (Ip) problems defined as
min  f(z) =c'x
(3)
s/t r, < o <y,
by < Az < by

where ¢, z,xp,zy € R", A € R™*" and b, by € R™.
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Table 2: The SOL optimization solvers in TOMLAB /MINOS.

Function Description Reference Page
MINOS 5.5 Sparse linear and nonlinear programming with linear and nonlin- [11]
ear constraints.
LP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse [11]
linear programming.
QP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse [11]
quadratic programming.
LPOPT 1.0-10  Dense linear programming. [7]
QPOPT 1.0-10  Non-convex quadratic programming with dense constraint matrix [7]

and sparse or dense quadratic matrix.

3.1 MINOS
3.1.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.1.2 for information on how to use MINOS with TOMLAB.

Purpose
minos solves nonlinear optimization problems defined as

min  f(z)

S/t bL

IN
b
8
IN
o
c

where z € R", f(z) € R, A € R™*™ by, by € R"T™ 12 and ¢(z) € R™2.

or quadratic optimization problems defined as
min f(z) = 32T Fz +cTx
xr

x : ()
S/t bL < g(CC) < bU
Az
where ¢,z € R", FF € R"*", A € R™*" and by, by € R™:,
The full input matrix A has three parts A = [d/dx g(x); A; ¢];

Calling Syntax

The file funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.



The file 'funcdc.m’ must be defined and contain: function [mode ,c ,dcS] = funcde(x, Prob, mode, nstate) to
compute the nonlinear constraint value ¢ and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

NOTE: The matrix deS MUST be a SPARSE MATLAB matrix. Do dcS = sparse(dcS); after dcS has been com-
puted.

[hs, xs, pi, rc, Inform, nS, nlnf, sInf, Obj, iwCount, gObj, fCon, gCon] = minos(H, A, bl, bu, nnCon, nnObj,
nnJac, Prob, iObj, optPar, Warm, hs, xs, pi, nS, SpecsFile, PrintFile, SummFile, PriLev, ObjAdd, moremem,
ProbName );

Description of Inputs

The following fields are used:

H Matrix n x n in a quadratic programming (QP) problem. DENSE or SPARSE.
Leave empty if LP, or NLP problem.

A Constraint matrix, m x n SPARSE (nonlinear, linear and objective) m > 0
always!!! Define dummy constraint for unconstrained problems.

bl Lower bounds on (x,g(x),Ax,c’).

bu Upper bounds on (x,g(x),Ax,c’).
NOTE! The bl and bu values for the last nonlinear constraint ¢ must have
reverse signs and be put in each other places: If ¢ <= ¢(x) <= ¢y , then

bl = —cy and bu = —cy,. This is because the bounds acts as the constraints on
the slack variables for the nonlinear constraints.

nnCon Number of nonlinear constraints.

nnObj Number of nonlinear objective variables.

nnJac Number of nonlinear Jacobian variables.

Prob Must be a structure. No check is made in the MEX interface. If TOMLAB

calls minos, then Prob is the standard TOMLAB problem structure, otherwise
the user should set:

Prob.P = ProblemNumber, where ProblemNumber is some integer.

If the problem is a LP or QP problem (H defined), the user does not have to
specify anything else in the structure.



The following fields are used:, continued

iObj

optPar

Warm

hs

s

For a general nonlinear objective or nonlinear constraints names of two user
written routines must be given:

funfdf, actual name stored in Prob.FUNCS.fg, with syntax [mode, f, g] =
funfdf(x, Prob, mode, nstate).

funcde, actual name stored in Prob.FUNCS.cde, with syntax [mode, ¢, dcS| =
funcde(x, Prob, mode, nstate).

MINOS is calling the TOMLAB routines nlp_fg.m and nlp_cdcS.m in the call-
back, and they call funfdf and funcdc, respectively.

If these fields in Prob are empty (Prob.FUNCS.fg, Prob.FUNCS.cdc), the
TOMLAB callback routines calls the usual function routines. Then the
Prob struct should be normally defined, and the fields Prob.FUNCS.{,
Prob.FUNCS.g, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way
(e.g. by the routine mFiles.m, or one of the Assign-routines like conAssign.m).

If the mode parameter is 0, funfdf should return f, otherwise both f and the
gradient vector g. If the mode parameter is 0, funcdc should return c, otherwise
both ¢ and dcS. Note that each row in dcS corresponds to a constraint, and
that dcS must be a SPARSE matrix.

The user could also write his own versions of the routines nlp_fg.m and
nlp_cdcS.m and put them before in the path.

Says which row of A is a free row containing a linear objective vector c. If there
is no such vector, iObj = 0. Otherwise, this row must come after any nonlinear
rows, so that nnCon <= iObj <= m.

Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If using only default options, set optPar as an empty
matrix.

Flag, if true: warm start. Default cold start (if empty). If "Warm Start’ xs, nS
and hs must be supplied with correct values.

Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: O=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),

3=Dbasic (between bounds).

Initial vector, optionally including m slacks at the end. If warm start, full xs
must be supplied.

10



The following fields are used:, continued

j
nsS
SpecsFile

PrintFile

SummFile

PriLev

ObjAdd

moremem

ProbName

Lagrangian multipliers for the nnCon nonlinear constraints. If empty, set as 0.
# of superbasics. Only used if calling again with a Warm Start.
Name of the SPECS input parameter file, see TOMLAB Guide.

Name of the Print file. Name includes the path, maximal number of characters
= 500.

Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

Printing level in the minos m-file and minos MEX-interface.
= 0 Silent

= 1 Summary information

= 2 More detailed information

Constant added to the objective for printing purposes, typically 0.

Add extra memory for the sparse LU, might speed up the optimization. 1E6
is 10MB of memory. If empty, set as 0.

Name of the problem. ;=100 characters are used in the MEX interface. In
the MINOS solver the first 8 characters are used in the printed solution and in
some routines that output BASIS files. Blank is OK.

Description of Outputs

The following fields are used:

hs

Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as

much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

11



The following fields are used:, continued

xs

pi

rc

Inform

nsS

nInf

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

Lagrangian multipliers (dual solution vector) (m x 1 vector)

Vector of reduced costs, g — (A I)Tr, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are —w. Reduced costs vector is of n+m length.

Result of MINOS run.

0 Optimal solution found.

1 The problem is infeasible.

2 The problem is unbounded (or badly scaled).

3 Too many iterations.

4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).

5 The Superbasics limit is too small.

6 User requested termination (by returning bad value).

7 Gradient seems to be giving incorrect derivatives.

8 Jacobian seems to be giving incorrect derivatives.

9 The current point cannot be improved.

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

11 Cannot find a superbasic to replace a basic variable.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.

21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.

40 Fatal errors in the MPS file.

41 Not enough storage to read the MPS file.

42 Not enough storage to solve the problem.

# of superbasics.

Number of infeasibilities.

12



The following fields are used:, continued

sInf Sum of infeasibilities.
Obj Objective function value at optimum.

iwCount Number of iterations (major and minor), function and constraint calls.

gObj Gradient of the nonlinear objective.
fCon Nonlinear constraint vector.
gCon Gradient vector (non-zeros) of the nonlinear constraint vector.

13



3.1.2 Using TOMLAB

Purpose

minosTL solves nonlinear optimization problems defined as

min  f(z)
xr
XL S x é U,
S/t bL S Az S bU
e, < czr) < oy

where x, 2,2y € R”, f(x) € R, A € R™*™ by by € R™ and cr, c(x), cy € R™2.

Calling Syntax

Using the driver routine tomRun:

Prob = oAssign( ... );

Result = tomRun(’minos’, Prob, 1);

Description of Inputs

Prob, The following fields are used:

L, .U
b.L, b_U
c.L, c.U

A

QP.c
PriLevOpt
WarmStart
SOL.zs
SOL.hs
SOL.nS

SOL.moremem

Bounds on variables.

Bounds on linear constraints.

Bounds on nonlinear constraints.

Linear constraint matrix.

Linear coefficients in objective function.

Print level.

If true, use warm start, otherwise cold start.
Solution and slacks from previous run.

State for solution and slacks from previous run.

Number of superbasics from previous run.

Add more memory if MINOS stops with not enough storage message.

1E6 is

10MB of memory. Default n+ml+m?2 (number of variables + linear 4+ nonlin-

ear constraints).

14



Prob, The following fields are used:, continued

SOL.SpecsFile

SOL.PrintFile

SOL.SummkFile

SOL.optPar

Description of Outputs

Name of user defined SPECS file, read BEFORE optPar() is used.

Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

Name of SOL Summary File.

Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 24.

Result, The following fields are used:

Result
fk
xz_k
x_0
g-k
ck

cJac

zState
bState

cState

vk
EzitFlag

Inform

The structure with results (see ResultDef.m).
Function value at optimum.

Solution vector.

Initial solution vector.

Gradient of the function.

Nonlinear constraint residuals.

Nonlinear constraint gradients.

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
==3;

State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Lagrangian multipliers (for bounds + dual solution vector).
Exit status from minos.m (similar to TOMLAB).
Result of MINOS run.

0 Optimal solution found.

1 The problem is infeasible.

2 The problem is unbounded (or badly scaled).

3 Too many iterations.

4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).

5 The Superbasics limit is too small.

6 User requested termination (by returning bad value).

15



Result, The following fields are used:, continued

rc

Iter
FuncEv
GradEv
ConstrEv
QP.B
Minorlter

Solver
SolverAlgorithm

SOL.xs

SOL.hs

7 Gradient seems to be giving incorrect derivatives.

8 Jacobian seems to be giving incorrect derivatives.

9 The current point cannot be improved.

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

11 Cannot find a superbasic to replace a basic variable.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.

21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.

40 Fatal errors in the MPS file.

41 Not enough storage to read the MPS file.

42 Not enough storage to solve the problem.

Vector of reduced costs, g — (A I)Tr, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are —m. Reduced costs vector is of n+m length.

Number of iterations.

Number of function evaluations.
Number of gradient evaluations.
Number of constraint evaluations.

Basis vector in TOMLAB QP standard.

Number of minor iterations.

Name of the solver (minos).
Description of the solver.

Solution and slack variables.

Basis status of variables + constraints (n+m x 1 vector). State of vari-

ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=Dbasic (between bounds).

16



Result, The following fields are used:, continued

SOL.nS
SOL.nInf

SOL.sInf

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for

which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

# of superbasics.
# of infeasibilities.

Sum of infeasibilities.

17



3.1.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.
Definition: nnL. = max(nnObj,nnJac))

Description of Inputs

Table 7: The following fields are used:

#  SPECS keyword text Lower Default Upper Comment

Printing

1. PRINT LEVEL 0 0 11111 JFLXB: Jac, fCon,
lambda, x, B=LU
stats

Frequencies T

5.  PRINT FREQUENCY 0 100

6. SUMMARY FREQUENCY 0 100

7. SOLUTION YES/NO 0 1 1 1 =YES; 0 =NO

8. SUPPRESS PARAMETERS 0 0 1 1 = True

Convergence Tolerances

9.  ROW TOLERANCE >0 1E-6

10. OPTIMALITY TOLERANCE >0 maz(1E — 6, (10epsg)%®) = 1.73E-6

11. FEASIBILITY TOLERANCE >0 1E-6

Derivative checking

13.  VERIFY LEVEL -1 -1 3 -1,0,1,2,3

14. START OBJECTIVE CHECK AT COL 0 1 nnObj

15.  STOP OBJECTIVE CHECK AT COL 0 nnObj nnObj

16. START CONSTRAINT CHECK AT COL 0 1 nnJac

17. STOP CONSTRAINT CHECK AT COL 0 nnJac nnJac

Scaling

18.  SCALE OPTION 0 1or2 2 2 if LP,1 if NLP

See Section 6.2 for more information.

19. SCALE TOLERANCE >0 0.9 <1

20. SCALE PRINT 0 0 1 1 = True

21. CRASH TOLERANCE 0 0.1 <1

Other Tolerances

22. LINESEARCH TOLERANCE >0 0.1 <1

LUI

18



Table 7: The following fields are used:, continued

#  SPECS keyword text Lower Default Upper Comment
23. LU FACTORIZATION TOLERANCE 1 100 or 5 100 if LP
24. LU UPDATE TOLERANCE 1 10 or 5 10 if LP
25. LU SWAP TOLERANCE >0 1.22E-4 epst/*
26. LU SINGULARITY TOLERANCE >0 3.25E-11 eps?-67
LP or LC subproblems
27. PIVOT TOLERANCE >0 3.25E-11 eps?-67
28. CRASH OPTION 0 3 3 0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3(m+m3) + 10nnL
m3=1 if length(Prob.QP.c) > 0, otherwise m3=0.
TOMLAB default: max(10000,3(m+m3) + 10nnL).
31. PARTIAL PRICE 1 10or1 10 for LP
SLC method
32. MAXIMIZE 0 0 1 1=maximize
33. LAGRANGIAN 0 1 1 1=YES, 0=NO
34. PENALTY PARAMETER 0.0 1.0
35. MAJOR ITERATIONS LIMIT >0 50
36. MINOR ITERATIONS LIMIT >0 40
37. MAJOR DAMPING PARAMETER >0 2.0
38. MINOR DAMPING PARAMETER >0 2.0
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3
Is always set by minosTL dependent on Prob.ConsDiff, Prob.NumDiff.
40. RADIUS OF CONVERGENCE 0.0 0.01
41. FUNCTION PRECISION >0 3.0E-13 eps®® = epsp
42. DIFFERENCE INTERVAL >0 5.48E-7 eps®-4
43. CENTRAL DIFFERENCE INTERVAL >0 6.69E-5 epsV-8/3
44. COMPLETION 0 1 LC, 0 1 0=PARTIAL
NC 1=FULL
45. UNBOUNDED STEP SIZE >0 1E10
46. UNBOUNDED OBJECTIVE >0 1E20
Hessian approximation
47. HESSIAN DIMENSION 1 50 1+nnL
48. SUPERBASICS LIMIT 1 50 1+nnL

TOMLAB default (to avoid termination with Superbasics Limit too small):

If n <= 5000: maz(50,n + 1)

If n > 5000: max(500,n 4 200 — size(A, 1) — length(cr))
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).
It will then be set to the same value as the SUPERBASICS LIMIT by MINOS.

Frequencies 11
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Table 7: The following fields are used:, continued

#  SPECS keyword text Lower Default Upper Comment

51. CHECK FREQUENCY >0 60

52. EXPAND FREQUENCY >0 10000

53. FACTORIZATION FREQUENCY >0 50

LU II

63. LU PARTIAL PIVOTING 0 0 3 O=partial
or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook

Additional parameters

67. AIJ TOLERANCE 0 1E-10
Elements |a(i, )| < AIJ TOLERANCE are set as 0

70. SUBSPACE >0 0.5 1 Subspace tolerance

Convergence tolerance in current subspace before consider moving off

another constraint.
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3.2 LP-MINOS
3.2.1 Using TOMLAB

Purpose
minosLPTL solves linear optimization problems defined as

min  f(z) =clx

x, <

> Ty,
S/t bL S Az

by

IAINA

where ¢, z,xp,xy € R™", A € R™*™ and by, by € R™.

Calling Syntax
Using the driver routine tomRun:

Prob = IpAssign( ... );
Result = tomRun(’lp-minos’, Prob ... );

or

Prob = ProbCheck( ... );
Result = minosLPTL(Prob);

Call Prob = IpAssign( ... ) or Prob = ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

z L, x.U Bounds on variables.

b_L, b_.U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.zs Solution and slacks from previous run.

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run (always 0 for LP).
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Prob, The following fields are used:, continued

SOL.moremem

SOL.SpecsFile

SOL.PrintFile

SOL.SummFile

SOL.optPar

Description of Outputs

Add more memory if MINOS stops with not enough storage message. 1E6 is
10MB of memory. Default n+m (number of variables + linear constraints).

Name of user defined SPECS file, read BEFORE optPar() is used.

Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

Name of SOL Summary File.

Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 24.

Result, The following fields are used:

Result

fk
Tk

x_0
9-k
xState
bState
v_k

EzitFlag

Inform

The structure with results (see ResultDef.m).
Function value at optimum.

Solution vector.

Initial solution vector.

Gradient c¢ (linear objective).

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Lagrangian multipliers (for bounds + dual solution vector).
Exit status from minos.m (similar to TOMLAB).
Result of MINOS run.

0 Optimal solution found.

1 The problem is infeasible.

2 The problem is unbounded (or badly scaled).

3 Too many iterations.

4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).

5 The Superbasics limit is too small.

6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.

8 Jacobian seems to be giving incorrect derivatives.

9 The current point cannot be improved.

22



Result, The following fields are used:, continued

rc

Tter
FuncEv
ConstrEv
QP.B

Minorlter

Solver
SolverAlgorithm

SOL.zs

SOL.hs

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

11 Cannot find a superbasic to replace a basic variable.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.

21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.

40 Fatal errors in the MPS file.

41 Not enough storage to read the MPS file.

42 Not enough storage to solve the problem.

Vector of reduced costs, g — (A I)Tr, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are —m. Reduced costs vector is of n+m length.

Number of iterations.
Number of function evaluations.
Number of constraint evaluations.

Basis vector in TOMLAB QP standard.
Number of minor iterations.

Name of the solver (minos).
Description of the solver.

Solution and slack variables.

Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: O0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=Dbasic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.
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Result, The following fields are used:, continued

SOL.nS
SOL.nInf

SOL.sInf

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

# of superbasics.
# of infeasibilities.

Sum of infeasibilities.
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3.2.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 10: The following fields are used:

#  SPECS keyword text Lower Default Upper Comment
Printing
1. PRINT LEVEL 0 0 1 O=brief 1=LU stats
Frequencies 1
5.  PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 100
7.  SOLUTION YES/NO 0 1 1 1 =YES; 0 = NO
8.  SUPPRESS PARAMETERS 0 0 1 1 = True
Convergence Tolerances
10. OPTIMALITY TOLERANCE >0 1E-6
11. FEASIBILITY TOLERANCE >0 1E-6
Scaling
18.  SCALE OPTION 0 2 2 0,1,2
See Section 6.2 for more information.
19. SCALE TOLERANCE >0 0.9 <1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 <1
LUI
23. LU FACTORIZATION TOLERANCE 1 100
24. LU UPDATE TOLERANCE 1 10
25. LU SWAP TOLERANCE >0 1.22¢-4 epst/*
26. LU SINGULARITY TOLERANCE >0 3.25E-11 eps?-67
LP parameters
27. PIVOT TOLERANCE >0 3.25E-11 eps?-67
28. CRASH OPTION 0 3 3 0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3m
31. PARTIAL PRICE 1 10
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Table 10: The following fields are used:, continued

#  SPECS keyword text Lower Default Upper Comment

Solve with tight or loose tols (applies to LP but probably not useful)

44. COMPLETION 0 1 1 0=PARTIAL

1=FULL

Frequencies I1

51. CHECK FREQUENCY >0 60

52. EXPAND FREQUENCY >0 10000

53. FACTORIZATION FREQUENCY >0 100

LU II

63. LU PARTIAL PIVOTING 0 0 3 O=partial
or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook

Additional parameters

67. AlJ TOLERANCE 0 1E-10
Elements |a(i,j)| < AIJ TOLERANCE are set as 0
70. SUBSPACE >0 0.5 1

Convergence tolerance in current subspace before consider moving off
another constraint.

26

Subspace tolerance



3.3 QP-MINOS
3.3.1 Using TOMLAB

Purpose
minos@QPTL solves quadratic optimization problems defined as

min  f(z) = 327 Fz + Tz

L
s/t by

VAVAN
|

AISbU

where ¢, z,x,zy € R*, F € R"*", A e R™*" and by, by € R™:.

Calling Syntax
Using the driver routine tomRun:

Prob = qpAssign( ... );
Result = tomRun(’qp-minos’, Prob ... );

or

Prob = ProbCheck( ... );
Result = minosQPTL(Prob);

Call Prob = gqpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

z L, x.U Bounds on variables.

b_L, b_U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj. nnObj < n is OK.
PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.zs Solution and slacks from previous run.

27



Prob, The following fields are used:, continued

SOL.hs
SOL.nS

SOL.moremem

SOL.SpecsFile

SOL.PrintFile

SOL.SummFile

SOL.optPar

Description of Outputs

State for solution and slacks from previous run.
Number of superbasics from previous run.

Add more memory if MINOS stops with not enough storage message. 1E6 is
10MB of memory. Default n+m (number of variables + linear constraints).

Name of user defined SPECS file, read BEFORE optPar() is used.

Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

Name of SOL Summary File.

Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 24.

Result, The following fields are used:

Result
fk

z_k

x_0

9-k
zState
bState
v_k
EzitFlag

Inform

The structure with results (see ResultDef.m).
Function value at optimum.

Solution vector.

Initial solution vector.

Gradient ¢ (linear objective).

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
== 3;

Lagrangian multipliers (for bounds + dual solution vector).
Exit status from minos.m (similar to TOMLAB).
Result of MINOS run.

0 Optimal solution found.

1 The problem is infeasible.

2 The problem is unbounded (or badly scaled).

3 Too many iterations.

4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).

