TOMLAB - A General Purpose, Open MATLAB
Environment for Research and Teaching in
Optimization !

Kenneth Holmstrom
Applied Optimization and Modeling Group (TOM)
Center of Mathematical Modeling
Department of Mathematics and Physics
Malardalen University

P.O. Box 883, S-721 23 Vasteras, Sweden

Research Report in MATHEMATICS / APPLIED MATHEMATICS
Technical Report IMa-TOM-1997-3

10 October 1997 (Revised March 30, 1998)

!Presented at the 16th International Symposium on Mathematical Programming, August 24-29, 1997,
Lausanne, Switzerland.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 2

Abstract

TOMLARB is a general purpose, open and integrated MATLAB environment for
research and teaching in optimization on UNIX and PC systems. The motivation
for TOMLAB is to simplify research on practical optimization problems, giving
easy access to all types of solvers; at the same time having full access to the power
of MATLAB.

By using a simple, but general input format, combined with the ability in
MATLAB to evaluate string expressions, it is possible to run internal TOMLAB
solvers, MATLAB Optimization Toolbox and commercial solvers written in FOR-
TRAN or C/C++ using MEX-file interfaces. Currently MEX-file interfaces have
been developed for MINOS, NPSOL, NPOPT, NLSSOL, LPOPT, QPOPT and
LSSOL.

TOMLAB may either be used totally parameter driven or menu driven. The
basic principles will be discussed. The menu system makes it suitable for teach-
ing. Many standard test problems are included. More test problems are easily
added. There are many example and demonstration files. Iteration steps including
line search may be graphically displayed together with contour plots when running
nonlinear optimization.

TOMLAB is based on NLPLIB TB 1.0, a MATLAB toolbox for nonlin-
ear programming and parameter estimation and OPERA TB 1.0, a MATLAB
toolbox for operations research, with emphasis on linear and discrete optimization.
Over 50 different algorithms are implemented. Of special interest are the algorithms
for general and separable nonlinear least squares. Our new implementation of the
Fletcher-Xu hybrid method, the Al-Baali-Fletcher hybrid method and Huschens
totally structured secant method (TSSM) give fast and robust convergence on ill-
conditioned parameter estimation problems.

TOMLARB is free for academic purposes. Contribution from others are wel-
come, like more solvers, interfaces to other software packages, utilities and MEX-file
interfaces.

More information on TOMLAB is found on http://www.ima.mdh.se/tom.

KEYWORDS: MATLAB, Optimization, Mathematical Software, Algorithms, Nonlin-
ear Least Squares.

1 Introduction

This paper presents TOMLAB, an environment in MATLAB for the solution of op-
timization problems. TOMLAB features menu systems and driver routines for many
common types of optimization problems. TOMLAB has many algorithms implemented
in the toolboxes NLPLIB TB 1.0 [29] and OPERA TB 1.0 [30], but may also call
routines from the MATLAB Optimization Toolbox [10]. Furthermore, problems may be
solved running optimization solvers in FORTRAN and C/C++. This is possible using
MEX-file interfaces.

To solve optimization problems, traditionally the user has been forced to write a FOR-
TRAN code that calls some standard solver written as a FORTRAN subroutine. For
nonlinear problems the user must also write subroutines which computes the objective



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 3

function value and the vector of constraint function values. The needed derivatives are ei-
ther explicitly coded, computed by using numerical differences or derived using automatic
differentiation techniques.

In recent years several modeling languages has been developed, like AIMMS [7], AMPL
[21], ASCEND [40], GAMS [8, 11] and LINGO [2]. The modeling system acts as a
preprocessor. The user describes his problem in detail in a very verbal language, an
opposite to a concise mathematical description of the problem. This problem description
file is normally modified in a text editor, with help from example files solving the same type
of problem. Much effort is directed to the development of more user friendly interfaces.
The model system processes the input description file and calls any of the available solvers.
For a solver to be available to the model system, a special type of interface has previously
been written.

The modeling language approach is suitable for many management and decision problems,
but may not always be the best way for engineering problems, which often are nonlinear
and have complicated problem descriptions. Until recently, the support for nonlinear
problems in the modeling languages has been very crude. This is now rapidly changing
[16].