5 The Superbasics limit is too small.
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Result, The following fields are used:, continued

rc

Iter
FuncEv
GradEv
ConstrEv
QP.B
Minorlter

Solver
SolverAlgorithm

SOL.zs

SOL.hs

6 User requested termination (by returning bad value).

7 Gradient seems to be giving incorrect derivatives.

8 Jacobian seems to be giving incorrect derivatives.

9 The current point cannot be improved.

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

11 Cannot find a superbasic to replace a basic variable.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.

21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.

40 Fatal errors in the MPS file.

41 Not enough storage to read the MPS file.

42 Not enough storage to solve the problem.

Vector of reduced costs, g — (A I)Tr, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are —w. Reduced costs vector is of n+m length.

Number of iterations.

Number of function evaluations. Set to Iter.
Number of gradient evaluations. Set to Iter.
Number of constraint evaluations. Set to 0.
Basis vector in TOMLAB QP standard.

Number of minor iterations. NOT SET.

Name of the solver (minos).
Description of the solver.

Solution and slack variables.

Basis status of variables + constraints (n+m x 1 vector). State of vari-

ables: O0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=Dbasic (between bounds).
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Result, The following fields are used:, continued

SOL.nS
SOL.nInf

SOL.sInf

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for

which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

# of superbasics.
# of infeasibilities.

Sum of infeasibilities.
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3.3.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 13: The following fields are used:

#  SPECS keyword text Lower Default Upper Comment
Printing
1. PRINT LEVEL 0 0 1 O=brief 1=LU stats

Frequencies 1

5. PRINT FREQUENCY 0 100

6. SUMMARY FREQUENCY 0 1

7.  SOLUTION YES/NO 0 1 1 =YES; 0 =NO
8. SUPPRESS PARAMETERS 0 0 1 1 = True
Convergence Tolerances

10. OPTIMALITY TOLERANCE >0 max(1E — 6, (10epsg)°®) = 1.73E-6

11. FEASIBILITY TOLERANCE >0 1E-6

Derivative checking
13.  VERIFY LEVEL -1 -1 3 -1,0,1,2,3

14. START OBJECTIVE CHECK AT COL 0 1 nnODbj
15. STOP OBJECTIVE CHECK AT COL 0 nnObj nnObj
Scaling
18. SCALE OPTION 0 1 2
See Section 6.2 for more information.
19. SCALE TOLERANCE >0 0.9 <1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 <1
Other Tolerances
22. LINESEARCH TOLERANCE >0 0.1 <1
LUI
23. LU FACTOR TOLERANCE 1 5.0
24. LU UPDATE TOLERANCE 1 5.0
25. LU SWAP TOLERANCE >0 1.22E-4 epst/4
26. LU SINGULARITY TOLERANCE >0 3.25E-11 eps0-67
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Table 13: The following fields are used:, continued

#  SPECS keyword text Lower Default Upper Comment

LP parameters

27.  PIVOT TOLERANCE >0 3.25E-11 eps-67

28. CRASH OPTION 0 3 3 0,1,2,3

29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3(m+m3) + 10nnL

m3=1 if length(Prob.QP.c) > 0, otherwise m3=0.
TOMLAB default: max(10000,3(m+m3) + 10nnL).
31. PARTIAL PRICE 1 1
32. MAXIMIZE 0 0 1 l=maximize

Reduced-gradient method

39. DERIVATIVE LEVEL 0 3 3 0,1,2,3
Is always set by minosqpTL to 3.
41. FUNCTION PRECISION >0 3.0E-13 eps?® = epsp
42. DIFFERENCE INTERVAL >0 5.48E-8 eps®4
43. CENTRAL DIFFERENCE INTERVAL >0 6.69E-5 epsV-8/3
44. COMPLETION 0 1 LC, 0 1 0=PARTIAL
NC 1=FULL
45. UNBOUNDED STEP SIZE >0 1E10
46. UNBOUNDED OBJECTIVE >0 1E20

Hessian approximation
47. HESSIAN DIMENSION 1 50 14+nnL
48. SUPERBASICS LIMIT 1 50 14+nnL
TOMLAB default (to avoid termination with Superbasics Limit too small):
If n <= 5000: max(50,n + 1)
If n > 5000: max(500,n 4 200 — size(A, 1) — length(cr))
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).
It will then be set to the same value as the SUPERBASICS LIMIT by MINOS.

Frequencies I1

51. CHECK FREQUENCY >0 60

52. EXPAND FREQUENCY >0 10000

53. FACTORIZATION FREQUENCY >0 50

LU II

63. LU PARTIAL PIVOTING 0 0 3 O=partial
or LU COMPLETE PIVOTING 1l=complete
or LU ROOK PIVOTING 2=rook

Additional parameters
67. AlJ TOLERANCE 0 1E-10
Elements |a(i, j)| < AIJ TOLERANCE are set as 0
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Table 13: The following fields are used:, continued

SPECS keyword text Lower Default Upper

Comment

70.

SUBSPACE >0 0.5 1
Convergence tolerance in current subspace before consider moving off
another constraint.
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3.4 LPOPT

3.4.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the

problem. Please refer to Section 3.4.2 for information on how to use LPOPT with TOMLAB.

Purpose
Ipopt solves dense linear optimization problems defined as

mzin f(x)=clx

S/t bL S Ax S bU

where ¢,z € R*, A € R™*" and by, by € R*T™1,

If isempty(c) (or all(c==0), then a feasible point problem is solved (FP). Otherwise a standard linear programming

problem is solved (LP)

Calling Syntax

[Inform, Iter, iState, Ax, cLamda, Obj, x] = lpopt(A, bl, bu, ¢, Warm, x, iState, SpecsFile, PrintFile, SummFile,

PriLev, optPar );

Description of Inputs

The following fields are used:

A Constraint matrix, m x n (DENSE).

bl Lower bounds on (x,Ax), m+n x 1 vector (DENSE).

bu Upper bounds on (x,Ax), m+n x 1 vector (DENSE).

c Linear objective function cost coeffs, n x 1 (DENSE). If length(c) < n, setting
¢(1:n)=0;

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start,

then x and iState must be set properly. Normally the values from last call to

Ipopt are used.

T Initial estimate of solution vector x. (DENSE) If length(x) | n, the rest of the

elements in x are set to 0.

iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) | n+m,

setting iState(1:n+m)=0;
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The following fields are used:, continued

iState(i)=0:
iState(i)=1:
iState(i)=2:
iState(i)=3:

SpecsFile

PrintFile

SummFile

PriLev

optPar

Corresponding constraint not in the initial QP working set.
Inequality constraint at its lower bound in QP working set.
Inequality constraint at its upper bound in QP working set.
Equality constraint in the initial QP working set,bl(i)==Dbu(i).

Name of the OPTIONS File, see TOMLAB Guide.

Name of the Print file. Name includes the path, maximal number of characters
= 500.

Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

Print level in the lpopt MEX-interface.
= 0 Silent.

= 1 Summary information.

= 2 More detailed information.

if isempty(PriLev), set as 0.

Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If length(optPar) | 62, lpopt sets the rest of the values to
missing value (-999).

Description of Outputs

The following fields are used:

Inform  Result of LPOPT run.
0 = Optimal solution with unique minimizer found.
1 = A dead point was reached.
2 = The solution appears to be unbounded (or badly scaled).
3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.

4 = Too many iterations, in either phase.

5 = The Maximum degrees of freedom is too small. The reduced Hessian must

expand if further progress is too be made.

6 = An input parameter was invalid.
7 = The problem type was not recognized.
Other = UNKNOWN LPOPT Inform value.

Iter Number of iterations.

1State Status of working set, se input description of iState.
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The following fields are used:, continued

Az A*x.

cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).
Obj Objective function value at optimum.

z Solution vector with decision variable values (n x 1 vector).
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3.4.2 Using TOMLAB

Purpose
lpoptTL solves dense linear optimization problems defined as

ma;m flz)=clz

r, < T

Y TU,
bL < Az

s/t -

VANRVAN

where ¢, z,x,zy € R", A € R™>*" and b, by € R™.

Calling Syntax
Using the driver routine tomRun:

Prob = IpAssign( ... );
Result = tomRun(’lpopt’, Prob ... );

or

Prob = ProbCheck( ... );
Result = lpoptTL(Prob);

Call Prob = IpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

L, z.U Bounds on variables.

b_L, b_.U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.zs Solution and slacks from previous run.

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) | n+m,

setting iState(1:n+m)=0;

iState(i)=0:  Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
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Prob, The following fields are used:, continued

iState(i)=3:
SOL.SpecsFile

SOL.PrintFile

SOL.SummFile

SOL.optPar

Description of Outputs

Equality constraint in the initial QP working set, bl(i)==bu(i).
Name of user defined SPECS file, read BEFORE optPar() is used.

Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

Name of SOL Summary File.

Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 24.

Result, The following fields are used:

Result

fk
z_k
z_0
9-k

zState
bState
v_k

EzitFlag
Inform

rc

The structure with results (see ResultDef.m).
Function value at optimum.

Solution vector.

Initial solution vector.

Gradient ¢ (linear objective).

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Lagrangian multipliers (for bounds + dual solution vector).

Exit status from lpopt.m (similar to TOMLAB).

LPOPT information parameter.

0 = Optimal solution with unique minimizer found.

1 = A dead point was reached.

2 = The solution appears to be unbounded (or badly scaled).

3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.

4 = Too many iterations, in either phase.

5 = The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is too be made.

6 = An input parameter was invalid.

7 = The problem type was not recognized.

Other = UNKNOWN LPOPT Inform value.

Reduced costs. If ninf=0, last m == -v_k.
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Result, The following fields are used:, continued

Tter
FuncEv
ConstrEv
QP.B

Minorlter

Solver
SolverAlgorithm

SOL.zs

SOL.iState

Number of iterations.

Number of function evaluations.
Number of constraint evaluations.

Basis vector in TOMLAB QP standard.

Number of minor iterations. Not Set.

Name of the solver (Ipopt).
Description of the solver.

Solution and slack variables.

State for variables and constraints in iState.
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3.4.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. No call is then done to internal
routines lpprmi, lpprmr and lpprm. The default value will then be used by LPOPT, unless the value is altered in

the SPECS file.

Description of Inputs

Table 18: The following fields are used:

#  SPECS keyword text Lower Default Upper Comment
Printing
1.  PRINT LEVEL 0 10 0,1,5,10,20,30
Convergence Tolerances
In LPOPT/QPOPT: macheps = 2753; eps in Matlab is = 275%;
10. OPTIMALITY TOLERANCE >0 1.05E-8 sqrt(macheps)
11. FEASIBILITY TOLERANCE >0 1.05E-8 sqrt(macheps)
Other Tolerances
21. CRASH TOLERANCE >0 0.01 <1
27. RANK TOLERANCE >0 1.11E-14 100*macheps
30. ITERATION LIMIT >0 max(2000,5(n+m))
33.  MIN SUM YES (or NO) 0 0 1 1=min infeas.
IF 1 (MIN SUM YES), minimize the infeasibilities before return.
36. FEASIBILITY PHASE ITERATIONS >0 max(2000,5(n+m))
45. INFINITE STEP SIZE >0 1E20
Frequencies
51. CHECK FREQUENCY >0 50
52. EXPAND FREQUENCY >0 5
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3.5 QPOPT

3.5.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the

problem. Please refer to Section 3.5.2 for information on how to use QPOPT with TOMLAB.

Purpose
gpopt solves dense quadratic optimization problems defined as

min  f(z) = 327 Fr+ o+ d"

x )
S/t bL S Ax S bU

where ¢,z € R*, F € R"*" A € R™*" and by, by € R*T™M1,
If isempty(H) and isempty(c), then a feasible point problem is solved (FP).
If isempty(H), then a linear programming problem is solved (LP).

If isempty(c), then a quadratic programming problem is solved (QP1).
Otherwise a standard quadratic programming problem is solved (QP2).

Calling Syntax

(11)

[Inform, Tter, iState, Ax, cLamda, Obj, x] = qpopt (H, A, bl, bu, ¢, Warm, x, iState, SpecsFile, PrintFile, Summ-

File, PriLev, optPar);

Description of Inputs

The following fields are used:

H Matrix H in quadratic part of objective function (SPARSE or DENSE).

A Constraint matrix, m x n. (DENSE).

bl Lower bounds on (x, Ax), m+n x 1 vector (DENSE).

bu Upper bounds on (x, Ax), m+n x 1 vector (DENSE).

c Linear objective function cost coeffs, n x 1. (DENSE) If length(c) < n, setting
¢(1:n)=0;.

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start,
then x and iState must be set properly. Normally the values from last call to
qpopt are used.

x Initial estimate of solution vector x. (DENSE) If length(x) j n, the rest of the

elements in x are set to 0.
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The following fields are used:, continued

iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) | n+m,
setting iState(1:n+m)=0;

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SpecsFile Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the qpopt MEX-interface.
= 0 Silent.

= 1 Summary information.
= 2 More detailed information.
if isempty(PriLev), set as 0.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If length(optPar) j 62, qpopt sets the rest of the values
to missing value (-999).

Description of Outputs

The following fields are used:
Inform  Result of QPOPT run. 0 = Optimal solution found.

0: x is a unique local minimizer. This means that x is feasible (it satisfies
the constraints to the accuracy requested by the Feasibility tolerance),
the reduced gradient is negligible, the Lagrange multipliers are optimal, and
the reduced Hessian is positive definite. If H is positive definite or positive
semidefinite, x is a global minimizer. (All other feasible points give a higher
objective value.) Otherwise, the solution is a local minimizer, which may or
may not be global. (All other points in the immediate neighborhood give a
higher objective.)
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The following fields are used:, continued

Iter
1State
Az
cLamda

Obj

1: A dead-point was reached. This might occur if H is not sufficiently posi-
tive definite. If H is positive semidefinite, the solution is a weak minimizer.
(The objective value is a global optimum, but there may be infinitely many
neighboring points with the same objective value.) If H is indefinite, a feasible
direction of decrease may or may not exist (so the point may not be a local or
weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is fea-
sible, the reduced gradient is negligible, the Lagrange multipliers are optimal,
and the reduced Hessian is positive semidefinite.) However, the reduced Hes-
sian is nearly singular, and/or there are some very small multipliers. If H is
indefinite, x is not necessarily a local solution of the problem. Verification of
optimality requires further information, and is in general an NP-hard problem
[20].

2: The solution appears to be unbounded. The objective is not bounded below
in the feasible region, if the elements of x are allowed to be arbitrarily large.
This occurs if a step larger than Infinite Step would have to be taken in
order to continue the algorithm, or the next step would result in a component
of x having magnitude larger than Infinite Bound. It should not occur if H
is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred.
See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is to be made.

6: An input parameter was invalid.

7: The Problem type was not recognized.

Number of iterations.

Status of working set, se input description of iState.

A*x.

Lagrangian multipliers (dual solution vector) (m x 1 vector).
Objective function value at optimum.

Solution vector with decision variable values (n x 1 vector).
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The following fields are used:, continued
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3.5.2 Using TOMLAB

Purpose
gpoptTL solves quadratic optimization problems defined as

min  f(z) = 27 Fz + Tz

Ty, S x S Ty,
b < Az < by

s/t

where ¢, z,xp,xy € R™", FF € R"™" A € R™*™ and b, by € R™.

Calling Syntax
Using the driver routine tomRun:

Prob = gpAssign( ... );
Result = tomRun(’qpopt’, Prob ... );

or

Prob = ProbCheck( ... );
Result = qpoptTL(Prob);

Call Prob = gpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

z L, x U Bounds on variables.

b_L, b_U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj. nnObj < n is OK.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) | n+m,

setting iState(1:n+m)=0;
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Prob, The following fields are used:, continued

iState(i)=0:
iState(i)=1:
iState(i)=2:
iState(i)=3:
SOL.cLamda
SOL.SpecsFile

SOL.PrintFile

SOL.SummFile

SOL.optPar

Description of Outputs

Corresponding constraint not in the initial QP working set.
Inequality constraint at its lower bound in QP working set.
Inequality constraint at its upper bound in QP working set.
Equality constraint in the initial QP working set, bl(i)==bu(i).
Lagrangian multipliers from previous run (Warm start).

Name of user defined SPECS file, read BEFORE optPar() is used.

Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

Name of SOL Summary File.

Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 24.

Result, The following fields are used:

Result
fk
-k
z-0
g-k
xState

bState

vk
EzitFlag

Inform

The structure with results (see ResultDef.m).

Function value at optimum.

Solution vector.

Initial solution vector.

Exact gradient computed at optimum.

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Lagrangian multipliers (for bounds + dual solution vector).
Exit status from gpopt.m (similar to TOMLAB).

Result of QPOPT run. 0 = Optimal solution found.
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Result, The following fields are used:, continued

rc

Iter

0: x is a unique local minimizer. This means that x is feasible (it satisfies
the constraints to the accuracy requested by the Feasibility tolerance),
the reduced gradient is negligible, the Lagrange multipliers are optimal, and
the reduced Hessian is positive definite. If H is positive definite or positive
semidefinite, x is a global minimizer. (All other feasible points give a higher
objective value.) Otherwise, the solution is a local minimizer, which may or
may not be global. (All other points in the immediate neighborhood give a
higher objective.)

1: A dead-point was reached. This might occur if H is not sufficiently posi-
tive definite. If H is positive semidefinite, the solution is a weak minimizer.
(The objective value is a global optimum, but there may be infinitely many
neighboring points with the same objective value.) If H is indefinite, a feasible
direction of decrease may or may not exist (so the point may not be a local or
weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is fea-
sible, the reduced gradient is negligible, the Lagrange multipliers are optimal,
and the reduced Hessian is positive semidefinite.) However, the reduced Hes-
sian is nearly singular, and/or there are some very small multipliers. If H is
indefinite, x is not necessarily a local solution of the problem. Verification of
optimality requires further information, and is in general an NP-hard problem
[20].

2: The solution appears to be unbounded. The objective is not bounded below
in the feasible region, if the elements of x are allowed to be arbitrarily large.
This occurs if a step larger than Infinite Step would have to be taken in
order to continue the algorithm, or the next step would result in a component
of x having magnitude larger than Infinite Bound. It should not occur if H
is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred.
See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is to be made.

6: An input parameter was invalid.
7: The Problem type was not recognized.
Reduced costs. If ninf=0, last m == -v_k.

Number of iterations.
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Result, The following fields are used:, continued

FuncEv
GradEv
ConstrEv
QP.B

Minorlter

Solver
SolverAlgorithm

SOL.xs
SOL.cLamda

SOL.iState

Number of function evaluations. Set to Iter.
Number of gradient evaluations. Set to Iter.
Number of constraint evaluations. Set to 0.
Basis vector in TOMLAB QP standard.

Number of minor iterations. Not Set.

Name of the solver (QPOPT).
Description of the solver.

Solution and slack variables.
Lagrangian multipliers.

State for variables and constraints in iState.
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3.5.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by QPOPT, unless the value is altered in the SPECS file.

Description of Inputs

Table 23: The following fields are used:

#  SPECS keyword text Lower Default Upper Comment
Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

Convergence Tolerances

In LPOPT/QPOPT: macheps = 2753; eps in Matlab is = 2752;
10. OPTIMALITY TOLERANCE >0 1.05E-8 sqrt(macheps)
11. FEASIBILITY TOLERANCE >0 1.05E-8 sqrt(macheps)

Other Tolerances

21. CRASH TOLERANCE 0 0.01 <1

27. RANK TOLERANCE >0 1.1E-14 100*macheps
30. ITERATION LIMIT >0 max(2000,5(n+m))

33.  MIN SUM YES (or NO) 0 0 1 1=min infeas.

IF 1 (MIN SUM YES), minimize the infeasibilities before return.

36. FEASIBILITY PHASE ITERATIONS >0 max(2000,5(n+m))
45. INFINITE STEP SIZE >0 1E20
47. HESSIAN ROWS 0 n n 0 if FP or LP

Implicitly given by the dimensions of H in the call from Matlab

48. MAX DEGREES OF FREEDOM 0 n n
ONLY USED IF HESSIAN ROWS ==

Frequencies
51. CHECK FREQUENCY >0 50
52. EXPAND FREQUENCY >0 5
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4 Using the TOMLAB /MINOS Solvers

This section discusses the use of the TOMLAB solvers from Stanford System Optimization Laboratory (SOL).
In order to use these solvers efficiently, it is recommended to read the corresponding solver details as well. It is
important to do help on the m-files corresponding to each solver as well as the TOMLAB interface routine. The
names for MINOS solver are minos.m and minosTL.m, and similar for other solvers.

To learn all the different parameter settings for a solver it is useful to run the GUI, where all parameters are
selectable, and all default values are shown. Furthermore there are short help available for the different solver
parameters in the drag menus. Even if the user is not using the GUI to solve the particular user problem, it might
be useful to run the test problems defined in TOMLAB to learn how to use the SOL solvers in the most efficient
way.

4.1 Setting Solver Parameters

To handle the use of the SOL solvers, a special field in the Prob structure, Prob.SOL, is used to send information
to the SOL solvers. It is also used to store the information needed for warm starts of the SOL solvers.

The vector Prob.SOL.optPar of length 71 holds most of the different parameters that control the performance of
the SOL solvers. All parameters have default values. If calling the SOL solver directly, not using TOMLAB, the
user should set the values wanted in the optPar vector. The rest should have the value —999, which gives the
default value used by the solver. For information on other parameters that could effect the solution process see
the Table 24. The TOMLAB interface routine always has the name of the routine, with the additional two letters
TL, e.g. for MINOS the TOMLAB interface routine is minosTL.

Other important fields to set when using the SOL solvers are the print and summary files that the solvers create.
These files are very important to look through if any problems are occurring, to find what the causes might be,
and if any warnings or errors are reported from the SOL solvers. To create a print and summary file, one example
when running MINOS is the following statements

Prob.SOL.optPar(1) 111111, % Maximal print level

Prob.SOL.PrintFile = ’minos.pri’ % Print file called minos.pri
Prob.SOL.SummFile = ’minos.sum’ % Summary file called minos.sum
Prob.NumDiff = 6; % Tell TOMLAB that minos is estimating
Prob.ConsDiff 6; % all derivatives (gradient and Jacobian)

If MINOS is told that no derivatives are given, then MINOS will try to estimate them, and then TOMLAB must
not do the same, i.e. Prob. NumDiff and Prob. ConsDiff must be set to six (internal solver estimation of derivatives).
If MINOS is told that all derivatives are given, then TOMLAB might estimate them for MINOS using any of the
five methods possible, or by using automatic differentiation.

4.2 Derivatives for the Solvers

The TOMLAB solvers from Stanford System Optimization Laboratory (SOL), have some useful special features,
which influence the way that input is prepared to the solvers.

When defining the gradient vector and the constraint Jacobian matrix it is often the case that they are only
partially known. The SOL solvers give the possibility to mark these elements. They will then be estimated by
finite differences.
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In TOMLAB the gradient and the constraint Jacobian matrix are defined in two separate routines. If any element
is unknown, it is just marked with the standard Matlab element NaN. The TOMLAB SOL interface routines will
estimate the NaN elements if Prob.CheckNaN is set to 1.

If any gradient or constraint Jacobian element is infinite, in Matlab set as Inf or -Inf, this element is converted to
a big number, 102, in the TOMLAB SOL interface.

The following applies to the sparse nonlinear programming solvers MINOS. When the constraint Jacobian ma-
trix is sparse, then only the nonzero elements should be given. The sparse pattern is given as a sparse matrix
Prob. ConsPattern. In this matrix nonzero elements are marking nonzero elements in the constraint Jacobian. This
pattern is static, i.e. given once before the call to the SOL solver. One problem is that a sparse matrix in Matlab
is dynamic, i.e. only the nonzero elements of the matrix are stored. As soon as an element becomes zero, the
vector of nonzeros are decreased one element. A gradient element that is normally nonzero might become zero
during the optimization. Therefore care must be taken by the interface to return the correct values, because the
SOL solvers assume the possible non-zero elements of the constraint Jacobian to be returned in the correct order.

The TOMLAB interface assumes the following conventions for the constraint Jacobian matrix:

e If the user returns a sparse matrix, and the number of nonzeros are equal to the number of nonzeros in
Prob. ConsPattern, no checks are done.

e If the user returns a sparse matrix, and the number of nonzeros are not equal to the number of nonzeros
in Prob.ConsPattern, the interface is matching all elements in the sparse array to find which nonzeros they
represent, and returns the correct vector of static nonzeros.

e If the user returns a sparse matrix, and has given no pattern of nonzeros in Prob.ConsPattern, i.e. it is an
empty array, then the solver and the interface assumes a full, dense matrix and the interface makes a full
matrix before returning the elements, column by column, to the solver.

e If the user returns a dense matrix, the interface just feeds all elements, column by column, back to the solver.

e If too few elements are returned, the solver will estimate the rest using finite differences.

4.3 Solver Output to Files

The SOL solvers print different amount of information on ASCII files, one Print File with more information, and
one Summary File with less information. MINOS is using minospri.tzt and minossum.tzt as default names. The
following example shows how to set new names, other than the default, for these files.

Prob.SOL.PrintFile = ’minosp.out’; % New name for Print File
Prob.SOL.SummFile = ’minoss.out’; % New name for Summary File

The other SOL solvers LPOPT and QPOPT, only define the Print File and Summary File if the user has defined
names for them. See the help for each solver on how to set the correct print level and other parameters.

4.4 Warm Starts for the Solvers

In TOMLAB warm starts for the SOL solvers are automatically handled. The only thing needed is to call the
routine WarmDefSOL after having solved the problem the first time, as the following principal example shows
doing repeated calls to MINOS.
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% Define first problem
Result = tomRun(’minos’,Prob); % Solve problem at t=1

for t=2:N

R % Changes at time t in Prob structure
Prob = WarmDefSOL(’minos’, Prob, Result(t-1));
Result(t) = tomRun(’minos’,Prob); % Call tomRun to solve again
% Postprocessing
end

The WarmDefSOL routine are setting the warm start flag Prob. WarmStart, as true.
Prob.WarmStart = 1;

It is also moving subfields on the Result.SOL structure into Prob.SOL for the next run. For MINOS the following
commands are needed.

Prob.SOL.xs = Result.SOL.xs
Prob.SOL.hs = Result.SOL.hs
Prob.SOL.nS = Result.SOL.nS

For LPOPT and QPOPT the commands are

Prob.SOL.xs
Prob.SOL.iState

Result.SOL.xs
Result.SOL.iState

Note that for all solvers the new initial value are taken from the field Prob.SOL.zs and any user change in the
standard initial value Prob.z_0 is neglected.

4.5 Memory for the Solvers

Some users have encountered problems where SOL solvers report insufficient memory on machines where memory
should not be an issue. The solvers estimate their internal memory requirements at startup. This estimate is not
always large enough so the user might have to specify additional memory. This can be accomplished by

Prob.SOL.moremem = 1000; % or even larger if necessary

4.6 Parameters in Prob.optParam

Table 24: Information stored in the structure Prob.optParam. Default values in parenthesis.

Field Description

PreSolve Flag if presolve analysis is to be applied on linear constraints ( 0).

DiffInt Difference interval in derivative estimates (used for Prob. NumDiff/ConsDiff
-l or1).
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Table 24: Information stored in the structure Prob.optParam, continued.

Field

Description

Central Diff

splineSmooth

VARsplineTol

CHECK

Central difference interval in derivative estimates (used for
Prob. NumDiff/ConsDiff -2 or 2).

Smoothness parameter sent to the SPLINE Toolbox routine csaps.m when
computing numerical approximations of the derivatives (0.4) (used for
Prob. NumDiff/ConsDiff -3 or 3).

Tolerance parameter sent to the SPLINE Toolbox routine spaps.m when
computing numerical approximations of the derivatives (1073) (used for
Prob. NumDiff/ConsDiff -4 or 4).

If true, no more check is done on the structure. Set to true (=1) after first
call to solver (which then calls optParamsSet).
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5 QPOPT details

5.1 Introduction

TOMLAB /QPOPT (hereafter referred to as QPOPT ) is based on an inertia-controlling method that maintains a
Cholesky factorization of the reduced Hessian (see below). The method follows Gill and Murray [6] and is described
in [17]. Here we briefly summarize the main features of the method.

5.1.1 Overview

QPOPT’s method has a feasibility phase (finding a feasible point by minimizing the sum of infeasibilities) and an
optimality phase (minimizing the quadratic objective function within the feasible region). The computations in
both phases are performed by the same subroutines, but with different objective functions. The feasibility phase
does not perform the standard simplex method; i.e., it does not necessarily find a vertex (with n constraints
active), except in the LP case if m, < n. Once an iterate is feasible, all subsequent iterates remain feasible. Once
a vertex is reached, all subsequent iterates are at a vertex.

QPOPT is designed to be efficient when applied to a sequence of related problems—for example, within a sequential
quadratic programming method for nonlinearly constrained optimization (e.g., the NPOPT package [18]). In
particular, the user may specify an initial working set (the indices of the constraints believed to be satisfied
exactly at the solution); see the discussion of Warm Start.

In general, an iterative process is required to solve a quadratic program. Each new iterate Z is defined by
T =x+ap, (13)

where the step length « is a non-negative scalar, and p is called the search direction. (For simplicity, we shall
consider a typical iteration and avoid reference to the iteration index.)

5.1.2 The working set

At each point x, a working set of constraints is defined to be a linearly independent subset of the constraints that
are satisfied “exactly” (to within the Feasibility tolerance). The working set is the current prediction of the
constraints that hold with equality at a solution of LCQP. Let m,, denote the number of constraints in the working
set (including bounds), and let W denote the associated m,, x n matrix of constraint gradients.

The definition of the search direction ensures that constraints in the working set remain unaltered for any value
of the step length. Thus,
Wp=0. (14)

In order to compute p, a T'Q factorization of W is used:
WQ=(0 T), (15)

where T is a nonsingular m,, X m,, upper-triangular matrix, and @ is an n X n nonsingular matrix constructed
from a product of orthogonal transformations(see [13]). If the columns of @Q are partitioned so that

Q=(2 Y),

where Y is n x m,, and Z is n X n, (where n, = n — m,,), then the columns of Z form a basis for the null space
of W. Let ng be an integer such that 0 < np < n, and let Z, denote a matrix whose n columns are a subset
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of the columns of Z. (The integer ny is the quantity “Zr” in the printed output from gpopt). In many cases, Z,
will include all the columns of Z. The direction p will satisfy (14) if

D= ZrPr, (16)

where pr is any ngz-vector.

5.1.3 The reduced Hessian

Let g, and H, denote the transformed gradient and transformed Hessian:
go = Qg(x) and H, = QTHQ.

The first ny elements of the vector g, will be denoted by ¢, and the first n, rows and columns of the matrix H,
will be denoted by Hj. The quantities g, and Hy are known as the reduced gradient and reduced Hessian of g(x),
respectively. Roughly speaking, gr and Hj describe the first and second derivatives of an unconstrained problem
for the calculation of pg.

At each iteration, a triangular factorization of H is available. If Hj is positive definite, H, = RTR, where R is
the upper-triangular Cholesky factor of Hy. If Hy, is not positive definite, Hr = RTDR, where D = diag(1, 1, ...,
1, w), with w < 0.

In QPOPT, the computation is arranged so that the reduced-gradient vector is a multiple of ey, a vector of all
zeros except in the last (ngth) position. This allows pr in (16) to be computed from a single back-substitution,

Rpr = veg, (17)

where 7 is a scalar whose definition depends on whether the reduced Hessian is positive definite at x. In the
positive-definite case, x + p is the minimizer of the objective function subject to the working-set constraints being
treated as equalities. If Hy is not positive definite, p, satisfies

ngR Py < OandggpR <0,

allowing the objective function to be reduced by any step of the form x + ap, a > 0.

5.1.4 Optimality conditions

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero elsewhere
in the presence of constraint dependencies). During the optimality phase, a zero reduced gradient implies that
z minimizes the quadratic objective when the constraints in the working set are treated as equalities. At a
constrained stationary point, Lagrange multipliers A are defined from the equations

WX = g(x). (18)

A Lagrange multiplier A; corresponding to an inequality constraint in the working set is said to be optimal if
A; < o when the associated constraint is at its upper bound, or if A\; > —o when the associated constraint is at
its lower bound, where o depends on the Optimality tolerance. If a multiplier is non-optimal, the objective
function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding
constraint from the working set (with index Jdel; see Section 5.6).
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If optimal multipliers occur during the feasibility phase but the sum of infeasibilities is not zero, there is no feasible
point. The user can request QPOPT to continue until the sum of infeasibilities is minimized (see the discussion of
Min sum). At such a point, the Lagrange multiplier A; corresponding to an inequality constraint in the working
set will be such that —(1+0) < A\; < ¢ when the associated constraint is at its upper bound, and —o < A\; <140
when the associated constraint is at its lower bound. Lagrange multipliers for equality constraints will satisfy
Nl <1+o.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction p is given
by Zzpr (see (17)). The step length is chosen to maintain feasibility with respect to the satisfied constraints. If
H, is positive definite and x + p is feasible, « is defined to be one. In this case, the reduced gradient at T will
be zero, and Lagrange multipliers are computed. Otherwise, « is set to «,,, the step to the “nearest” constraint
(with index Jadd; see Section 5.6). This constraint is added to the working set at the next iteration.

If the reduced Hessian Hy is not positive definite and «,, does not exist (i.e., no positive step «,, reaches the
boundary of a constraint not in the working set), then QPOPT terminates at « and declares the problem to be
unbounded.
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5.2 Further Details of the Method

The following sections are not essential knowledge for normal users. They give background on the active-set
strategy and the anti-cycling procedure.

5.2.1 Treatment of simple upper and lower bounds

Bound constraints ¢ < z < u are treated specially by qpopt. The presence of a bound constraint in the working
set has the effect of fixing the corresponding component of the search direction to zero. Thus, the associated
variable is fized, and specification of the working set induces a partition of z into fized and free variables. For
some permutation P, the working-set matrix satisfies

F N
WP = ,

where ( F N ) is part of the matrix A, and Iy corresponds to some of the bounds. The matrices F' and N contain
the free and fixed columns of the general constraints in the working set. A T'Q factorization FQ = ( 0 T» ) of
the smaller matrix F' provides the required T" and @ as follows:

- Qr - - N
r( ) )

The matrix @ is implemented as a dense orthogonal matrix. Each change in the working set leads to a simple
change to F': if the status of a general constraint changes, a row of F' is altered; if a bound constraint enters or
leaves the working set, a column of F' changes. The matrices Ty, Q» and R are held explicitly; together with the
vectors QTg, and QTc. Products of plane rotations are used to update @, and T, as the working set changes. The
triangular factor R associated with the reduced Hessian is updated only during the optimality phase.

5.2.2 The initial working set

For a cold start, the initial working set includes equality constraints and others that are close to being satisfied at
the starting point. (“Close” is defined under Crash tolerance.) For a warm start, the initial working is specified
by the user (and possibly revised to improve the condition of W).

At the start of the optimality phase, QPOPT must ensure that the initial reduced Hessian H is positive-definite.
It does so by including a suitably large number of constraints (real or artificial) in the initial working set. (When
W contains n constraints, Hj has no rows and columns. Such a matrix is positive definite by definition.)

Let H, denote the first n, rows and columns of H, = QTHQ at the beginning of the optimality phase. A
partial Cholesky factorization with interchanges is used to find an upper-triangular matrix R that is the factor of
the largest positive-definite leading submatrix of H,. The use of interchanges tends to maximize the dimension
of R. (The condition of R may be controlled by setting the Rank Tolerance.) Let Z, denote the columns of Z
corresponding to R, and let Z be partitioned as Z = ( Z, Z, ). A working set for which Z, defines the null space
can be obtained by including the rows of Z1 as “artificial constraints” (with bounds equal to the current value of
ZTz). Minimization of the objective function then proceeds within the subspace defined by Z5, as described in
Section 5.1.

The artificially augmented working set is given by



so that p will satisfy Wp = 0 and ZLp = 0. By definition of the TQ factors of W, we have

WQ(Z‘T)Q(iV“T)(ZR Zi, Y)=(0 T).

W
(1 0
T= :

Hence the T'Q factors of W are available trivially.

where

The matrix Z, is not kept fixed, since its role is purely to define an appropriate null space; the T'Q) factorization
can therefore be updated in the normal fashion as the iterations proceed. No work is required to “delete” the
artificial constraints associated with Z, when Z1 g = 0, since this simply involves repartitioning Q. The “artificial”
multiplier vector associated with the rows of Z1 is equal to ZTg, and the multipliers corresponding to the rows of
the “true” working set are the multipliers that would be obtained if the artificial constraints were not present. If
an artificial constraint is “deleted” from the working set, an A appears alongside the entry in the Jdel column of
the printed output (see Section 5.6). The multiplier may have either sign.

The number of columns in Z, and Zj, the Euclidean norm of Z%g, and the condition estimator of R appear in
the printed output as Art, Zr, Norm gZ and Cond Rz (see Section 5.6).

Under some circumstances, a different type of artificial constraint is used when solving a linear program. Although
the algorithm of gqpopt does not usually perform simplex steps (in the traditional sense), there is one exception:
a linear program with fewer general constraints than variables (i.e., m;, < n). (Use of the simplex method in
this situation leads to savings in storage.) At the starting point, the “natural” working set (the set of constraints
exactly or nearly satisfied at the starting point) is augmented with a suitable number of “temporary” bounds, each
of which has the effect of temporarily fixing a variable at its current value. In subsequent iterations, a temporary
bound is treated similarly to normal constraints until it is deleted from the working set, in which case it is never
added again. If a temporary bound is “deleted” from the working set, an F (for “Fixed”) appears alongside the
entry in the Jdel column of the printed output (see Section 5.6). Again, the multiplier may have either sign.

5.2.3 The anti-cycling procedure

The EXPAND procedure [15] is used to reduce the possibility of cycling at a point where the active constraints
are nearly linearly dependent. The main feature of EXPAND is that the feasibility tolerance is increased slightly
at the start of every iteration. This allows a positive step to be taken every iteration, perhaps at the expense of
violating the constraints slightly.

Suppose that the Feasibility tolerance is 0. Over a period of K iterations (where K is defined by the Expand
frequency), the feasibility tolerance actually used by QPOPT—the working feasibility tolerance—increases from
0.59 to 0 (in steps of 0.5/ K).

At certain stages the following “resetting procedure” is used to remove constraint infeasibilities. First, all variables
whose upper or lower bounds are in the working set are moved exactly onto their bounds. A count is kept of the
number of nontrivial adjustments made. If the count is positive, iterative refinement is used to give variables that
satisfy the working set to (essentially) machine precision. Finally, the working feasibility tolerance is reinitialized
to 0.50.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of iterations is
started with K incremented by 10. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with 4.)
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The resetting procedure is also invoked when QPOPT reaches an apparently optimal, infeasible or unbounded
solution, unless this situation has already occurred twice. If any nontrivial adjustments are made, iterations are
continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a potential
choice of constraints to be added to the working set. Let «,, denote the maximum step at which x + a,,p does
not violate any constraint by more than its feasibility tolerance. All constraints at distance o (o < vy, ) along p
from the current point are then viewed as acceptable candidates for inclusion in the working set. The constraint
whose normal makes the largest angle with the search direction is added to the working set. This strategy helps
keep the working-set matrix W well-conditioned.
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5.3 The Options File

Observe that options are normally set in Prob.SOL.optPar.

Several choices in QPOPT’s algorithm logic may be defined by various optional parameters (more briefly known as
options or parameters).

In order to reduce the number of subroutine parameters for qpopt, the options have default values that are
appropriate for most problems. Options need be specified only if their values should be different from the default.

5.3.1 Format of option strings

Each optional parameter is defined by an option string of up to 72 characters, containing one or more items
separated by spaces or equal signs (=). Alphabetic characters may be in upper or lower case. An example option
string is Print level = 5. In general, an option string contains the following items:

1. A keyword such as Print.
2. A phrase such as level that qualifies the keyword. (Typically 0, 1 or 2 words.)

3. A number that specifies either an integer or a real value (only for some options). Such numbers may be
up to 16 contiguous characters in Fortran 77’s F, E or D formats, terminated by a space.

Blank strings and comments may be used to improve readability. A comment begins with an asterisk (*) and all
subsequent characters are ignored. Synonyms are recognized for some of the keywords, and abbreviations may be
used if there is no ambiguity.

The following are examples of valid option strings for QPOPT:

NOLIST

COLD START

Warm start

Problem type = LP

Problem type Quadratic Program * Same as QP or QP2
Problem Type QP4

Min sum Yes

Feasibility Phase iteration limit 100

Feasibility tolerance 1.0e-8 * for IEEE double precision
Crash tolerance 0.002

Defaults

* This string will be ignored. So will a blank line.
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5.4 Description of the optional parameters

Permissible options are defined below in alphabetical order. For each option, we give the keyword, any essential
qualifiers, the default value, and the definition. The minimum abbreviation of each keyword and qualifier is
underlined. If no characters of a qualifier are underlined, the qualifier may be omitted. The letters ¢ and r denote
integer and real values required for certain options. The letter a denotes a character string value. The number
u represents unit roundoff for floating-point arithmetic (typically about 1071°).

Check frequency 7 Default = 50

Every ith

iteration, a numerical test is made to see if the current solution z satisfies the constraints in the working set.
If the largest residual of the constraints in the working set is judged to be too large, the working-set matrix is
refactorized and the variables are recomputed to satisfy the constraints more accurately.

Cold start Default = Coldstart
Warm start

This option specifies how the initial working set is chosen. With a cold start, QPOPT chooses the initial working
set based on the values of the variables and constraints at the initial point. Broadly speaking, the first working

set will include all equality constraints and also any bounds or inequality constraints that are “nearly” satisfied
(to within the Crash tolerance).

With a warm start, the user must provide a valid definition of every element of the array istate. The specification
of istate will be overridden if necessary, so that a poor choice of the working set will not cause a fatal error.
A warm start will be advantageous if a good estimate of the initial working set is available—for example, when
gpopt is called repeatedly to solve related problems.