For people with a mathematical background, modeling languages often seems to be a very
tedious way to define an optimization problem. There has been general attempts to find
languages more suitable than FORTRAN or C/C++ to describe mathematical problems,
like the compact and powerful APL language [33, 41]. Using APL, the author around 1985
very easy built an advanced interactive menu and graphical analysis system. The system
was used by the research department at the Swedish National Industrial Board (SIND)
and researchers in regional economy to analyze the Swedish industry using mathematical
programming models [1].

Now, languages like MATLAB has a very rapid growth of users. MATLAB was originally
created [36] as a preprocessor to the standard FORTRAN subroutine libraries in numerical
linear algebra, LINPACK [13] and EISPACK [44] [22], very much the same idea as the
modeling languages discussed above. MATLAB of today is a much more advanced and
powerful tool, with graphics, animation and advanced menu design possibilities integrated
with the mathematics. The MATLAB language has made the development of toolboxes
possible, which serves as a direct extension to the language itself. Using MATLAB as an
environment for solving optimization problems offers much more possibilities for analysis
than just the pure solution of the problem.

Comparing the power of the MATLAB environment with that of the modeling systems I
find it hard for the modeling systems to compete. The idea of this paper, and the concept
of TOMLAB is to try to integrate all different systems, getting access to the best of all
worlds. TOMLAB should be seen as a complement to existing model languages, for the
user needing more power and flexibility than given by a modeling system.

This paper is organized as follows. In Section 2 we discuss the main motivations for
TOMLAB and the concept. The next section, Section 3, describes the feature and
structure of TOMLAB. We then describe the two most important parts of TOMLAB,
the toolbox OPERA TB 1.0 in Section 4 and the toolbox NLPLIB TB 1.0 in Section
5. In Section 6 the nonlinear least squares solvers in NLPLIB TB 1.0 are discussed.
Finally, we end with some conclusions and a discussion about further work in Section 8.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 4

2 The concept of TOMLAB

The starting point for TOMLAB was to develop a system that could be of use in educa-
tion. The MATLAB language is very suitable for describing numerical algorithms and is
similar to the type of algorithmic pseudo code often used to present algorithms. When the
actual implementation is similar to the black board presentation, the students can eas-
ily follow the steps and get computational experience with the algorithm. The principle
has been that all algorithms discussed in a course should be available as an easy-to-read
computer implemented algorithm. The response has up-to-now been positive from the

students using TOMLAB.

Another important motivation for the development of TOMLAB was to get a research
environment for our group, the Applied Optimization and Modeling group. The applica-
tions we work with are often large, nonlinear and numerically ill conditioned. It is in most
cases not possible to directly use standard programs. Therefore we need a combination of
new algorithms and standard software. To find the best combination we need a flexible
environment which allows us to perform tests on many different problem formulations and
try out different solvers. Working in MATLAB has been a great benefit when developing
algorithms to find the unknown speciation and the parameters in inorganic chemical equi-
libria [28, 32]. TOMLAB has also been of great use in our energy optimization project
[14, 15] and in the development of algorithms for nonlinear parameter estimation [39].

We think that TOMLAB could be used to collect some single MATLAB research codes
that otherwise would not be used. It is difficult to get an algorithm into a production
code. Not all good algorithms find their way into such a code. At least it often takes long
time.

Looking at the demands on TOMLAB, it must be easy for students to use. Therefore
menu programs are needed. It should be easy to include new test problems of simple
type. To be of use for applied research it must be easy to integrate the problem definitions
independent of the language it has been written in. Commonly, problems are defined in
MATLAB, but may also be in the form of FORTRAN or C/C++ routines. The principle
must be that the problem should only needs to be defined once and then solved by any
type of solver. It must also be easy to integrate new solvers, normally using a MEX-file
interface.

The main problem with MEX-file interfaces is the weak support from the vendor of
MATLAB, the Math Works, Inc., for FORTRAN on PC systems. There are already
many ready-to-use MEX-file interfaces written in FORTRAN, which works well on UNIX
systems, but are difficult to use on PC systems. Hopefully the support will improve. On
PC we now have to use the freely available FORTRAN to C conversion routine f2¢ [17]
to make the interfaces work.