Crash tolerance r Default = 0.01

This value is used for cold starts when QPOPT selects an initial working set. Bounds and inequality constraints
are selected if they are satisfied to within . More precisely, a constraint of the form aJTx > [ will be included in
the initial working set if |a?x =1 <r(1+]l]). If r <0 or r > 1, the default value is used.

Defaults

This is a special option to reset all options to their default values.

Expand frequency i Default = 5

This defines the initial value of an integer K that is used in an anti-cycling procedure designed to guarantee
progress even on highly degenerate problems. See Section 5.2.3.

If © > 9999999, no anti-cycling procedure is invoked.

Feasibility tolerance r Default = y/u

This defines the maximum acceptable absolute violation in each constraint at a “feasible” point. For example, if
the variables and the coefficients in the general constraints are of order unity, and the latter are correct to about
6 decimal digits, it would be appropriate to specify r as 107, If » < u, the default value is used.

61



Before optimizing the objective function, QPOPT must find a feasible point for the constraints. If the sum of
infeasibilities cannot be reduced to zero and Min sum = Yes is requested, QPOPT will find the minimum value of
the sum. Let sinf be the corresponding sum of infeasibilities. If sinf is quite small, it may be appropriate to
raise r by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

Feasibility Phase Iteration Limit i1 Default = max(50,5(n + m,))
Optimality Phase Iteration Limit io Default = max(50,5(n + m,))
The scalars i; and iy specify the maximum number of iterations allowed in the feasibility and optimality phases.

Optimality Phase iteration limit is equivalent to Iteration limit. Setting ¢; = 0 and PrintLevel > 0
means that the workspace needed will be computed and printed, but no iterations will be performed.

Hessian rows 7 Default = 0 or n
This specifies m, the number of rows in the Hessian matrix H or its trapezoidal factor G (as used by the default
subroutine gpHess).

For problem type FP or LP, the default value is m = 0.

For problems QP1 or QP2, the first m rows and columns of H are obtained from H, and the remainder are assumed
to be zero. For problems QP3 or QP4, the factor GG is assumed to have m rows and n columns. They are obtained
from the associated rows of H.

If a nonstandard subroutine gqpHess is provided, it may access the problem type and m via the lines

integer lgptyp, mHess
common /sollgp/ lgptyp, mHess

For example, Problem type FP, LP or QP4 sets 1qptyp = 1, 2 or 6 respectively, and Hessian rows 20 sets mHess =
20. Infinite Bound size r Default = 10%°

If » > 0, r defines the “infinite” bound bigbnd in the definition of the problem constraints. Any upper bound

greater than or equal to bigbnd will be regarded as plus infinity (and similarly for a lower bound less than or equal
to —bigbnd). If r <0, the default value is used.

Infinite Step size T Default = max(bigbnd, 10?°)

If » > 0, r specifies the magnitude of the change in variables that will be considered a step to an unbounded
solution. (Note that an unbounded solution can occur only when the Hessian is not positive definite.) If the
change in x during an iteration would exceed the value of Infinite Step, the objective function is considered to
be unbounded below in the feasible region. If » < 0, the default value is used.

Iteration limit i Default = max(50,5(n + m,))
Iters

Itns

This is equivalent to Optimality Phase iteration limit. See Feasibility Phase.
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List

If Nolist was previously specified, List restores output to the Print file whenever an optional parameter is reset.

Maximum degrees of freedom 7 Default = n

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian Hy. Ideally, i should
be set slightly larger than the value of n, expected at the solution. (See Sections 5.1.2 and 5.1.3.) It need not
be larger than my + 1, where my is the number of variables that appear nonlinearly in the quadratic objective
function. For many problems it can be much smaller than m.

For quadratic problems, a minimizer may lie on any number of constraints, so that n; may vary between 1 and n.
The default value of i is therefore the number of variables n. If Hessian rows m is specified, the default value of
¢ is the same number, m.

Min sum a Default = No

This option comes into effect if the constraints cannot be satisfied. If Min sum = No, QPOPT terminates as soon
as it is evident that no feasible point exists. The final point will generally not be the point at which the sum
of infeasibilities is minimized. If Min sum = Yes, QPOPT will continue until either the sum of infeasibilities is
minimized or the iteration limit is reached, whichever occurs first.

Nolist

This suppresses output to the Print file whenever an optional parameter is reset.

Optimality tolerance r Default = \/u

This affects the tolerance used to determine if the Lagrange multipliers associated with the bounds and general
constraints have the right “sign” for the solution to be judged optimal. Increasing r tends to cause earlier termi-
nation. For example, if 7 = 1.0e — 4, the final objective value will probably agree with the true optimum to about
4 digits.

Print level i Default = 10

This controls the amount of printing produced by QPOPT as follows.

0 No output.
1 The final solution only, sent to the Print file.
5 One line of output for each iteration (no printout of the final solution).
> 10 The final solution and one line of output for each iteration (Print file only).

> 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Az and the constraint
status (Print file only).
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> 30 At each iteration, the diagonal elements of the upper-triangular matrix 7" associated with the T'Q factorization
(15) of the working set, and the diagonal elements of the upper-triangular matrix R (Print file only).

Problem type a Default = QP2

This option specifies the type of objective function to be minimized during the optimality phase. The following
are the six values of ¢ and the dimensions of the arrays that must be specified to define the objective function:

FP H and cvec not accessed;

LP H not accessed, cvec(n) required;

QP1 H(14dH,*) symmetric, cvec not referenced;

QP2 H(1dH,*) symmetric, cvec(n);

QP3 H(1dH,*) upper-trapezoidal, cvec not referenced;

QP4 H(1dH, *) upper-trapezoidal, cvec(n);

Linear program is equivalent to LP. Quadratic program and QP are equivalent to the default option QP2. For
the QP options, the default subroutine gpHess requires array H(1dH, *) as shown. If a non-standard gpHess is
provided, H(*,*) may be used in any convenient way.

Rank tolerance r Default = 100u

This parameter enables the user to control the condition number of the triangular factor R (see Section 5.1). If p;
denotes the function p; = max{|Ri1|, |Raal|, ..., |Rii|}, the dimension of R is defined to be smallest index 4 such
that |Rit1,i+1] < V/rlpix1|. I r <0, the default value is used.

Summary file 1 Default = 6

This specifies the unit number for the Summary file (see Section 5.6).

If ¢ > 0 and PrintLevel > 0, a brief log in 80-column format is output to unit . On many systems, the default
value refers to the screen. Summary file = O suppresses output, including error messages.

Warm start

See Cold start.
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5.5 Optional parameter checklist and default values

For easy reference, the following list shows all valid options and their default values. The quantity u represents
floating-point precision (=~ 1.1 x 10716 in IEEE double-precision arithmetic).

Check frequency 50 *

Cold start *

Crash tolerance .01 %

Expand frequency 5 *
Feasibility tolerance 1.1e-8 * /u
Feasibility Phase iteration limit 50 * or 5(n+m;)
Optimality Phase iteration limit 50 * or 5(n+my)
Hessian rows n *

Infinite bound size 1.0e+20 * Plus infinity
Infinite step size 1.0e+20 *

Iteration limit 50 * or 5(n+my)
List *

Maximum degrees of freedom n *

Min sum No *

Optimality tolerance 1.1e-8 * /u

Print file 9 *

Print level 10 *

Problem type QP * or QP2

Rank tolerance 1.1e-14 * 100u
Summary file 6 *

Other options may be set as follows:

Defaults
Nolist
Warm start

65



5.6 The Summary File

The Summary file records an iteration log and error messages. The file name is set in Prob.SOL.SummFile.

5.6.1 Constraint numbering and status

For items Jdel and Jadd in the iteration log, indices 1 through n refer to the bounds on the variables, and indices
n + 1 through n + nclin refer to the general constraints.

When the status of a constraint changes, the index of the constraint is printed, along with the designation L (lower
bound), U (upper bound), E (equality), F (temporarily fixed variable) or A (artificial constraint).

5.6.2 The iteration log

The following items are printed after each iteration.

Itn

Jdel

Jadd
Step

Ninf

Sinf/0Objective

Norm gZ

Zr

Art

is the iteration count (including those from the feasibility phase).

is the index of the constraint deleted from the working set. If Jdel is zero, no constraint was
deleted.

is the index of the constraint added to the working set. If Jadd is zero, no constraint was added.

is the step taken along the computed search direction. If a constraint is added during the
current iteration (i.e., Jadd is positive), Step will be the step to the nearest constraint. During
the optimality phase, the step can be greater than one only if the reduced Hessian is not positive
definite.

is the number of violated constraints (infeasibilities). This number will be zero during the
optimality phase.

is the value of the current objective function. If x is not feasible, Sinf gives a weighted sum of
the magnitudes of constraint violations. If x is feasible, Objective is the value of the objective
function. The output line for the final iteration of the feasibility phase (i.e., the first iteration
for which Ninf is zero) will give the value of the true objective at the first feasible point.

During the feasibility phase, the number of constraint infeasibilities will not increase until either
a feasible point is found, or the optimality of the multipliers implies that no feasible point exists.
Note that the sum of the infeasibilities may increase or decrease during this part of the feasibility
phase. However, once optimal phase-one multipliers are obtained, the number of infeasibilities
can increase, but the sum of infeasibilities must either remain constant or be reduced until the
minimum sum of infeasibilities is found.

In the optimality phase, the value of the objective is non-increasing.

is || ZT g||, the Euclidean norm of the reduced gradient with respect to Z. During the optimality
phase, this norm will be approximately zero after a unit step.

is the number of columns of Z; (see Section 5.1). Zr is the dimension of the subspace in which
the objective is currently being minimized. The value of Zr is the number of variables minus
the number of constraints in the working set.

is the number of artificial constraints in the working set, i.e., the number of columns of Z, (see
Section 5.2). At the start of the optimality phase, Art provides an estimate of the number of
nonpositive eigenvalues in the reduced Hessian.
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5.6.3 Summary file from the example problem

Following is a Summary file example.

QPOPT --- Version 1.0-10 Sep 1995
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
0 0 0 0.0E+00 0 0.00000000E+00 0.0E+00 0 6
Itn 0 -- Feasible point found.
0 0 0 0.0E+00 0 1.51638000E+03 9.8E+01 1 5
1 0 8U 2.8E-01 0 1.72380000E+02 0.0E+00 0 5
2 1L 10L 3.1E-03 0 1.68083225E+02 0.0E+00 0 5
3 5A 11L 1.2E-02 0 1.57176475E+02 0.0E+00 0 4
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
4 4A 121 3.2E-02 0 1.38528925E+02 0.0E+00 0 3
5 3A 13L 6.9E-02 0 1.11295925E+02 0.0E+00 0 2
6 2A  14L 1.3E-01 0 7.41228000E+01 0.0E+00 0 1
7 1A 1U 8.4E-01 0 -5.85162625E+01 0.0E+00 0 0
8 13L 0 1.0E+00 0 -8.72144740E+01 1.3E-15 1 0
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
9 1U 6U 2.5E+00 0 -3.12744888E+02 1.4E+02 1 0
10 0 1L 1.4E-01 0 -5.62265012E+02 0.0E+00 0

11 14L 70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0

Exit from QP problem after 11 iterations. Inform = O
QPOPT --- Version 1.0-10 Sep 1995
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
0 0 0 0.0E+00 3 2.35500000E+01 1.7E+00 0 3
1 2U  10L 4.0E+00 2 1.96000000E+01 1.4E+00 0 3
2 4U  12L 7.8E+00 1 1.17500000E+01 1.0E+00 0 3
3 6U  14L 1.2E+01 0 0.00000000E+00 0.0E+00 0 3
Itn 3 -- Feasible point found.
3 0 0 0.0E+00 0 8.66526437E+02 1.5E+02 1 2
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
4 0 9L 1.0E-01 0 4.98244375E+01 0.0E+00 0 2
5 2A 11L 4.5E-01 0 -5.62265013E+02 0.0E+00 0 1
6 1A 6U 5.7E-13 0 -5.62265013E+02 0.0E+00 0 0
7 14L 70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0
Exit from QP problem after 7 iterations. Inform = O
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5.7 The Print File

The Print file records specified options, error messages, a detailed iteration log, and the final solution. The print
file is specified in Prob.SOL.PrintFile.

5.7.1 Constraint numbering and status

Items Jdel and Jadd in the iteration log are the same as in the Summary file. Please see Section 5.6.1.

5.7.2 The iteration log

When PrintLevel > 5, a line of output is produced at every iteration. The quantities printed are those in effect
on completion of the iteration. Several items are the same as in the Summary file. Please see Section 5.6.2.

Itn

Jdel

Jadd

Step

Ninf
Sinf/Objective
Bnd

Lin

Art

Zr

Norm gZ
NOpt

Min LM

Cond T

Cond Rz

Same as Summary file.
Same as Summary file.
Same as Summary file.
Same as Summary file.
Same as Summary file.
Same as Summary file.
is the number of simple bound constraints in the current working set.
is the number of general linear constraints in the current working set.
Same as Summary file.

Same as Summary file. Zr =n — (Bnd 4 Lin + Art).

The number of columns of Z (see Section 5.1) can be calculated as Nz = n—(Bnd+Lin) = Zr+Art.
If Nz is zero, x lies at a vertex of the feasible region.

Same as Summary file.

is the number of nonoptimal Lagrange multipliers at the current point. NOpt is not printed if
the current x is infeasible or no multipliers have been calculated. At a minimizer, NOpt will be
Zero.

is the value of the Lagrange multiplier associated with the deleted constraint. If the Min LM
is negative, a lower bound constraint has been deleted, if Min LM is positive, an upper bound
constraint has been deleted. If no multipliers are calculated during a given iteration, Min LM
will be zero.

is a lower bound on the condition number of the working-set matrix .

is a lower bound on the condition number of the triangular factor R (the Cholesky factor of the
current reduced Hessian Hp, whose dimension is Zr). If the problem type is LP, Cond Rz is not
printed.
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Rzz

5.7.3 Printing

is the last diagonal element w of the matrix D associated with the RT DR factorization of the
reduced Hessian H, (see Section 5.1). Rzz is only printed if Hj is not positive definite (in which
case w # 1). If the printed value of Rzz is small in absolute value, then Hy is approximately
singular. A negative value of Rzz implies that the objective function has negative curvature on
the current working set.

the solution

When PrintLevel = 1 or PrintLevel > 10, the final output from gpopt includes a listing of the status of every

variable and const

“won

raint. Numerical values that are zero are printed as “.”. In the “Variables” section, the following

output is given for each variable z; (j =1 to n).

Variable

State

Value
Lower bound
Upper bound

Lagr multiplier

Slack

gives j, the number of the variable.

gives the state of the variable. The possible states are as follows, where § is the Feasibility
tolerance.

FR  The variable lies between its upper and lower bound.

EQ  The variable is a fixed variable, with z; equal to its upper and lower bound.

LL  The variable is active at its lower bound (to within §).

UL  The variable is active at its upper bound (to within §).

TF  The variable is temporarily fixed at its current value.

--  The lower bound is violated by more than §.

++  The upper bound is violated by more than §.

A key is sometimes printed before the State to give some additional information about the
state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange
multiplier is essentially zero. This means that if the variable were allowed to start moving
away from its bound, there would be no change to the objective function. The values of
the other free variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labeled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.
Infeasible. The variable is currently violating one of its bounds by more than §.

is the final value of the variable x;.

is the lower bound specified for ;. “None” indicates that bl(j) < —bigbnd.

is the upper bound specified for ;. “None” indicates that bu(j) > bigbnd.

is the Lagrange multiplier for the associated bound. This will be zero if State is FR. If x is
optimal, the multiplier should be non-negative if State is LL, and non-positive if State is UL.

is the difference between the variable “Value” and the nearer of its (finite) bounds b1(j) and
bu(j). A blank entry indicates that the associated variable is not bounded (i.e., bl(j) <
—bigbnd and bu(j) > bigbnd).
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In the “Constraints” section, similar output is given for each constraint alx, i = 1 to nclin. The word “variable”

must be replaced by “constraint”, and z; should be changed to alz, and (j) should be changed to (nclin + ).

“Movement off a constraint” means allowing the entry in the slack column to become positive.

5.7.4 Interpreting the printout

The input data for gpopt should always be checked (even if it terminates with inform = 0!). Two common sources

of error are uninitialized variables and incorrectly dimensioned array arguments. The user should check that all
components of A, bl, bu and x are defined on entry to gpopt, and that gpHess computes all relevant components

of Hx.

In the following, we list the different ways in which gpopt terminates abnormally and discuss what further action

may be necessary.

Underflow

Overflow

inform = 3

inform =4

inform =5

inform = 6

inform =7

A single underflow will always occur if machine constants are computed automatically (as in the dis-
tributed version of QPOPT). Other floating-point underflows may occur occasionally, but can usually
be ignored.

If the printed output before the overflow error contains a warning about serious ill-conditioning in the
working set when adding the jth constraint, it may be possible to avoid the difficulty by increasing
the Feasibility tolerance. If the message recurs, the offending linearly dependent constraint (with
index “57) must be removed from the problem. If a warning message did not precede the fatal overflow,
contact the authors.

The problem appears to have no feasible point. Check that there are no conflicting constraints, such
asxy > 1, xz9 > 2 and x1 +xo = 0. If the data for the constraints are accurate to the absolute precision
o, make sure that the Feasibility tolerance is greater than o. For example, if all elements of A
are of order unity and are accurate to only three decimal places, the Feasibility tolerance should
be at least 1073.

Omne of the iteration limits may be too small. (See Feasibility Phase and Optimality Phase.)
Increase the appropriate limit and rerun gpopt.

The Maximum Degrees of Freedom is too small. Rerun qpopt with a larger value (possibly using the
warm start facility to specify the initial working set).

An input parameter is invalid. The printed output will indicate which parameter(s) must be redefined.
Rerun with corrected values.

The specified problem type was not FP, LP, QP1, QP2, QP3, or QP4. Rerun qpopt with Problem type
set to one of these values.
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6 MINOS details

6.1 Introduction

TOMLAB /MINOS (hereafter referred to as MINOS) is a linear and nonlinear programming system, designed to
solve large-scale constrained optimization problems of the following form:

minimize F(z) + o +d%y (19)
z,y

subject to b < f(x)+ Ay < bo, (20)

by < Asx+Aszy < b, (21)

I < (x,) <, (22)

where the vectors b;, ¢, d, I, v and the matrices A; are constant, F'(x) is a nonlinear function of some of the
variables, and f(z) is a vector of nonlinear functions. The nonlinearities (if present) may be of a general nature
but must be smooth and preferably “almost linear”, in the sense that they should not change radically with small
changes in the variables. We make the following definitions:

x the nonlinear variables
Y the linear variables
(z, y) the vector (})

(1.1)  the objective function
(1.2)  the nonlinear constraints
(1.3)  the linear constraints
(1.4)  the bounds on the variables
m the total number of general constraints in (2) and (3)
n the total number of variables in x and y
my the number of nonlinear constraints (the dimension of f(z))
ny the number of nonlinear variables (the dimension of x)
nj the number of nonlinear objective variables (in F'(x))
nf the number of nonlinear Jacobian variables (in f(x))

A large-scale problem is one in which m and n are several hundred or several thousand. MINOS takes advantage of
the fact that the constraint matrices A; and the partial derivatives df;(x)/0x; are typically sparse (contain many
7€eros).

The dimensions nj and nf allow for the fact that F(x) and f(z) may involve different sets of nonlinear variables
“x”. The two sets of variables always overlap, in the sense that the shorter “z” is always the same as the beginning
of the other. If z is the same in both cases, we have ny = n} = n}. Otherwise, we define the number of nonlinear
variables to be n; = max(n},nf).

In the following sections we introduce more terminology and give an overview of the MINOS optimization algorithms
and the main system features.

6.1.1 Linear Programming

When F(z) and f(x) are absent, the problem becomes a linear program. Since there is no need to distinguish
between linear and nonlinear variables, we use x rather than y. We also convert all general constraints into
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equalities with the aid of slack variables s, so that the only inequalities are simple bounds on the variables. Thus,
we write linear programs in the form

minimize c’asubject toAx +s=10, 1< (z, s) <u. (23)

x, s
When the constraints are linear, the bounds on the slacks are defined so that b = 0. When there are nonlinear
constraints, some elements of b are nonzero.

In the mathematical programming world, = and s are sometimes called structural variables and logical variables.
Their upper and lower bounds are fundamental to problem formulations and solution algorithms. Some of the
components of [ may be —oo and those of u may be +o0o. If [; = u;, a variable is said to be fized, and if its bounds
are —oo and +00, the variable is called free.

Within MINOS, a point (z, s) is said to be feasible if the following are true:
e The constraints Az + s = b are satisfied to within machine precision ~ 10~'°.

e The bounds [ < (z, s) < u are satisfied to within a feasibility tolerance 6., ~ 1076.

e The nonlinear constraints (20) are satisfied to within a row tolerance 8,,,, ~ 107°.

Tolerances such as é., and J,,,, may be specified by setting Feasibility tolerance and Row tolerance.

MINOS solves linear programs using a reliable implementation of the primal simplex method [3], in which the
constraints Az + s = b are partitioned into the form

Bxs+ Nzy =b, (24)

where the basis matriz B is a square and nonsingular submatrix of (A I). The elements of 5 and xy are called
the basic and nonbasic variables respectively. Together, they are a permutation of the vector (z, s). Certain dual
variables m and reduced costs dy are defined by the equations

BTn =cs,  dy =cy — N7, (25)

where (cp, cy) is a permutation of the objective vector (¢, 0).

At a feasible point, nonbasic variables are typically equal to one of their bounds, and basic variables are somewhere
between their bounds. To reach an optimal solution, the simplex method performs a sequence of iterations of the
following general nature. With guidance from dj, a nonbasic variable is chosen to move from its current value,
and the basic variables are adjusted to satisfy the constraints in (23). Usually one of the basic variables reaches a
bound. The basis partition is then redefined with a column of B being replaced by a column of N. When no such
interchange can be found to reduce the value of ¢’z, the current solution is optimal.

The simplex method
For convenience, let « denote the variables (z, s). The main steps in a simplex iteration are as follows:

Compute dual variables: Solve BTr = ¢j.

Price: Compute some or all of the reduced costs dy = cy — N77 to determine if a favorable nonbasic
column a, exists.
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Compute search direction: Solve Bp,; = +a, to determine the basic components of a search direc-
tion p along which the objective is improved. (The nonbasic elements of p are py = 0, except for
+1 for the element corresponding to aq.)

Find maximum steplength: Find the largest steplength au,.x such that x 4+ amaxp continues to
satisfy the bounds on the variables. The steplength may be determined by the new nonbasic
variable reaching its opposite bound, but normally some basic variable will reach a bound first.

Update: Take the step apax. If this was determined by a basic variable, interchange the corresponding
column of B with column a, from N.

When a starting basis is chosen and the basic variables =, are first computed, if any components of z, lie
significantly outside their bounds, we say that the current point is infeasible. In this case, the simplex method uses
a “Phase 1” procedure to reduce the sum of infeasibilities. This is similar to the subsequent “Phase 2” procedure
just described.

The feasibility tolerance 6. is used to determine which Phase is in effect. A similar optimality tolerance 0, is
used during pricing to judge whether any reduced costs are significantly large. (This tolerance is scaled by |7, a
measure of the size of the current 7.)

If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between their bounds:
l; < zj <uj. In addition, at a “feasible” or “optimal” solution, some of the basic variables may lie slightly outside
their bounds: [ — 5. < 2 < uj + 6r... In rare cases, even a few nonbasic variables might lie outside their bounds
by as much as d.,.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz ordering scheme and Bartels-
Golub updates, as implemented in the Fortran package LUSOL [14]; see [2, 1, 21, 22]. The basis factorization is
central to the efficient handling of sparse linear and nonlinear constraints.

6.1.2 Problems with a Nonlinear Objective

When nonlinearities are confined to the term F(z) in the objective function, the problem is a linearly constrained
nonlinear program. MINOS solves such problems using a reduced-gradient method [24] combined with a quasi-
Newton method [4, 8] that generally leads to superlinear convergence. The implementation follows that described
in Murtagh and Saunders [9].

As a slight generalization of (24), the constraints Az + s = b are partitioned into the form
Bxy + Sxs+ Nxy = b, (26)

where x4 is a set of superbasic variables. As before, the nonbasic variables are normally equal to one of their
bounds, while the basic and superbasic variables lie somewhere between their bounds (to within d;.,). Let the
number of superbasic variables be ng, the number of columns in S. At a solution, ng will be no more than ny, the
number of nonlinear variables, and it is often much smaller than this. In many real-life cases we have found that
ns remains reasonably small, say 200 or less, regardless of the size of the problem. This is one reason why MINOS
has proved to be a practical tool.

In the reduced-gradient method, xs is regarded as a set of “independent variables” that are allowed to move in
any desirable direction to reduce the objective function (or the sum of infeasibilities). The basic variables are then
adjusted in order to continue satisfying the linear constraints. If it appears that no improvement can be made
with the current definition of B, S and N, one of the nonbasic variables is selected to be added to S, and the
process is repeated with an increased value of ng. At all stages, if a basic or superbasic variable encounters one of
its bounds, that variable is made nonbasic and the value of ng is reduced by one.
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For linear programs, we may interpret the simplex method as being the same as the reduced-gradient method,
with the number of superbasic variables oscillating between 0 and 1. (In general, a step of the simplex method or
the reduced-gradient method is called a minor iteration.)

A certain matrix Z is needed for descriptive purposes. It takes the form

_BlS
Z = I 7 (27)
0

though it is never computed explicitly. Given LU factors of the basis matrix B, it is possible to compute products
of the form Zq and Z%g by solving linear equations involving B or BT. This in turn allows optimization to
be performed on the superbasic variables, while the basic variables are adjusted to satisfy the general linear
constraints. (In the description below, the reduced-gradient vector satisfies ds = Z7g, and the search direction
satisfies p = Zps.)

An important part of MINOS is the quasi-Newton method used to optimize the superbasic variables. This can
achieve superlinear convergence during any sequence of iterations for which the B, S, N partition remains constant.
It requires a dense upper-triangular matrix R of dimension ng, which is updated in various ways to approximate

the reduced Hessian:
R'™R~Z7'HZ, (28)

where H is the Hessian of the objective function, i.e. the matrix of second derivatives of F'(x). As for unconstrained
optimization, the storage required for R is sometimes a limiting factor.

The reduced-gradient method

Let g be the gradient of the nonlinear objective (19). The main steps in a reduced-gradient iteration are as follows:

Compute dual variables and reduced gradient: Solve B'm = g, and compute the reduced-gradient
vector dg = g5 — STr.

Price: If |ds| is sufficiently small, compute some or all of the reduced costs dy = gy — N7 to
determine if a favorable nonbasic column a, exists. If so, move that column from N into S,
expanding R accordingly.

Compute search direction: Solve R"Rp; = —dg and Bp, = —Sps to determine the superbasic and
basic components of a search direction p along which the objective is improved. (The nonbasic
elements of p are py = 0.)

Find maximum steplength: Find the largest steplength auax such that & + apmaxp continues to
satisfy the bounds on the variables.

Perform linesearch: Find an approximate solution to the one-dimensional problem

minimize F(z + ap)subject to0 < a < amax-
«

Update (quasi-Newton): Take the step a. Apply a quasi-Newton update to R to account for this
step.

Update (basis change): If a superbasic variable reached a bound, move it from S into N. If a basic
variable reached a bound, find a suitable superbasic variable to move from S into B, and move
the basic variable into V. Update R if necessary.
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At an optimum, the reduced gradient dg should be zero. MINOS terminates when ||ds|| < d,,.|7|| and the reduced
costs (component of dy) are all sufficiently positive or negative, as judged by the same quantity d,,. |||l

In the linesearch, F(x 4+ ap) really means the objective function (19) evaluated at the point (x, y, s) + ap.
This steplength procedure is another important part of MINOS. Two different procedures are used, depending on
whether or not all gradients are known analytically; see [12, 19]. The number of nonlinear function evaluations
required may be influenced by setting the Linesearch tolerance in the SPECS file.

Normally, the objective function F(z) will never be evaluated at a point x unless that point satisfies the linear
constraints and the bounds on the variables. An exception is during a finite-difference check on the calculation of
gradient elements. This check is performed at the starting point xo, which takes default values or may be specified.
MINOS ensures that the bounds | < xy < u are satisfied, but in general the starting point will not satisfy the
general linear constraints. If F(z¢) is undefined, the gradient check should be suppressed (Verify level -1), or
the starting point should be redefined.

6.1.3 Problems with Nonlinear Constraints

If any of the constraints are nonlinear, MINOS employs a projected Lagrangian algorithm, based on a method due
to Robinson [23]; see Murtagh and Saunders [10]. This involves a sequence of major iterations, each of which
requires the solution of a linearly constrained subproblem. Each subproblem contains linearized versions of the
nonlinear constraints, as well as the original linear constraints and bounds.

At the start of the k-th major iteration, let (zy, yx) be an estimate of the variables, and let A\; be an estimate of
the Lagrange multipliers (dual variables) associated with the nonlinear constraints. The constraints are linearized
by changing f(x) in Equation (2) to its linear approximation:

[l zk) = flon) + J(2n) (T — z1),

or more briefly f = fi + Ji(z — x1), where J(zy) is the Jacobian matriz evaluated at zj. (The i-th row of the
Jacobian is the gradient vector for the i-th nonlinear constraint function.) The subproblem to be solved during
the k-th major iteration is then

minimize F(z) + "z + dTy — N fa + el fall? (29)
x,y

subject to by < f+ Ay < by, (30)

by < Asxr+Azy < by, (31)

I < (zv) < u, (32)

where fg = f — f is the difference between f(x) and its linearization. The objective function (29) is called an
augmented Lagrangian. The scalar py is a penalty parameter, and the term involving py is a modified quadratic
penalty function. MINOS uses the reduced-gradient method to solve each subproblem. As before, slack variables
are introduced and the vectors b; are incorporated into the bounds on the slacks. The linearized constraints take

o)) ()= ()

We refer to this system as Az + s = b as in the linear case. The Jacobian Ji is treated as a sparse matrix, the
same as the matrices A;, As and A3. The quantities Jy, b, A\ and pi change each major iteration.

the form

(6]



The projected Lagrangian method

For convenience, suppose that all variables and constraints are nonlinear. The main steps in a major iteration are
as follows:

Solve subproblem: Find an approximate solution (Z,\) to the kth subproblem (29)—(32).

Compute search direction: Adjust the elements of A if necessary (if they have the wrong sign).
Define a search direction (Az, A)) = (T — x, A — \p).

Find steplength: Choose a steplength o such that some merit function M (z, A) has a suitable value
at the point (zx + oAz, g + cAN).

Update: Take the step o to obtain (zx4+1, Ak+1). In some cases, adjust py.

For the first major iteration, the nonlinear constraints are ignored and minor iterations are performed until the
original linear constraints are satisfied.

The initial Lagrange multiplier estimate is typically A\, = 0 (though it can be provided by the user). If a subproblem
terminates early, some elements of the new estimate A may be changed to zero.

The penalty parameter initially takes a certain default value py = 100.0/m;, where m; is the number of nonlinear
constraints. (A value r times as big is obtained by specifying Penalty parameter r.) For later major iterations,
pi is reduced in stages when it appears that the sequence {xy, A;} is converging. In many cases it is safe to specify
Penalty parameter 0.0 at the beginning, particularly if a problem is only mildly nonlinear. This may improve
the overall efficiency.

In the output from MINOS, the term Feasible subproblem indicates that the linearized constraints (30)—(32)
have been satisfied. In general, the nonlinear constraints are satisfied only in the limit, so that feasibility and
optimality occur at essentially the same time. The nonlinear constraint violation is printed every major iteration.
Even if it is zero early on (say at the initial point), it may increase and perhaps fluctuate before tending to zero.
On “well behaved” problems, the constraint violation will decrease quadratically (i.e., very quickly) during the
final few major iterations.

For certain rare classes of problem it is safe to request the values Ay = 0 and p; = 0 for all subproblems by
specifying Lagrangian = No (in which case the nonlinear constraint functions are evaluated only once per major
iteration). However for general problems, convergence is much more likely with the default setting, Lagrangian
= Yes.

The merit function

Unfortunately, it is not known how to define a merit function M (z, ) that can be reduced at every major iteration.
As a result, there is no guarantee that the projected Lagrangian method described above will converge from an
arbitrary starting point. This has been the principal theoretical gap in MINOS, finally resolved by the PhD research
of Michael Friedlander [5]. The main features needed to stabilize MINOS are:

e To relax the linearized constraints via an ¢; penalty function.

e To repeat a major iteration with increased pp (and more relaxed linearized constraints) if the nonlinear
constraint violation would increase too much.

In practice, the method of MINOS 5.51 often does converge and a good rate of convergence is often achieved in
the final major iterations, particularly if the constraint functions are “nearly linear”. As a precaution, MINOS
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prevents radical changes from one major iteration to the next. Where possible, the steplength is chosen to be
o =1, so that each new estimate of the solution is (zx41, A\kt1) = (%, A), the solution of the subproblem. If this
point is “too different”, a shorter steplength o < 1 is chosen.

If the major iterations for a particular model do not appear to be converging, some of the following actions may
help:

1. Specify initial activity levels for the nonlinear variables as carefully as possible.
2. Include sensible upper and lower bounds on all variables.
3. Specify a Major damping parameter that is lower than the default value. This tends to make o smaller.

4. Specify a Penalty parameter that is higher than the default value. This tends to prevent excessive depar-
tures from the constraint linearization.

6.1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the constraints completely linear if at
all possible. Sometimes a simple transformation will suffice. For example, a pipeline optimization problem has
pressure drop constraints of the form

K, K>

2 2
dzll.814+d421.814+“' < Pr - Fy,

where d; are the design variables (pipe diameters) and the other terms are constant. These constraints are highly
nonlinear, but by redefining the decision variables to be z; = 1/d}-8!* we can make the constraints linear. Even if
the objective function becomes more nonlinear by such a transformation (and this usually happens), the advantages
of having linear constraints greatly outweigh this.

Similarly, it is usually best not to move nonlinearities from the objective function into the constraints. For example,
we should not replace “minimize F(z)” by

minimize z subject to F(z)—2z=0.

Scaling is a very important matter during problem formulation. A general rule is to scale both the data and the
variables to be as close to 1.0 as possible. In general we suggest the range 1.0 to 10.0. When conflicts arise, one
should sacrifice the objective function in favor of the constraints. Real-world problems tend to have a natural
scaling within each constraint, as long as the variables are expressed in consistent physical units. Hence it is often
sufficient to apply a scale factor to each row. MINOS has options to scale the rows and columns of the constraint
matrix automatically. By default, only the linear rows and columns are scaled, and the procedure is reliable. If you
request that the nonlinear constraints and variables be scaled, bear in mind that the scale factors are determined
by the initial Jacobian J(xg), which may differ considerably from J(z) at a solution.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely useful for confining the
region over which optimization has to be performed. If sensible values are known, they should always be used.
They are also important for avoiding singularities in the nonlinear functions. Note that bounds may be violated
slightly by as much as the feasibility tolerance d.,. Hence, if \/Z5 or log x5 appear (for example) and if 4., = 1075,
the lower bound on z2 would normally have to be at least 1075. If it is known that xo will be at least 0.5 (say) at
a solution, then its lower bound should be 0.5.

For a detailed discussion of many aspects of numerical optimization, see Gill, Murray and Wright [19]; in particular,
see Chapter 8 for much invaluable advice on problem formulation and assessment of results.
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6.1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem must be smooth
(i.e., their first derivatives must exist), especially near the desired solution. The functions need not be separable.

A certain “feasible” region is defined by the general constraints and the bounds on the variables. If the objective
is convex within this region and if the feasible region itself is convex, any optimal solution obtained will be a global
optimum. Otherwise there may be several local optima, and some of these may not be global. In such cases the
chances of finding a global optimum are usually increased by choosing a starting point that is “sufficiently close”,
but there is no general procedure for determining what “close” means, or for verifying that a given local optimum
is indeed global.

Integer restrictions cannot be imposed directly. If a variable x; is required to be 0 or 1, a common ploy is to
include a quadratic term z;(1 — x;) in the objective function. MINOS will indeed terminate with z; =0 or 1, but
inevitably the final solution will just be a local optimum. (Note that the quadratic is negative definite. MINOS
will find a global minimum for quadratic functions that are positive definite or positive semidefinite, assuming the
constraints are linear.)
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6.2 Solver Options

The following sections describes some of the solver options depending on problem type.

6.2.1 Options for Linear Programming

The following options apply specifically to linear programs.

Crash option i Default = 3
Crash tolerance t Default = 0.1

Except on restarts, a Crash procedure is used to select an initial basis from certain rows and columns of the
constraint matrix (A I'). The Crash option ¢ determines which rows and columns of A are eligible initially, and
how many times Crash is called. Columns of I are used to pad the basis where necessary.

i = 0 The initial basis contains only slack variables: B = I.
1 Crash is called once, looking for a triangular basis in all rows and columns of A.

2 Crash is called twice (if there are nonlinear constraints). The first call looks for a triangular basis in linear
rows, and the first major iteration proceeds with simplex iterations until the linear constraints are satisfied.
The Jacobian is then evaluated for the second major iteration and Crash is called again to find a triangular
basis in the nonlinear rows (retaining the current basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two calls treat linear equalities
and linear inequalities separately. As before, the last call treats nonlinear rows at the start of the second
major iteration.

If 4 > 1, certain slacks on inequality rows are selected for the basis first. (If ¢ > 2, numerical values are used to
exclude slacks that are close to a bound.) Crash then makes several passes through the columns of A, searching
for a basis matrix that is essentially triangular. A column is assigned to “pivot” on a particular row if the column
contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form
the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to complete the
basis.

The Crash tolerance allows Crash to ignore certain “small” nonzeros in each column of A. If anay is the largest
element in column j, other nonzeros a;; in the column are ignored if |aij| < Gmax X t. (To be meaningful, ¢ should
be in the range 0 < ¢ < 1.)

When t > 0.0, the bases obtained by Crash may not be strictly triangular, but are likely to be nonsingular and
almost triangular. The intention is to choose a basis containing more columns of A and fewer (arbitrary) slacks.
A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor tolerance; i.e., a tridi-
agonal matrix with entries —1, 4, —1. To help Crash choose all m columns for the initial basis, we would specify
Crash tolerance ¢ for some value of ¢ > 1/4.

6.2.2 Options for All Problems

The following options have the same purpose for all problems, whether they linear or nonlinear.
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Check frequency k Default = 60

Every k-th minor iteration after the most recent basis factorization, a numerical test is made to see if the current
solution z satisfies the general linear constraints (including linearized nonlinear constraints, if any). The constraints
are of the form Az + s = b, where s is the set of slack variables. To perform the numerical test, the residual vector
r = b— Ax — s is computed. If the largest component of 7 is judged to be too large, the current basis is refactorized
and the basic variables are recomputed to satisfy the general constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Cycle limit l Default =1
Cycle print P Default = 1
Cycle tolerance t Default = 0.0
Phantom columns c Default = 0
Phantom elements e Default = 0
Debug level l Default = 0

This causes various amounts of information to be output to the Print file. Most debug levels are not helpful to
normal users, but they are listed here for completeness.

=0 No debug output.

=2 (or more) Output from m5setx showing the maximum residual after a row check.

=40 Output from lu8rpc (which updates the LU factors of the basis matrix), showing the position of
the last nonzero in the transformed incoming column.

[ =50 Output from lulmar (which computes the LU factors each refactorization), showing each pivot row
and column and the dimensions of the dense matrix involved in the associated elimination.

[ =100 Output from m2bfac and m5log listing the basic and superbasic variables and their values at every
iteration.
Expand frequency k Default = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate problems.
See [16].

“Cycling” can occur only if zero steplengths are allowed. Here, the strategy is to force a positive step at every
iteration, at the expense of violating the bounds on the variables by a small amount. Suppose that the Feasibility

tolerance is . Over a period of k iterations, the tolerance actually used by MINOS increases from 0.50 to § (in
steps of 0.50/k).

Every k iterations, or when feasibility and optimality are first detected, a resetting procedure eliminates any
infeasible nonbasic variables. Some additional iterations may be needed to restore feasibility and optimality.
Increasing k reduces that likelihood, but it gives less freedom to choose large pivot elements during basis changes.
(See Pivot tolerance.)
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Factorization frequency k Default = 100 (LP) or 50 (NLP)

With linear programs, most iterations cause a basis change, in which one column of the basis matrix B is replaced
by another. The LU factors of B must be updated accordingly. At most k updates are performed before the
current B is factorized directly.

Each update tends to add nonzeros to the LU factors. Since the updating method is stable, k mainly affects the
efficiency of minor iterations, rather than stability.

High values of k (such as 100 or 200) may be more efficient on “dense” problems, when the factors of B tend to
have two or three times as many nonzeros as B itself. Lower values of k£ may be more efficient on problems that
are very sparse.

Feasibility tolerance t Default = 1.0e-6

This sets the feasibility tolerance d;, =t (see §6.2.1). A variable or constraint is considered feasible if it does not
lie outside its bounds by more than d.,.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible. Let sinf be the corresponding sum of infeasibilities. If sinf is quite
small, it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the data should be
suspected. If sinf is not small, there may be other points that have a significantly smaller sum of infeasibilities.
MINOS does not attempt to find a solution that minimizes the sum.

For Scale option 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful). The final unscaled solution can therefore be infeasible by an unpredictable amount, depending on
the size of the scale factors. Precautions are taken so that in a “feasible solution” the original variables will never
be infeasible by more than 0.1. Values that large are very unlikely.

Iterations limit k Default = 3m

MINOS stops after k iterations even if the simplex method has not yet reached a solution. If £ = 0, no iterations
are performed, but the starting point is tested for both feasibility and optimality.