3 The features and structure of TOMLAB

The main features of TOMLAB may be summarized as follows:

e TOMLAB is a MATLAB based environment.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 5)

e [t implements >50 optimization algorithms in the toolbox OPERA TB 1.0 and
in the toolbox NLPLIB TB 1.0.

e It solves linear and discrete optimization problems like

— linear programs,
— network programs, with special treatment of transportation programs,
— integer programs and

— dynamic programming problems
using the toolbox OPERA TB 1.0.

e It solves

unconstrained and constrained nonlinear optimization problems,

quadratic programs,

unconstrained and constrained nonlinear least squares problems and

fitting of positive sums of exponential functions to data
using the toolbox NLPLIB TB 1.0.
e TOMLABRB is portable, runs in MATLAB 5.1 and partly MATLAB 4.2c on

— UNIX (SUN, HP) and
— PC (NT4.0, Win95, Windows 3.11).

e Menu programs and driver routines makes TOMLAB very easy to use.

e TOMLAB is using MEX-file interfaces to run standard optimization software.
The interfaces are available both for PC and UNIX. Currently MEX-file interfaces
has been developed for the commercial codes MINOS, NPSOL, NPOPT, NLSSOL,
QPOPT, LSSOL and LPOPT.

e [t is possible to use many of the routines in MATLAB Optimization Toolbox.

e You only need to define your problem once and use all available solvers!

The functional structure of TOMLAB is displayed in Figure 1. A normal user runs the
menu system for the actual problem type. The following is a list of the standard menu
choices for unconstrained and constrained optimization:

e Name of the problem setup file and the problem to be solved.

e Should the problem be solved using default parameters or should problem dependent
questions be asked?

e The amount of output and any restriction on the number of array elements displayed.
This is to avoid too much output for large size problems.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 6

User

Menu system [Advanced User)

_______________

Optimization Driver ' Setup Problem computing f(z), g(z) etc
le———— | 1 , N

_______________

MEX-file interface
—

NLPLIB/OPERA solverI Optimization Toolbox SolverI MEX-file SolverI

Interface Routines

———————————————————

' Low Level Routines: Compute f(z), g(z), H(z), c(z), dc(z)/dz, 3 }i0%ci(x)/da?

___________________

Figure 1: The process of optimization in TOMLAB.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 7

e Optimization method (algorithm).
e Print levels and pause/no pause after each iteration.
e Optimization parameters of the following type:

— 0, the line search accuracy.
— The maximal number of iterations.

— The starting values for the unknown variables z, and lower and upper bounds
on r.

— Choice if to use quadratic or cubic interpolation in line search algorithm.

— A best guess of the lower bound on the optimal objective function value (used
by the line search algorithm).

— The tolerance on the convergence for the iterative sequence of the variables z, a
convergence tolerance on the objective function value f(z), on the norm of the
gradient vector ¢g(x) and on the norm of the directed derivative pTg(z), p =
Tht1 — Tk

— The maximal constraint violation for the inequality constraints c¢(x) > 0 and
equality constraints c¢(z) = 0.

— The rank test tolerance which determines the pseudo rank used in the subspace

minimization technique. The subspace minimization technique is part of the

etermination of the search direction in some of the TB interna
solvers.

Optimize. Start an optimization with the selected optimization solver.

e Draw a contour plot of f(z), and also draw the search directions p. Mark line search
step length trials «; for each search direction.

e Draw a mesh plot of f(z).

Draw other types of graphics, e.g. the objective function value for each iteration or
the estimated linear convergence rate for each iteration.

Every parameter has initial default values. The user selects new values or simply uses
the default values. When the user selects the option Optimize, the menu system calls
the driver routine, the Optimization Driver box in Figure 1. The name of the routine
which defines the optimization problem is one of the parameters given in the call to the
driver. The driver routine calls this definition routine, the dashed Setup Problem box in
Figure 1. All problem setup routines in TOMLADB have two different modes of behavior.
If the problem number already is defined, the problem setup routine silently defines the
problem. Otherwise, a menu is displayed, letting the user select the wanted problem. The
user may set the problem number in a direct call to the Optimization Driver, symbolized
by the Advanced User box in Figure 1. This is useful if a large set of problems is to be
solved, for example when trying out algorithms for a certain applied problem.

The Setup Problem routine defines a string matrix with the names of the m-files that
computes the different elements defining the problem. These are the objective function



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 8

value f(z), the gradient vector g(z), the Hessian matrix (matrix of second derivatives)
H(x), the vector of constraint functions ¢(x), the matrix of constraint normals de(x) and
the second part of the Hessian of the Lagrangian, d2¢(x). For nonlinear least squares
problems the routines computing the residual vector r(z) and the Jacobian matrix J(x)
are defined. The Optimization Driver defines global strings with the given function names,
which are used in all computations.

The Optimization Driver either calls a NLPLIB TB 1.0 or OPERA TB 1.0 solver,
a routine from MATLAB Optimization Toolbox or a routine callable using a predefined
MEX-file interface.

The Interface Routines in Figure 1 are needed to convert computational results to the
form needed by different solvers.

The names of the Low Level Routines in Figure 1 are the global strings defined in the
Optimization Driver.

The solvers or the Interface Routines are running the MATLAB function feval on these
global strings to compute the wanted functional quantities.

In Figure 2 an example is shown for the case of solving generally constrained nonlinear
optimization problems. The user calls the menu program conOpt, defines the different
options and start an optimization with the menu option Optimize, which makes conOpt
call conRun. If the user has not chosen a name for the Setup Problem routine, conRun calls
the Initialization routine InitFile using the default problem setup routine, con_prob. The
con_prob setup routine is defining the name con_f for the MATLAB m-file that computes
the objective function value. The names for the gradient vector, Hessian matrix, vector of
constraint functions matrix of constraint normals and second part of the second derivative
of the Lagrangian are con_g, con_H, con_c con_dc and con_d2c

These names are stored in the global strings, named p_f, p_g, p_H, p_c, p_dc and p_d2c.
Then conRun calls the selected solver, either conSolve in NLPLIB TB 1.0, constr in
MATLAB Optimization Toolbox or any of the three commercial solvers MINOS, NPSOL
or NPOPT from Systems Optimization Laboratory (SOL).

There are several Interface Routines needed. The constr solver needs both the objective
function and the vector of constraint functions in the same call, which nlp_fc supplies. Also
the gradient vector and the matrix of constraint normals should be supplied in one call.
These parameters are returned by the routine nlp_gde. MINOS, NPSOL and NPOPT
instead need both the objective function value and the gradient vector to be returned
in one call, which is the output of nlp_fg. The matrix of constraint normals should be
supplied together with the vector of constraint functions. For NPSOL and NPOPT the
routine nlp_cdc returns these both parameters. The matrix of constraint normals is stored
sparse for MINOS, so the sparse Interface Routine nlp_cdcS is needed.

One of the menu options is to draw a contour plot of f(x) together with the search
steps. On each search step there are marks for each trial value the line search algorithm
for each trial value, where the line search algorithm had to evaluate the function. It is
possible to follow the full iterative sequence on two-dimensional problems. We have run
the prototype unconstrained solver ucSolve using two different methods. In Figure 3 the
result of optimizing the classical Rosenbrock banana function, see [37] or [24, page 95,
using Newtons method are displayed. There are a few steps where the line search has



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization

(User]

conOpt Either choose problem from
/ [Advanced USefJ/ menu or silent setup
I -=-==7 Define names of functions: con_f,
conftun [__(_3(_)1_1:1_11_1?_“: con-g, con_H, con_c, CO’I”L_dC, con_d2c

N MEX: minos, npsol or npopt
p——

conSolve (NLPLIB)I constr (OPTIM) I MINOS NPSOL I NPOPT I
\ Interface: nlp_fc, nlp_gdc, nlp_fg, nlp_cdcS, nlp_cdc

TRt - global p_f="con_f’ in conRun
' Low Level Routines ' Compute f(z) = feval(p_f,x,prob)

___________________

Figure 2: Solution of constrained nonlinear problems in TOMLAB.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 10

shortened the step. In contrast to this, see the behavior of the Fletcher-Reeves conjugate
gradient method in Figure 4. This method (not using second derivative information) has
a much more chaotic path to the solution. Such graphs can be illustrative for students in
a first course in optimization.