LU factor tolerance t Default = 100.0 (LP) or 5.0 (NLP)
LU update tolerance 12 Default = 10.0 (LP) or 5.0 (NLP)

These tolerances affect the stability and sparsity of the basis factorization B = LU during refactorization and
updating, respectively. They must satisfy ¢1, to > 1.0. The matrix L is a product of matrices of the form

)

where the multipliers p satisfy |u| < t;. Values near 1.0 favor stability, while larger values favor sparsity. The
default values usually strike a good compromise. For large and relatively dense problems, t; = 10.0 or 5.0 (say)
may give a useful improvement in stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t; and/or ty in order to

81



achieve stability. For example, if the columns of A include a submatrix of the form

4 -1
-1 4 -1

one should set both ¢; and t5 to values in the range 1.0 < t; < 4.0.

LU density tolerance t3 Default = 0.5
LU singularity tolerance ty Default = %67 ~ 3.25¢ — 11

The density tolerance t3 is used during LU factorization of the basis matrix. Columns of L and rows of U are
formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At any stage, if
the density of the remaining matrix exceeds t3, the Markowitz strategy for choosing pivots is altered to reduce the
time spent searching for each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance t4 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |U;;| < t4 or |Uj;| < t4 max; |Ujj|, the j-th column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a
whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could
become very ill-conditioned and the optimization could progress very slowly (if at all). Setting t4 = 1.0e-5, say,
may help cause a judicious change of basis.

Maximize
Minimize Default

This specifies the required direction of optimization.

Multiple price k Default = 1

It is not normal to set k > 1 for linear programs, as it causes MINOS to use the reduced-gradient method rather
than the simplex method. The number of iterations, and the total work, are likely to increase.

The reduced-gradient iterations do not correspond to the very efficient multiple pricing “minor iterations” carried
out by certain commercial linear programming systems. Such systems require storage for k dense vectors of
dimension m, so that & is usually limited to 5 or 6. In MINOS, the total storage requirements increase only slightly
with k. (The Superbasics limit must be at least k.)

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients d; = g; — 7’a;, where g; is the gradient of the objective
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function corresponding to the j-th variable, a; is the associated column of the constraint matrix (or Jacobian),
and 7 is the set of dual variables.

By construction, the reduced gradients for basic variables are always zero. Optimality is declared if the reduced
gradients for nonbasic variables at their lower or upper bounds satisfy d;/||7|| > —t or d;/||7|| < t respectively,
and if |d;|/||«|| <t for superbasic variables.

In those tests, ||7|| is a measure of the size of the dual variables. It is included to make the tests independent
of a large scale factor on the objective function. The quantity actually used is defined by o = " | |ml, ||I7|| =
max{o/y/m, 1.0}, so that only scale factors larger than 1.0 are allowed for. If the objective is scaled down to be
very small, the optimality test reduces to comparing d; against ¢.

Partial price D Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables than constraints. It
reduces the work required for each “pricing” operation (when a nonbasic variable is selected to become basic or
superbasic).

When p = 1, all columns of the constraint matrix ( A I) are searched. Otherwise, A and I are partitioned to give
p roughly equal segments A;, I; (j = 1 to p). If the previous pricing search was successful on A;, I;, the next
search begins on the segments A; 1, I; 1. (Subscripts are modulo p.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest such reduced
gradient (of appropriate sign) is selected to become superbasic. (Several may be selected if multiple pricing has
been specified.) If nothing is found, the search continues on the next segments A;;2, 112, and so on.

Partial price t (or t/2 or t/3) may be appropriate for time-stage models having ¢ time periods.

Pivot tolerance t Default = ¢2/3 ~ 10~ 11

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the basis to
become almost singular. When = changes to x + ap for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than
the pivot tolerance ¢. For nonlinear problems, elements smaller than ¢||p|| are ignored.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Feasibility tolerance provides some freedom to maximize the pivot element and thereby improve numerical
stability. Excessively small Feasibility tolerances should therefore not be specified.

To a lesser extent, the Expand frequency also provides some freedom to maximize the pivot element. Excessively
large Expand frequencies should therefore not be specified.
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Scale option l Default = 2 (LP) or 1 (NLP)

Scale Yes

Scale No

Scale linear variables Same as Scale option 1
Scale nonlinear variables Same as Scale option 2
Scale all variables Same as Scale option 2
Scale tolerance t Default = 0.9

Scale, Print
Scale, Print, Tolerance t

Three scale options are available as follows:

=0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

=1 Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1.0 (see Fourer, 1982). This sometimes improves the performance
of the solution procedures.

=2 All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution z is large. This takes into
account columns of (A I) that are fixed or have positive lower bounds or negative upper bounds.

Scale Yes sets the default scaling. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing,
because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

If nonlinear constraints are present, Scale option 1 or O should generally be tried at first. Scale option 2
gives scales that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is
provided, and (b) the problem is not highly nonlinear.

Scale, Print causes the row-scales r(i) and column-scales ¢(j) to be printed. The scaled matrix coefficients
are a;; = a;;c(j)/r(i), and the scaled bounds on the variables and slacks are I; = [;/c(j), 4; = u;j/c(j), where
() =r(G—n)if j > n.

All forms except Scale option may specify a tolerance ¢, where 0 < ¢t < 1 (for example: Scale, Print,
Tolerance = 0.99). This affects how many passes might be needed through the constraint matrix. On each
pass, the scaling procedure computes the ratio of the largest and smallest nonzero coefficients in each column:

pj = max|a;|/ minla|  (ai; #0).

If max; p; is less than ¢ times its previous value, another scaling pass is performed to adjust the row and column
scales. Raising ¢ from 0.9 to 0.99 (say) usually increases the number of scaling passes through A. At most 10
passes are made.

If a Scale option has not already been specified, Scale, Print or Scale tolerance both set the default scaling.

Weight on linear objective w Default = 0.0

This keyword invokes the so-called composite objective technique, if the first solution obtained is infeasible, and
if the objective function contains linear terms. While trying to reduce the sum of infeasibilities, the method also
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attempts to optimize the linear objective. At each infeasible iteration, the objective function is defined to be

minimize ow(c’z) 4 (sum of infeasibilities),
x

where ¢ = 1 for minimization, 0 = —1 for maximization, and c is the linear objective. If an “optimal” solution is
reached while still infeasible, w is reduced by a factor of 10. This helps to allow for the possibility that the initial
w is too large. It also provides dynamic allowance for the fact that the sum of infeasibilities is tending towards
zero.

The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.

The Weight option is intended mainly for linear programs. It is unlikely to be helpful on nonlinear problems.

6.2.3 Options for Nonlinear Objectives

The following options apply to nonlinear programs whose constraints are linear.

Crash option l Default = 3
Crash tolerance t Default = 0.1

These options are the same as for linear programs.

6.2.4 Options for All Nonlinear problems

Expand frequency k Default = 10000

This option is used the same as for linear programs, but takes effect only when there is just one superbasic variable.
(Cycling can occur only when the current solution is at a vertex of the feasible region. Thus, zero steps are allowed if
there is more than one superbasic variable, but otherwise positive steps are enforced.) Increasing k helps reduce the
number of slightly infeasible nonbasic basic variables (most of which are eliminated during a resetting procedure).
However, it also diminishes the freedom to choose a large pivot element (see Pivot tolerance).

Feasibility tolerance t Default = 1.0e-6

When the constraints are linear, a feasible solution is one in which all variables, including slacks, satisfy their
upper and lower bounds to within the absolute tolerance ¢. (Since slacks are included, this means that the general
linear constraints are also satisfied to within ¢.)

When nonlinear constraints are present, a feasible subproblem is one in which the linear constraints and bounds,
as well as the current linearization of the nonlinear constraints, are satisfied to within the tolerance t.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible.

Normally, the nonlinear functions F(z) and f(z) are evaluated only at points x that satisfy the linear constraints
and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these
regions from the problem. For example, for a function F'(z) = (/1 + log x2, it would be essential to place lower
bounds on both variables. If Feasibility tolerance = 1076, the bounds z; > 107 and zo > 10~* might
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be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as
possible.)
An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place.

The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If
this causes difficulty, gradient checking should be suppressed by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the
subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes
allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and
it may be necessary to increase the Penalty parameter or alter the starting point.

Note: Feasibility with respect to the nonlinear constraints is measured against the Row tolerance, not the
Feasibility tolerance.

Hessian dimension r Default = 50

This specifies that an r x r triangular matrix R is to be available for use by the quasi-Newton algorithm (to
approximate the reduced Hessian matrix according to ZTHZ ~ RTR). Suppose there are s superbasic variables
at a particular iteration. Whenever possible, r should be greater than s.

If » > s, the first s columns of R are used to approximate the reduced Hessian in the normal manner. If there
are no further changes to the set of superbasic variables, the rate of convergence is usually superlinear. If r < s, a

()

is used to approximate the reduced Hessian, where R, is an r x r upper triangular matrix and D is a diagonal

matrix of the form

matrix of order s — r. The rate of convergence is no longer superlinear (and may be arbitrarily slow).

The storage required is of order %rz, which is substantial if r is as large as 1000 (say). In general, r should be a
slight over-estimate of the final number of superbasic variables, whenever storage permits. It need not be larger
than n; + 1, where n; is the number of nonlinear variables. For many problems it can be much smaller than n;.

Iterations limit k Default = 3m + 10n;

If the constraints are linear, this is the maximum number of iterations allowed for the simplex method or the
reduced-gradient method. Otherwise, it is the maximum number of minor iterations, summed over all major
iterations.

If £ = 0, no minor iterations are performed, but the starting point is tested for both feasibility and optimality.

Linesearch tolerance t Default = 0.1

For nonlinear problems, this controls the accuracy with which a steplength « is located during one-dimensional
searches of the form
minimize F(x + ap)subject to0 < oo < 3.
«

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are nonlinear, the function
being minimized is the augmented Lagrangian in equation (5).)
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The value of ¢ must satisfy 0.0 < ¢ < 1.0. The default value ¢ = 0.1 requests a moderately accurate search, and
should be satisfactory in most cases. If the nonlinear functions are cheap to evaluate, a more accurate search may
be appropriate; try t = 0.01 or ¢t = 0.001. The number of iterations should decrease, and this will reduce total
run time if there are many linear or nonlinear constraints. If the nonlinear functions are expensive to evaluate, a
less accurate search may be appropriate; try ¢ = 0.5 or perhaps ¢ = 0.9. (The number of iterations will probably
increase, but the total number of function evaluations may decrease enough to compensate.)

LU singularity tolerance t3 Default = %67 ~ 3.25¢ — 11
LU swap tolerance ty Default = e'/* ~ 1074

The singularity tolerance t3 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Uj;| < t3 or |Uj;| < t3max; |Usj|, the j-th column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a
whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could
become very ill-conditioned and the optimization could progress very slowly (if at all). Setting t3 = 1.0e-5, say,
may help cause a judicious change of basis.

The LU swap tolerance is somewhat similar but can take effect more easily. It is again used only after a basis
factorization, and normally just at the start of a major iteration. If a diagonal of U seems to be rather small (as
measured by t4) relative to the biggest diagonal of U, a basis change is made in which the basic variable associated
with the small diagonal of U is swapped with a carefully chosen superbasic variable (if there are any). The number
of superbasic variables stays the same. A message is printed to advise that a swap has occurred.

In practice this tends to help problems whose basis is becoming ill-conditioned. If the number of swaps becomes
excessive, set LU swap tolerance 1.0e-6, say, or perhaps smaller.

Minor damping parameter d Default = 2.0

This parameter limits the change in = during a linesearch. It applies to all nonlinear problems, once a “feasible
solution” or “feasible subproblem” has been found.

A linesearch of the form minimize, F'(x + ap) is performed over the range 0 < a < 3, where [ is the step to the
nearest upper or lower bound on x. Normally, the first steplength tried is @3 = min(1, 3), but in some cases, such

b

as F(z) = ae®® or F(z) = az’, even a moderate change in the components of x can lead to floating-point overflow.

The parameter d is therefore used to define a limit 3 = d(1 + ||=||)/||p||, and the first evaluation of F(z) is at the
potentially smaller steplength a; = min(1, 3, 3).

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions at
meaningless points. The Minor damping parameter provides an additional safeguard. The default value d = 2.0
should not affect progress on well behaved problems, but setting d = 0.1 or 0.01 may be helpful when rapidly
varying functions are present. A “good” starting point may be required. An important application is to the class
of nonlinear least-squares problems.

In cases where several local optima exist, specifying a small value for d may help locate an optimum near the
starting point.
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Multiple price k Default = 1
“Pricing” refers to a scan of the current nonbasic variables to determine if any should be changed from their current
value (by allowing them to become superbasic or basic).

If multiple pricing is in effect, the k best nonbasic variables are selected for admission to the superbasic set. (“Best”
means the variables with largest reduced gradients of appropriate sign.) If partial pricing is also in effect, the k
best variables are selected from the current partition of A and I.

On large nonlinear problems it may help to set & > 1 if there are not many superbasic variables at the starting
point but many at the optimal solution.

Optimality tolerance t Default = 1.0e-6

Partial price D Default = 10 (LP) or 1 (NLP)

This parameter may be useful for large problems that have significantly more variables than constraints. Larger
values reduce the work required for each “pricing” operation (when a nonbasic variable is selected to become basic
or superbasic).

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1
Scale nonlinear variables Same as Scale option 2
Scale all variables Same as Scale option 2
Scale tolerance t Default = 0.9

Scale, Print
Scale, Print, Tolerance t

Three scale options are available as follows:

=0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

=1 If some of the variables are linear, the constraints and linear variables are scaled by an iterative
procedure that attempts to make the matrix coefficients as close as possible to 1.0.

=2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (A I) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)

Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing, because
there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

The Scale tolerance and Scale, Print options are the same as for linear programs.
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Subspace tolerance t Default = 0.5

This controls the extent to which optimization is confined to the current set of basic and superbasic variables
(Phase 4 iterations), before one or more nonbasic variables are added to the superbasic set (Phase 3). The value
specified must satisfy 0 < ¢ < 1.

When a nonbasic variable x; is made superbasic, the norm of the reduced-gradient vector (for all superbasics) is
recorded. Let this be |Z7go||. (In fact, the norm is |d;|, the size of the reduced gradient for the new superbasic
variable x;.)

Subsequent Phase 4 iterations continue at least until the norm of the reduced-gradient vector satisfies ||Z7g|| <
t x | Z%goll. (]|1Z%g|| is the size of the largest reduced-gradient among the superbasic variables.)

A smaller value of t is likely to increase the total number of iterations, but may reduce the number of basis
changes. A larger value such as ¢ = 0.9 may sometimes lead to improved overall efficiency, if the number of
superbasic variables is substantially larger at the optimal solution than at the starting point.

Other convergence tests on the change in the function being minimized and the change in the variables may prolong
Phase 4 iterations. This helps to make the overall performance insensitive to larger values of ¢.

Superbasics limit 5 Default = 50

This places a limit on the storage allocated for superbasic variables. Ideally, s should be set slightly larger than
the “number of degrees of freedom” expected at an optimal solution.

For nonlinear problems, the number of degrees of freedom is often called the “number of independent variables”.
Normally, s need not be greater than n; 4+ 1, where n; is the number of nonlinear variables. For many problems,
s may be considerably smaller than n;. This saves storage if n; is very large.

If Hessian dimension r is specified, the default value of s is the same number (and conversely). This is a safeguard
to ensure superlinear convergence wherever possible. Otherwise, the default for both r and s is 50.

Unbounded objective value T Default = 1.0e+20
Unbounded step size ro Default = 1.0e+10

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch of the form
min, F(z + ap), if |F| exceeds 7 or if « exceeds rq, iterations are terminated with the exit message Problem is
unbounded (or badly scaled).

If singularities are present, unboundedness in F(z) may be manifested by a floating-point overflow (during the
evaluation of F(x + ap)), before the test against r; can be made.

Unboundedness in z is best avoided by placing finite upper and lower bounds on the variables. See also the Minor
damping parameter.
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Verify level l Default = 0

Verify objective gradients Same as Verify level 1
Verify constraint gradients Same as Verify level 2
Verify Same as Verify level 3
Verify gradients Same as Verify level 3
Verify Yes Same as Verify level 3
Verify No Same as Verify level 0

These options refer to a check on the gradients computed by your nonlinear function routines funobj and funcon
at the starting point (the initial value of the nonlinear variables x(*)). Values output in the gradient array g(*)
are compared with estimates obtained by finite differences.

=0 Ounly a “cheap” test is performed, requiring three evaluations of the nonlinear objective (if any) and
two evaluations of the nonlinear constraints.

=1 A more reliable check is made on each component of the objective gradient.

=2 A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.
=3 A detailed check is made on both the objective and the Jacobian.

l=-1 No checking is performed. This may be necessary if the functions are undefined at the starting point.

Verify level 3 is recommended for a new function routine, particularly if the “cheap” test indicates error.
Missing gradients are not checked (so there is no overhead). If there are many nonlinear variables, the Start and
Stop keywords may be used to limit the check to a subset.

As noted, gradient verification occurs at the starting point, before a problem is scaled, and before the first basis is
factorized. The bounds on x will be satisfied, but the general linear constraints may not. If the nonlinear objective
or constraint functions are undefined, you could initially specify

Objective = NONE

Nonlinear objective variables O
Major iterations 1
Verify level -1

to obtain a point that satisfies the linear constraints, and then restart with the correct linear and nonlinear
objective, along with

Verify level 3

6.2.5 Options for Nonlinear Constraints

The following options apply to problems with nonlinear constraints.

Completion Partial Default
Completion Full

When there are nonlinear constraints, this determines whether subproblems should be solved to moderate accuracy

90



(partial completion), or to full accuracy (full completion). MINOS implements the option by using two sets of
convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the Minor iterations limit
is active. The optimal set of basic and superbasic variables will probably be determined for any given subproblem,
but the reduced gradient may be larger than it would have been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major iterations is converging.
The switch is made when the nonlinear constraint error is reduced below 100*(Row tolerance), the relative change
in Ag is 0.1 or less, and the previous subproblem was solved to optimality.

Full completion tends to give better Lagrange-multiplier estimates. It may lead to fewer major iterations, but may
result in more minor iterations.

Crash option l Default = 3
Crash tolerance t Default = 0.1

Let A refer to the linearized constraint matrix.

=0 The initial basis contains only slack variables: B = I.

=1 A is evaluated at the starting point. Crash is called once, looking for a triangular basis in all rows
and columns of A.

l=2 A is evaluated only after the linear constraints are satisfied. Crash is called twice. The first call looks
for a triangular basis in linear rows. The first major iteration proceeds with simplex-type iterations
until the linear constraints are satisfied. A is then evaluated for the second major iteration and Crash
is called again to find a triangular basis in the nonlinear rows (retaining the current basis for linear
rOwsS).

=3 Crash is called three times, treating linear equalities and linear inequalities separately, with simplex-
type iterations in between. As before, the last call treats nonlinear rows at the start of the second
major iteration.

Feasibility tolerance t Default = 1.0e-6

A “feasible subproblem” is one in which the linear constraints and bounds, as well as the current linearization of
the nonlinear constraints, are satisfied to within ¢.

Note that feasibility with respect to the nonlinear constraints is determined by the Row tolerance (not the
Feasibility tolerance).

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible.

If Scale option = 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

Normally, the nonlinear functions F'(x) and f(x) are evaluated only at points = that satisfy the linear constraints
and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these
regions from the problem. For example, for a function F(x) = \/x1 + log x2, it would be essential to place lower
bounds on both variables. If Feasibility tolerance = 1075, the bounds z; > 1075 and zo > 10~* might
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be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as
possible.)
An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place.

The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If
this causes difficulty, gradient checking should be suppressed by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the
subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes
allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and
it may be necessary to increase the Penalty parameter or alter the starting point.

Lagrangian Yes Default
Lagrangian No

This determines the form of the objective function used for the linearized subproblems. The default value Yes is
highly recommended. The Penalty parameter value is then also relevant.

If No is specified, the nonlinear constraint functions are evaluated only twice per major iteration. Hence this option
may be useful if the nonlinear constraints are very expensive to evaluate. However, in general there is a great risk
that convergence may not be achieved.

Major damping parameter d Default = 2.0

This parameter may assist convergence on problems that have highly nonlinear constraints. It is intended to
prevent large relative changes between subproblem solutions (zy, Ax) and (241, Ag+1). For example, the default
value 2.0 prevents the relative change in either x; or Ay from exceeding 200 per cent. It will not be active on well
behaved problems. (If all components of x or A; are small, the norms of those vectors will not be allowed to
increase beyond about 2.0.)

The parameter is used to interpolate between the solutions at the beginning and end of each major iteration. Thus,
ZTp4+1 and Agy1 are changed to
T + 0($k+1 — xk)and)\k + U()\k+1 — )\k)

for some steplength o < 1. In the case of nonlinear equations (where the number of constraints is the same as the
number of variables) this gives a damped Newton method.

This is a very crude control. If the sequence of major iterations does not appear to be converging, one should first
re-run the problem with a higher Penalty parameter (say 2, 4 or 10). (Skip this re-run in the case of a square
system of nonlinear equations: there are no degrees of freedom and the Penalty parameter value has essentially
no effect.)

If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

Major iterations k Default = 50

This is the maximum number of major iterations allowed. It is intended to guard against an excessive number of
linearizations of the nonlinear constraints, since in some cases the sequence of major iterations may not converge.

The progress of the major iterations can be best monitored using Print level 0 (the default).
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Minor iterations k Default = 40

This is the maximum number of minor iterations allowed during a major iteration, after the linearized constraints
for that subproblem have been satisfied. (An arbitrary number of minor iterations may be needed to find a feasible
point for each subproblem.) The Iterations limit provides an independent limit on the total minor iterations
(across all subproblems).

A moderate value (e.g., 30 < k < 200) prevents excessive effort being expended on early major iterations, but
allows later subproblems to be solved to completion.

The first major iteration is special: it terminates as soon as the linear constraints and bounds are satisfied (if
possible), ignoring the nonlinear constraints.

In general it is unsafe to specify a value as small as k = 1 or 2. (Even when an optimal solution has been reached,
a few minor iterations may be needed for the corresponding subproblem to be recognized as optimal.)

Optimality tolerance t Default = 1.0e-6

Penalty parameter r Default = 1.0

This specifies that the initial value of pj in the augmented Lagrangian (5) should be r times a certain default
value 100/my, where m; is the number of nonlinear constraints. It is used when Lagrangian = Yes (the default
setting).

For early runs on a problem with unknown characteristics, the default value should be acceptable. If the problem
is highly nonlinear and the major iterations do not converge, a larger value such as 2 or 5 may help. In general, a
positive r may be necessary to ensure convergence, even for convex programs.

On the other hand, if r is too large, the rate of convergence may be unnecessarily slow. If the functions are not
highly nonlinear or a good starting point is known, it is often safe to specify Penalty parameter 0.0.

If several related problems are to be solved, the following strategy for setting the Penalty parameter may be
useful:

1. Initially, use a moderate value for r (such as the default) and a reasonably low Iterations and/or Major
iterations limit.

2. If successive major iterations appear to be terminate with radically different solutions, try increasing the
penalty parameter. (See also the Major damping parameter.)

3. If there appears to be little progress between major iterations, it may help to reduce the penalty parameter.

Radius of convergence r Default = 0.01

This determines when the penalty parameter py is reduced (if initialized to a positive value). Both the nonlinear
constraint violation (see rowerr below) and the relative change in consecutive Lagrange multiplier estimates must
be less than r at the start of a major iteration before py is reduced or set to zero.

A few major iterations later, full completion is requested if not already set, and the remaining sequence of major
iterations should converge quadratically to an optimum.
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Row tolerance t Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied at a solution. The default value is
usually small enough, since model data is often specified to about that accuracy.

Let wviol be the maximum violation of the nonlinear constraints (2), and let rowerr = wiol/(1 + xnorm), where
znorm is a measure of the size of the current solution (z,y). The solution is regarded as acceptably feasible if
rowerr < t.

If the problem functions involve data that is known to be of low accuracy, a larger Row tolerance may be
appropriate. On the other hand, nonlinear constraints are often satisfied with rapidly increasing accuracy during
the last few major iterations. It is common for the final solution to satisfy rowerr = O(e).

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1
Scale nonlinear variables Same as Scale option 2
Scale all variables Same as Scale option 2
Scale tolerance T Default = 0.9

Scale, Print
Scale, Print, Tolerance r

Three scale options are available as follows:

=0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

=1 Linear constraints and variables are scaled by an iterative procedure that attempts to make the
matrix coefficients as close as possible to 1.0.

=2 All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (A I) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)

Scale Yes sets the default scaling. Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing,
because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

With nonlinear constraints, Scale option 1 or 0 should generally be tried first. Scale option 2 gives scales
that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is provided,
and (b) the problem is not highly nonlinear.
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Verify level l Default = 0

Verify objective gradients Same as Verify level 1
Verify constraint gradients Same as Verify level 2
Verify Same as Verify level 3
Verify gradients Same as Verify level 3
Verify Yes Same as Verify level 3
Verify No Same as Verify level 0

This option refers to a finite-difference check on the gradients (first derivatives) of each nonlinear function. It
occurs before a problem is scaled, and before the first basis is factorized. (Hence, the variables may not yet satisfy
the general linear constraints.)

[=0 Only a “cheap” test is performed, requiring three evaluations of the nonlinear objective (if any) and
two evaluations of the nonlinear constraints.

=1 A more reliable check is made on each component of the objective gradient.

=2 A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.
=3 A detailed check is made on both the objective and the Jacobian.

l=-1 No checking is performed. This may be necessary if the functions are undefined at the starting point.

6.2.6 Options for Input and Output

The following options specify various files to be used, and the amount of printed output required.

Print level l Default = 0
Print frequency k Default = 100

The PRINT file provides more complete information than the SUMMARY file. It includes a listing of the main
options, statistics about the problem, scaling information, the iteration log, the exit condition, and (optionally)
the final solution. It also includes error messages.

The files are specified in Prob.SOL.PrintFile and Prob.SOL.SummFile.

For problems with linear constraints, Print level O gives most of the normal output. Print level 1 produces
statistics for the basis matrix B and its LU factors each time the basis is factorized. Print frequency k produces
one line of the iteration log every k£ minor iterations. Print frequency 1 causes every minor iteration to be logged.
Print frequency O is shorthand for £ = 99999.

For problems with nonlinear constraints, Print level O produces just one line of output per major iteration.
This provides a short summary of the progress of the optimization. The Print frequency is ignored. If Print
level > 0, certain quantities are printed at the start of each major iteration, and minor iterations are logged
according to the Print frequency.

In the latter case, the value of [ is best thought of as a binary number of the form

Print level JFLXB
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where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B Basis statistics, as mentioned above.
X x, the nonlinear variables involved in the objective function or the constraints.

L Ag, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if Lagrangian = No, since
then A\, =0.)

F  f(xg), the values of the nonlinear constraint functions.

J  J(xp), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0. For example, Print level 10 sets
X = 1 and the other digits equal to zero. The nonlinear variables will be printed each major iteration.

If J = 1, the Jacobian is output column-wise. Column j is preceded by the value of the corresponding variable z;
and a key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J = 1, there is no reason to
specify X = 1 unless the objective contains more nonlinear variables than the Jacobian.) A typical line of output
is

3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00

which means that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0 and 2.0 in
rows 1 and 4.

Solution Yes Default
Solution No

The Yes and No options control whether the final solution is output to the PRINT file. Numerical values are printed
in £16.5 format where possible.

The special values 0, 1 and —1 are printed as ., 1.0 and -1.0. Bounds outside the range (—10%°,10%°) appear as
the word None.

Summary file f Default = 6 (typically)
Summary level l Default = 0
Summary frequency k Default = 100

The SUMMARY file provides a brief form of the iteration log and the exit condition. It also includes error messages.
In an interactive environment, the output normally appears at the screen and allows a run to be monitored.

For problems with linear constraints, Summary level O produces brief output. Summary level 1 gives a few ad-
ditional messages. Summary frequency k produces one line of the iteration log every k minor iterations. Summary
frequency 1 causes every minor iteration to be logged. Summary frequency O is shorthand for £ = 99999.

For problems with nonlinear constraints, Summary level O produces one line of output per major iteration. This
provides a short summary of the progress of the optimization. The Summary frequency is ignored. If Summary
level > 0, certain quantities are printed at the start of each major iteration, and minor iterations are logged
according to the Summary frequency.
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Major minor  total ninf step objective Feasible Optimal =nsb ncon LU penalty BSwap

1 1T 1 0 0.0E+00 0.00000000E+00 0.0E+00 1.2E+01 8 4 31 1.0E-01 0

2 13 14 0 1.0E+00 2.67011596E+00 4.4E-06 2.8E-03 7 23 56 1.0E-01 8
Completion Full now requested

3 3 17 0 1.0E+00 2.67009870E+00 3.1E-08 1.4E-06 7 29 41 1.0E-01 0

4 0 17 0 1.0E+00 2.67009863E+00 5.6E-17 1.4E-06 7 30 41 1.0E-02 0

Figure 1: The Major Iteration log

6.3 File Output
6.3.1 The PRINT file

The following information is output to the PRINT file during the solution process. The longest line of output is
124 characters.

e A listing of the SPECS file, if any.

e The selected options.

e An estimate of the storage needed and the amount available.

e Some statistics about the problem data.

e The storage available for the LU factors of the basis matrix.

e A log from the scaling procedure, if Scaleoption > 0.

e Notes about the initial basis obtained from CRASH or a BASIS file.
e The major iteration log.

e The minor iteration log.

e Basis factorization statistics.

e The EXIT condition and some statistics about the solution obtained.

e The printed solution, if requested.

The last five items are described in the following sections.

6.3.2 The major iteration log

Problems with nonlinear constraints require several major iterations to reach a solution, each involving the so-
lution of an LC subproblem (a linearly constrained subproblem that generates search directions for z and ). If
Printlevel = 0, one line of information is output to the PRINT file each major iteration. An example log is
shown in Figure 1.

Label Description
Major The current major iteration number.
minor is the number of iterations required by both the feasibility and optimality phases of the QP sub-

problem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the
correct active set will be identified near the solution.

total The total number of minor iterations.
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ninf

step

objective

Feasible

Optimal

nsb

ncon

LU

penalty

BSwap

The number of infeasibilities in the LC subproblem. Normally 0, because the bounds on the linearized
constraints are relaxed in several stages until the constraints are “feasible”.

The step length « taken along the current search direction p. The variables x have just been changed
to  + ap. On reasonably well-behaved problems, step = 1.0 as the solution is approached, meaning
the new estimate of (x, A) is the solution of the LC subproblem.

The value of true objective function.

The value of rowerr, the maximum component of the scaled nonlinear constraint residual. The
solution is regarded as acceptably feasible if Feasbl is less than the Row tolerance.

The value of maxgap, the maximum complementarity gap. It is an estimate of the degree of nonop-
timality of the reduced costs. Both Feasible and Optimal are small in the neighborhood of a
solution.

The current number of superbasic variables.

The number of times subroutine funcon has been called to evaluate the nonlinear constraint functions.
The Jacobian has been evaluated or approximated essentially the same number of times. (Function
evaluations needed to estimate the Jacobian by finite differences are not included.)

The number of nonzeros in the sparse LU factors of the basis matrix on completion of the LC
subproblem. (The factors are computed at the start of each major iteration, and updated during
minor iterations whenever a basis change occurs.)

As the solution is approached and the minor iterations decrease towards zero, LU reflects the number

of nonzeros in the LU factors at the start of the L.C subproblem.

The penalty parameter pp used in the modified augmented Lagrangian that defines the objective
function for the LC subproblem.

The number of columns of the basis matrix B that were swapped with columns of S to improve
the condition of B. The swaps are determined by an LU factorization of the rectangular matrix
Bs = (B S)T with stability being favored more than sparsity.
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Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv
1 1 1 -1.0E+00 2 2 1 3.0E+01 1.0E+00 1 1.35000000E+02 0 19 0
2 1 1 -1.0E+00 27 27 102 7.0E+01 1.0E+00 1 1.05000000E+02 0 19 0
3 1 1 -1.0E+00 3 3 27 3.0E+01 -1.0E+00 1 3.50000000E+01 1 19 0
4 1 1 -1.0E+00 28 28 26 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0
5 1 1 -1.0E+00 47 47 2 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0
6 1 1 1.0E+00 27 27 101 5.0E+00 -1.0E+00 1 5.00000000E+00 2 20 O
Itn 6 -- feasible solution. Objective = -1.818044887E+02
7 3 1 -1.7E+01 87 0 0 1.0E+00 0.0E+00 0 -2.77020571E+02 4 21 0 6 0 1 10 1.0E+00 FFTT
8 3 1 -1.7E+01 72 0 0 1.9E-01 0.0E+00 0 -3.05336895E+02 4 21 0 8 0 2 1 0 5.5E+00 FFTT
9 3 -2.3E+01 41 0 0 1.0E+00 0.0E+00 0 -4.43743832E+02 4 21 0 9 0 3 1 0 6.5E+00 FFFF
10 4 1 6.6E-01 0 0 0 6.0E+00 0.0E+00 0 -5.64075338E+02 4 21 0 11 0 3 1 0 3.5E+00 FFTT
Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv
161 4 1 8.8E-03 0 73 71 4.2E+00 1.0E+00 0 -1.73532497E+03 4 20 0 340 0 17 1 1 9.6E+00 TTTF
162 3 1 -3.5E-02 6 0 0 1.5E+00 0.0E+00 0 -1.73533264E+03 4 20 0 342 0 18 1 0 1.3E+02 TTFF
163 4 1 2.9E-02 0 0 0 4.5E+00 0.0E+00 0 -1.73533617E+03 4 20 0 344 0 18 1 0 2.0E+01 TTFF
164 4 1 2.1E-02 0 0 0 2.3E+01 0.0E+00 0 -1.73538331E+03 4 20 0 347 0 18 1 0 9.8E+00 TTFF
165 4 1 3.0E-02 0 0 0 5.0E+00 0.0E+00 0 -1.73552261E+03 4 20 0 349 0 18 1 0 2.1E+01 TTFF
166 4 1 1.2E-02 0 0 0 1.0E+00 0.0E+00 0 -1.73556089E+03 4 20 0 350 0 18 1 0 2.2E+01 TTTF
tolrg reduced to 1.162E-03 lvltol =1
167 4 1 2.3E-03 0 0 0 1.0E+00 0.0E+00 0 -1.73556922E+03 4 20 0 351 0 18 1 0 2.2E+01 TTFF
168 4 1 1.2E-03 0 0 0 7.9E-01 0.0E+00 0 -1.73556953E+03 4 20 0 353 0 18 1 0 2.1E+01 TTFF
169 4 1 1.0E-04 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 354 0 18 1 0 2.0E+01 TTTT
tolrg reduced to 1.013E-05 lvltol =1
170 4 1 2.9E-05 0 0 0 1.1E+00 0.0E+00 0 -1.73556958E+03 4 20 0 356 0 18 1 0 1.7E+01 TTFF
171 4 1 1.0E-05 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 357 0 18 1 0 1.7E+01 TTFF
172 4 1 1.5E-06 0 0 0 1.2E+00 0.0E+00 0 -1.73556958E+03 4 20 0 359 0 18 1 0 1.7E+01 TTTF
tolrg reduced to 1.000E-06 lvltol = 2
173 4 1 2.4E-07 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 360 0 18 1 0 1.7E+01 TTTF
Biggest dj = 3.583E-03 (variable 256) norm rg = 2.402E-07 norm pi = 1.000E+00

Figure 2: The Minor Iteration log

6.3.3 The minor iteration log

If Printlevel > 1, one line of information is output to the PRINT file every kth minor iteration, where k is the
specified Print frequency (default £ = 100). A heading is printed periodically. Problem t5weapon gives the log

shown in Figure 2.

Label

Itn

ph

pp

Description

The current minor iteration number.

The current phase of the solution procedure:

1

3
4

Phase 1 simplex method, trying to satisfy the linear constraints. The current solution is an
infeasible vertex.

Phase 2 simplex method, solving a linear program.
Reduced-gradient method. A nonbasic variable has just become superbasic.

Reduced-gradient method, optimizing the current set of superbasic variables.

The Partial Price indicator. The variable selected by the last PRICE operation came from the ppth
partition of A and I. pp is set to zero when the basis is refactored.

A PRICE operation is defined to be the process by which a nonbasic variable is selected to become a
new superbasic. The selected variable is denoted by jq. Variable jq often becomes basic immediately.
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rg

+sbs

-sbs

step

pivot

ninf

Otherwise it remains superbasic, unless it reaches its opposite bound and becomes nonbasic again. If
Partial price is in effect, variable jq is selected from Ay, or Iy, the ppth segments of the constraint
matrix (A T).

In Phase 1, 2 or 3, this is d;, the reduced cost (reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, d; = g; — 7rTaj for j = jq, where g; is the
gradient of the current objective function, 7 is the vector of dual variables for the problem (or LC
subproblem), and a; is the jth column of the current (A I).

In Phase 4, rg is the largest reduced gradient among the superbasic variables.
The variable jq selected by PRICE to be added to the superbasic set.

The variable chosen to leave the set of superbasics. It has become basic if the entry under -bs is
nonzero; otherwise it has become nonbasic.

The variable removed from the basis (if any) to become nonbasic.

The step length « taken along the current search direction p. The variables x have just been changed
to x + ap.

If column a, replaces the rth column of the basis B, pivot is the rth element of a vector y satisfying
By = a,. Wherever possible, step is chosen to avoid extremely small values of pivot (because
they cause the basis to be nearly singular). In rare cases, it may be necessary to increase the Pivot
tolerance to exclude very small elements of y from consideration during the computation of step.

The number of infeasibilities before the present iteration. This number decreases monotonically.

sinf,objective If ninf > 0, this is sinf, the sum of infeasibilities before the present iteration. It usually

ncp

decreases at each nonzero step, but if ninf decreases by 2 or more, sinf may occasionally increase.

Otherwise it is the value of the current objective function after the present iteration. For linear
programs, it means the true linear objective function. For problems with linear constraints, it means
the sum of the linear objective and the value returned by subroutine funobj. For problems with
nonlinear constraints, it is the quantity just described if Lagrangian = No; otherwise it is the value
of the augmented Lagrangian for the current major iterations (which tends to the true objective as
convergence is approached).

The number of nonzeros representing the basis factor L. Immediately after a basis factorization
B = LU, this is lenL, the number of subdiagonal elements in the columns of a lower triangular
matrix. Further nonzeros are added to L when various columns of B are later replaced. (Thus, L
increases monotonically.)

The number of nonzeros in the basis factor U. Immediately after a basis factorization, this is lenU,
the number of diagonal and superdiagonal elements in the rows of an upper-triangular matrix. As
columuns of B are replaced, the matrix U is maintained explicitly (in sparse form). The value of U
may fluctuate up or down; in general it will tend to increase.

The number of compressions required to recover storage in the data structure for U. This includes
the number of compressions needed during the previous basis factorization. Normally ncp should
increase very slowly. If not, the amount of workspace available to MINOS should be increased by a
significant amount. As a suggestion, the work array z(*) should be extended by 2(L + U) elements.
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The following items are printed if the problem is nonlinear or if the superbasic set is non-empty (i.e., if the current
solution is not a vertex).

Label
nobj
ncon
nsb

Hmod

cond (H)

conv

Description
The number of times subroutine funobj has been called.
The number of times subroutine funcon has been called.
The current number of superbasic variables.

An indication of the type of modifications made to the triangular matrix R that is used to approximate
the reduced Hessian matrix. Two integers ¢; and iy are shown. They will remain zero for linear
problems. If i1 = 1, a BFGS quasi-Newton update has been made to R, to account for a move
within the current subspace. (This will not occur if the solution is infeasible.) If i = 1, R has been
modified to account for a change in basis. This will sometimes occur even if the solution is infeasible
(if a feasible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R + vw” for some vectors v and w. If
an update fails for numerical reasons, i; or iy will be set to 2, and the resulting R will be nearly
singular. (However, this is highly unlikely.)

An estimate of the condition number of the reduced Hessian. It is the square of the ratio of the
largest and smallest diagonals of the upper triangular matrix R—a lower bound on the condition
number of the matrix R” R that approximates the reduced Hessian. cond (H) gives a rough indication
of whether or not the optimization procedure is having difficulty. The reduced-gradient algorithm
will make slow progress if cond(H) becomes as large as 10%, and will probably fail to find a better
solution if cond(H) reaches 102 or more.

To guard against high values of cond(H), attention should be given to the scaling of the variables
and the constraints. In some cases it may be necessary to add upper or lower bounds to certain
variables to keep them a reasonable distance from singularities in the nonlinear functions or their
derivatives.

A set of four logical variables C;, C3, C3, C4 that are used to determine when to discontinue
optimization in the current subspace (Phase 4) and consider releasing a nonbasic variable from its
bound (the PRICE operation of Phase 3). Let rg be the norm of the reduced gradient, as described
above. The meaning of the variables C; is as follows:

C1 is true if the change in z was sufficiently small;

Cs is true if the change in the objective was sufficiently small;
Cs is true if rg is smaller than some loose tolerance TOLRG;
Cy is true if rg is smaller than some tighter tolerance.

The test used is of the form
if (C1 and Cy and C3) or Cy then go to Phase 3.

At present, tolrg = t|dj|, where ¢ is the Subspace tolerance (nominally 0.5) and dj is the reduced-
gradient norm at the most recent Phase 3 iteration. The “tighter tolerance” is the maximum of
0.1tolrg and 10~ 7||x||. Only the tolerance ¢ can be altered at run-time.

101



6.3.4 Crash statistics

The following items are output to the PRINT file when no warm start is used. They refer to the number of columns
that the CRASH procedure selects during several passes through A while searching for a triangular basis matrix.

Label Description
Slacks is the number of slacks selected initially.
Free cols is the number of free columns in the basis, including those whose bounds are rather far apart.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j < n). It will be a subset
of the columns for which hs(j) = 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis with 3 or more nonzeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

6.3.5 Basis factorization statistics

If Printlevel > 1, the following items are output to the PRINT file whenever the basis B or the rectangular
matrix Bg = (B )7 is factorized. Note that Bs may be factorized at the start of just some of the major
iterations. It is immediately followed by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or Bg, where PLPT and PUQ are lower
and upper triangular matrices for some permutation matrices P and Q.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Itn The current iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

m The number of rows in the matrix being factorized (B or Bg).

n The number of columns in the matrix being factorized. Preceded by “=" if the matrix is B; by “>”
if it is Bg.

Elems The number of nonzero elements in B or Bg.

Amax The largest nonzero in B or Bsg.

Density The density of the matrix (percentage of nonzeros).
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Merit

lenL
L+U

Cmprssns

Incres

Utri
lenU
Ltol
Umax
Ugrwth

Ltri

densel

Lmax

Akmax

Agrwth
bump
dense2
DUmax
DUmin

condU

The average Markowitz merit count for the elements chosen to be the diagonals of PUQ. Each merit
count is defined to be (¢ — 1)(r — 1) where ¢ and r are the number of nonzeros in the column and
row containing the element at the time it is selected to be the next diagonal. Merit is the average of
m such quantities. It gives an indication of how much work was required to preserve sparsity during
the factorization.

The number of nonzeros in the factor L.
The number of nonzeros in both L and U.

The number of times the data structure holding the partially factored matrix needed to be compressed
to recover unused storage. Ideally this number should be zero. If it is more than 3 or 4, the amount
of workspace available to MINOS should be increased for efficiency.

The percentage increase in the number of nonzeros in L and U relative to the number of nonzeros
in B or Bg.

The size of the “backward triangle” in B or Bg. These top rows of U come directly from the matrix.
The number of nonzeros in the factor U.

The maximum allowed size of nonzeros in L. Usually equal to the LU factor tolerance.

The maximum nonzero in U.

The ratio Umax / Amax.

The size of the “forward triangle” in B or Bs. These initial columns of L come directly from the
matrix.

is the number of columns remaining when the density of the basis matrix being factorized reached
0.3.

The maximum nonzero in L (no larger than Ltol).

The maximum nonzero arising during the factorization. (Printed only if Threshold Complete Pivoting
is in effect.)

The ratio Akmax / Amax. (Printed only if Threshold Complete Pivoting is in effect.)

The number of columns of B or By excluding Utri and Ltri.

The number of columns remaining when the density of the basis matrix being factorized reached 0.6.
The largest diagonal of U (really PUQ).

The smallest diagonal of U.

The ratio DUmax/DUmin. As long as Ltol is not large (say 10.0 or less), condU is an estimate of
the condition number of B. If this number is extremely large, the basis is nearly singular and some
numerical difficulties might occur. (However, an effort is made to avoid near-singularity by using
slacks to replace columns of B that would have made Umin extremely small. Messages are issued to
this effect, and the modified basis is refactored.)
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6.3.6 EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to summarize the final result. Here we
describe each message and suggest possible courses of action.

The number associated with each EXIT is the output value of the integer variable inform.

The following messages arise when the SPECS file is found to contain no further
problems.

-2 EXIT -- input error. MINOS encountered end-of-file or an
endrun card before finding a SPECS file.
Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or Endrun may imply that all
problems should be ignored.
-1 ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise, the operating
system will have intervened for one of many possible reasons (excess time, missing file, arithmetic error in user
routines, etc.).

’The following messages arise when a solution exists (though it may not be optimal). ‘

0 EXIT -- optimal solution found

This is the message we all hope to see! It is certainly preferable to every other message, and we naturally want to
believe what it says, because this is surely one situation where the computer knows best. There may be cause for
celebration if the objective function has reached an astonishing new high (or low).

In all cases, a distinct level of caution is in order, even if it can wait until next morning. For example, if the
objective value is much better than expected, we may have obtained an optimal solution to the wrong problem!
Almost any item of data could have that effect if it has the wrong value. Verifying that the problem has been
defined correctly is one of the more difficult tasks for a model builder. It is good practice in the function subroutines
to print any data that is input during the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local optimum? When the
constraints are linear and the objective is known to be convex (e.g., a sum of squares) then all will be well if we
are minimizing the objective: a local minimum is a global minimum in the sense that no other point has a lower
function value. (However, many points could have the same objective value, particularly if the objective is largely
linear.) Conversely, if we are mazimizing a convex function, a local maximum cannot be expected to be global,
unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave regions. However, the
functions of a problem are more likely to be neither convex nor concave. Always specify a good starting point
if possible, especially for nonlinear variables, and include reasonable upper and lower bounds on the variables to
confine the solution to the specific region of interest. We expect modelers to know something about their problem,
and to make use of that knowledge as well as they can.

One other caution about “Optimal solution”s. Some of the variables or slacks may lie outside their bounds more
than desired, especially if scaling was requested. Max Primal infeas refers to the largest bound infeasibility and
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which variable (or slack) is involved. If it is too large, consider restarting with a smaller Feasibility tolerance
(say 10 times smaller) and perhaps Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value. Broadly speaking,
if
MaxDualinfeas/Normofpi = 10,

then the objective function would probably change in the dth significant digit if optimization could be continued.
If d seems too large, consider restarting with smaller Optimality tolerances.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it seems too large,
consider restarting with a smaller Row tolerance.

1 EXIT -- the problem is infeasible

When the constraints are linear, this message can probably be trusted. Feasibility is measured with respect to
the upper and lower bounds on the variables and slacks. Among all the points satisfying the general constraints
Ax+s = 0, there is apparently no point that satisfies the bounds on « and s. Violations as small as the Feasibility
tolerance are ignored, but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a feasible
solution exists, the current linearization of the constraints may not contain a feasible point. In an attempt to
deal with this situation, when solving each linearly constrained (LC) subproblem, MINOS is prepared to relax the
bounds on the slacks associated with nonlinear rows.

If an LC subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for the nonlinear
constraints become large), MINOS enters so-called “nonlinear elastic” mode. The subproblem includes the original
QP objective and the sum of the infeasibilities—suitably weighted using the Elastic weight parameter. In elastic
mode, some of the bounds on the nonlinear rows “elastic”’—i.e., they are allowed to violate their specified bounds.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one or
both of its original upper or lower bounds. If the original problem has a feasible solution and the elastic weight is
sufficiently large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can
continue on the subproblem. If the nonlinear problem has no feasible solution, MINOS will tend to determine a
“good” infeasible point if the elastic weight is sufficiently large. (If the elastic weight were infinite, MINOS would
locally minimize the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though MINOS locally minimizes the nonlinear constraint violations, there may still exist other
regions in which the nonlinear constraints are satisfied. Wherever possible, nonlinear constraints should be defined
in such a way that feasible points are known to exist when the constraints are linearized.

2 EXIT -- the problem is unbounded (or badly scaled)
EXIT -- violation limit exceeded -- the problem may be unbounded

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can apparently
be increased or decreased by an arbitrary amount without causing a basic variable to violate a bound. A message
prior to the EXIT message will give the index of the nonbasic variable. Consider adding an upper or lower bound
to the variable. Also, examine the constraints that have nonzeros in the associated column, to see if they have
been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication of
unboundedness. Consider using the Scale option.

For nonlinear problems, MINOS monitors both the size of the current objective function and the size of the change
in the variables at each step. If either of these is very large (as judged by the Unbounded parameters, the problem
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is terminated and declared UNBOUNDED. To avoid large function values, it may be necessary to impose bounds
on some of the variables in order to keep them away from singularities in the nonlinear functions.

The second message indicates an abnormal termination while enforcing the limit on the constraint violations. This
exit implies that the objective is not bounded below in the feasible region defined by expanding the bounds by the
value of the Violation limit.

3 EXIT -- major iteration limit exceeded
EXIT -- minor iteration limit exceeded
EXIT -- too many iterations

Either the Iterations limit or the Major iterations limit was exceeded before the required solution could be
found. Check the iteration log to be sure that progress was being made. If so, restart the run using WarmDefSOL
at the end of the run.

4 EXIT -- requested accuracy could not be achieved

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not be achieved. An
abnormal termination has occurred, but MINOS is within 10~2 of satisfying the Major optimality tolerance.
Check that the Major optimality tolerance is not too small.

5 EXIT -- the superbasics limit is too small: nnn

The problem appears to be more nonlinear than anticipated. The current set of basic and superbasic variables
have been optimized as much as possible and a PRICE operation is necessary to continue, but there are already
nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the storage needed for the
reduced Hessian (about 1s® double words).

6 EXIT -- constraint and objective values could not be calculated

This exit occurs if a value mode < —1 is set during some call to funobj or funcon. MINOS assumes that you want
the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked to MINOS. If the default
versions of funobj and funcon are ever called, they issue a warning message and then set mode to terminate the
run.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients

A check has been made on some individual elements of the objective gradient array at the first point that satisfies
the linear constraints. At least one component gObj(j) is being set to a value that disagrees markedly with a
forward-difference estimate of 9f/0x;. (The relative difference between the computed and estimated values is 1.0
or more.) This exit is a safeguard, since MINOS will usually fail to make progress when the computed gradients
are seriously inaccurate. In the process it may expend considerable effort before terminating with EXIT 9 below.

Check the function and gradient computation very carefully in funobj. A simple omission (such as forgetting to
divide £0bj by 2) could explain everything. If £0bj or gObj(j) is very large, then give serious thought to scaling
the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference estimate is therefore
wrong), you can specify Verify level 0 to prevent individual elements from being checked. However, the opti-
mization procedure may have difficulty.
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8 EXIT -- subroutine funcon seems to be giving incorrect gradients

This is analogous to the preceding exit. At least one of the computed Jacobian elements is significantly different
from an estimate obtained by forward-differencing the constraint vector F'(x). Follow the advice given above,
trying to ensure that the arrays £Con and gCon are being set correctly in funcon.

9 EXIT -- the current point cannot be improved upon

Several circumstances could lead to this exit.

1. Subroutines funobj or funcon could be returning accurate function values but inaccurate gradients (or vice
versa). This is the most likely cause. Study the comments given for EXIT 7 and 8, and do your best to
ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low. For example,
accidental use of a real data type when double precision was intended would lead to a relative function
precision of about 107% instead of something like 10~1°. The default Optimality tolerance of 10~5 would
need to be raised to about 103 for optimality to be declared (at a rather suboptimal point). Of course, it
is better to revise the function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to rather few
significant figures, and gradients will probably not be available. One should specify

Function precision t
Major optimality tolerance Vit

but even then, if ¢ is as large as 107° or 107° (only 5 or 6 significant figures), the same exit condition may
occur. At present the only remedy is to increase the accuracy of the function calculation.

10 EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic variables x5, given the
present values of the superbasic and nonbasic variables. A step of “iterative refinement” has also been applied to
increase the accuracy of ;. However, a row check has revealed that the resulting solution does not satisfy the
current constraints Az — s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale option 1 if scaling has not yet
been used and there are some linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic growth may occur
in the factor U. Consult the description of Umax, Umin and Growth in §6.3.5, and set the LU factor tolerance
to 2.0 (or possibly even smaller, but not less than 1.0).

12 EXIT -- terminated from subroutine sl1User

The user has set the value iAbort = 1 in subroutine s1User. MINOS assumes that you want the problem to be
abandoned forthwith.

If the following exits occur during the first basis factorization, the primal and dual
variables x and pi will have their original input values. BASIS files will be saved if
requested, but certain values in the printed solution will not be meaningful.
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20 EXIT -- not enough integer/real storage for the basis factors

The main integer or real storage array iw(*) or rw(*) is apparently not large enough for this problem. The routine
declaring iw and rw should be recompiled with a larger dimensions for those arrays. The new values should also
be assigned to leniw and lenrw.

An estimate of the additional storage required is given in messages preceding the exit.

21 EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the current basis has more
than one element in row ¢ and column j. This could be caused by a corresponding error in the input parameters
a(*), ha(*), and ka(*).

22 EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the basis to be structurally or
numerically singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a certain
tolerance.) The associated variables are replaced by slacks and the modified basis is refactorized, but singularity
persists. This must mean that the problem is badly scaled, or the LU factor tolerance is too much larger than
1.0.

If the following messages arise, either an OLD BASIS file could not be loaded properly,
or some fatal system error has occurred. New BASIS files cannot be saved, and there
is no solution to print. The problem is abandoned.

30 EXIT -- the basis file dimensions do not match this problem

On the first line of the OLD BASIS file, the dimensions labeled m and n are different from those associated with
the problem that has just been defined. You have probably loaded a file that belongs to another problem.

Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have to alter m and n and the
map beginning on the third line (a hazardous operation). It may be easier to restart with a PUNCH or DUMP file
from an earlier version of the problem.

31 EXIT -- the basis file state vector does not match this problem

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent within itself.
The number of basic entries in the state vector (i.e., the number of 3’s in the map) is not the same as m on the

)

first line, or some of the 2’s in the map did not have a corresponding “j x;” entry following the map.

32 EXIT -- system error. Wrong no. of basic variables: nnn

This exit should never happen. It may indicate that the wrong MINOS source files have been compiled, or incorrect
parameters have been used in the call to subroutine minoss.

Check that all integer variables and arrays are declared integer in your calling program (including those beginning
with h!), and that all “real” variables and arrays are declared consistently. (They should be double precision
on most machines.)

The following messages arise if additional storage is needed to allow optimization to
begin. The problem is abandoned.
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42 EXIT -- not enough 8-character storage to start solving the problem

The main character storage array cw(*) is not large enough.

43 EXIT -- not enough integer storage to start solving the problem

The main integer storage array iw(*) is not large enough to provide workspace for the optimization procedure.
See the advice given for Exit 20.

44 EXIT -- not enough real storage to start solving the problem

The main storage array rw(*) is not large enough to provide workspace for the optimization procedure. Be sure
that the Superbasics limit is not unreasonably large. Otherwise, see the advice for EXIT 20.

6.3.7 Solution output

At the end of a run, the final solution is output to the PRINT file in accordance with the Solution keyword.
Some header information appears first to identify the problem and the final state of the optimization procedure.
A ROWS section and a COLUMNS section then follow, giving one line of information for each row and column.
The format used is similar to certain commercial systems, though there is no industry standard.

An example of the printed solution is given in §6.3. In general, numerical values are output with format £16.5.
The maximum record length is 111 characters, including the first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The values 1 are also printed
specially as 1.0 and -1.0. Infinite bounds (£102?° or larger) are printed as None.

Note: If two problems are the same except that one minimizes an objective f(x) and the other maximizes — f(x),
their solutions will be the same but the signs of the dual variables m; and the reduced gradients d; will be reversed.

The ROWS section

General linear constraints take the form [ < Az < w. The ith constraint is therefore of the form
a<alz <3,

and the value of a”z is called the row activity. Internally, the linear constraints take the form Az — s = 0, where
the slack variables s should satisfy the bounds | < s < w. For the ith “row”, it is the slack variable s; that is
directly available, and it is sometimes convenient to refer to its state. Slacks may be basic or nonbasic (but not
superbasic).

Nonlinear constraints o < Fj(x) + aTz < 3 are treated similarly, except that the row activity and degree of
infeasibility are computed directly from Fj(z) + a’z rather than from s;.

Label Description

Number The value n 4 i. This is the internal number used to refer to the ith slack in the iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds « and . The various states possible are as follows.
LL The row is at its lower limit, a.
UL The row is at its upper limit, (.
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EQ The limits are the same (a = 3).
BS The constraint is not binding. s; is basic.

A key is sometimes printed before the State to give some additional information about the state of
the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essen-
tially zero. This means that if the slack were allowed to start moving from its current
value, there would be no change in the objective function. The values of the basic and
superbasic variables might change, giving a genuine alternative solution. The values of
the dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. The slack is basic and is currently violating one of its bounds by more than
the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger than the
Optimality tolerance .

Note: If Scaleoption > 0, the tests for assigning A, D, I, N are made on the scaled
problem, since the keys are then more likely to be meaningful.

Activity  The row value a’x (or F;(x) + a’x for nonlinear rows).

Slack activity The amount by which the row differs from its nearest bound. (For free rows, it is taken to be
minus the Activity.)

Lower limit «, the lower bound on the row.
Upper limit [, the upper bound on the row.

Dual activity The value of the dual variable 7;, often called the shadow price (or simplex multiplier) for the
ith constraint. The full vector 7 always satisfies BTr = ¢gp, where B is the current basis matrix and
gp contains the associated gradients for the current objective function.

I The constraint number, 1.

The COLUMNS section

Here we talk about the “column variables” z;, j = 1 : n. We assume that a typical variable has bounds oo < z; < 3.

Label Description
Number The column number, j. This is the internal number used to refer to z; in the iteration log.
Column The name of z;.
State The state of x; relative to the bounds o and 3. The various states possible are as follows.
LL x; is nonbasic at its lower limit, a.
UL x; is nonbasic at its upper limit, 3.
EQ x; is nonbasic and fixed at the value a = S3.
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FR x; is nonbasic at some value strictly between its bounds: o < z; < §.
BS x; is basic. Usually oo < z; < 3.
SBS x; is superbasic. Usually oo < z; < 3.

A key is sometimes printed before the State to give some additional information about the state of

Zj.

A Alternative optimum possible. The variable is nonbasic, but its reduced gradient is
essentially zero. This means that if x; were allowed to start moving from its current
value, there would be no change in the objective function. The values of the basic and
superbasic variables might change, giving a genuine alternative solution. The values of
the dual variables might also change.

D Degenerate. x; is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. x; is basic and is currently violating one of its bounds by more than the
Feasibility tolerance.

N Not precisely optimal. x; is nonbasic. Its reduced gradient is larger than the Optimality

tolerance .

Note: If Scaleoption > 0, the tests for assigning A, D, I, N are made on the scaled
problem, since the keys are then more likely to be meaningful.

Activity  The value of the variable z;.

Obj Gradient gj;, the jth component of the gradient of the (linear or nonlinear) objective function. (If any x;
is infeasible, g; is the gradient of the sum of infeasibilities.)

Lower limit «, the lower bound on z;.
Upper limit (3, the upper bound on z;.

Reduced gradnt The reduced gradient d; = g; — 77 a;, where a; is the jth column of the constraint matrix (or
the jth column of the Jacobian at the start of the final major iteration).

M+J The value m + j.

6.3.8 The SUMMARY file

If Summaryfile > 0, the following information is output to the SUMMARY file. (It is a brief form of the PRINT
file.) All output lines are less than 72 characters.

The Begin line from the SPECS file, if any.
The basis file loaded, if any.
A brief Major iteration log.

A brief Minor iteration log.

The EXIT condition and a summary of the final solution.

The following SUMMARY file is from example problem t6wood using Print level 0 and Major damping parameter
0.5.
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MINOS 5.51 (No

v 2002)

Begin t6wood  (WOPLANT test problem; optimal obj = -15.55716)
Name  WOPLANT
===> Note: row O0BJ selected as linear part of objective.
Rows 9
Columns 12
Elements 73
Scale option 2, Partial price 1
Itn 0 -- linear constraints satisfied.
This is problem t6wood. Derivative level = 3
funcon sets 36  out of 50 constraint gradients.
Major minor step objective Feasible Optimal nsb ncon penalty BSwap

1 OT 0.0E+00 0.00000E+00 5.9E-01 1.1E+01 0 4 1.0E+00 0

2 22 b5.0E-01 -1.56839E+01 2.7E-01 1.6E+01 3 47 1.0E+00 0

3 10 6.0E-01 -1.51527E+01 1.5E-01 9.9E+00 2 68 1.0E+00 2

4 21 b5.7E-01 -1.53638E+01 6.4E-02 3.6E+00 3 113 1.0E+00 1

5 15 1.0E+00 -1.55604E+01 2.7E-02 1.4E-01 3 144 1.0E+00 0

6 5 1.0E+00 -1.55531E+01 6.4E-03 2.2E-01 3 154 1.0E+00 0

7 4 1.0E+00 -1.55569E+01 3.1E-04 7.0E-04 3 160 1.0E-01 0

8 2 1.0E+00 -1.55572E+01 1.6E-08 1.1E-04 3 163 1.0E-02 0

9 1 1.0E+00 -1.55572E+01 5.1E-14 2.2E-06 3 165 1.0E-03 0
EXIT -- optimal solution found
Problem name WOPLANT
No. of iterations 80 Objective value -1.5557160112E+01
No. of major iterations 9 Linear objective -1.5557160112E+01
Penalty parameter 0.000100 Nonlinear objective 0.0000000000E+00
No. of calls to funobj 0 No. of calls to funcon 165
No. of superbasics 3 No. of basic nonlinears 6
No. of degenerate steps 0  Percentage 0.00
Norm of x  (scaled) 9.8E-01 Norm of pi (scaled) 1.8E+02
Norm of x 3.2E+01 Norm of pi 1.6E+01
Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 1 2.2E-06
Max Primal infeas 0 0.0E+00 Max Dual infeas 1 5.8E-08
Nonlinear constraint violn 5.1E-14

Solution printed on file 9
funcon called with nstate =

Time for MPS input

solving problem
solution output
constraint function

objective function

Time for

Time for
Time for
Time for

Endrun

S

0.00
0.04
0.00
0.00
0.00

seconds
seconds
seconds
seconds
seconds
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