Rosenbrocks banana

-0.2
-1 -0.5 0

Figure 3: The Rosenbrock banana function with search directions and marks for the line
search trials running ucsolve using the Newtons method.

Rosenbrocks banana

N/

N

Figure 4: The Rosenbrock banana function with search directions and marks for the line
search trials running ucsolve using the Fletcher-Reeves conjugate gradient method.

L
-0.5 0

4 The OPERA Toolbox

The MATLAB toolbox OPERA TB 1.0 was developed as a teaching tool for a course
in operations research taught in the autumn of 1994. It is a collection of MATLAB m-
files which solves many of the basic optimization problems in operations research and
mathematical programming. Currently OPERA TB 1.0 consists of:



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 11

e 11 200 lines of MATLAB code, in directory opera and operdemo.
e 55 files with algorithms and utilities in the directory opera.

e 45 example files in the directory operdemo.

e Code compatible with MATLAB 4.2¢ and MATLAB 5.1.

OPERA TB 1.0 is suitable for teaching basic courses in optimization and operations
research. In the following presentation the MATLAB m-file names are given in parenthe-
sis.

The directory structure of TOMLAB is displayed in Figure 5.

There are several algorithms implemented for linear programs (LP). The standard re-
vised simplex algorithm, as formulated in Goldfarb and Todd [25, page 91], is used to
solve the Phase I LP problem (lpsimp2). A Phase I simplex strategy which formulates a
LP problem with artificial variables is implemented (Ipsimp1). This routine is using lp-
simp?2 to solve the Phase I problem. The dual simplex method [25, pages 105-106], usable
when a dual feasible solution is available instead of a primal feasible, is also implemented
(Ipdual).

Two polynomial algorithms for linear programs are implemented. Karmakar’s projective
algorithm is implemented (karmark) using the description in Bazaraa et al. [6, page
386]. There is a choice of update, either according to Bazaraa or the rule by Goldfarb
and Todd [25, chap. 9]. The affine scaling variant of Karmakar’s method (akarmark) is
an implementation of the algorithm in Bazaraa [25, pages 411-413]. As the purification
algorithm, a modification of the algorithm on page 385 in Bazaraa is used.

Transportation problems are solved using an implementation of the transportation
simplex method as described in Luenberger [35, chap 5.4] (TPsimplz). Three simple
algorithms to find a starting basic feasible solution for the transportation problem are
included; the northwest corner method (7TPnw), the minimum cost method (7Pmc) and
Vogel’s approximation method ( T'Pvogel). The implementation of these algorithms follows
the algorithm descriptions in Winston [45, chap. 7.2].

The implementation of the Network Programming algorithms are based on the forward
and reverse star representation technique described in Ahuja et al. [4, pages 35-36]. The
following algorithms are currently implemented:

e Search for all reachable nodes in a network using a stack approach (gsearch). The
implementation is a variation of the Algorithm SEARCH in [3, pages 231-233].

e Search for all reachable nodes in a network using a queue approach (gsearchg). The
implementation is a variation of the Algorithm SEARCH in [3, pages 231-232].

e Find the minimal spanning tree of an undirected graph (mintree) with Kruskal’s
algorithm described in Ahuja et al. [4, page 520-521].

e Solve the shortest path problem using Dijkstra’s algorithm (dijkstra). A direct
implementation of the Algorithm DIJKSTRA in [3, pages 250-251].



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization

tomlab

Documentation in Adobe PostScript and HTML

MEX-file interfaces to optimization solvers

doc
mex
Ipopt
Ipsol
minos
nlssol
npopt
npsol
qpopt
nlpdemo
nlplib
opera
operdemo

NLPLIB Toolbox example files

NLPLIB Toolbox

OPERA Toolbox

OPERA Toolbox example files

Figure 5: The directory structure of TOMLAB.

12



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 13

e Solve the shortest path problem using a label correcting method (labelcor). The
implementation is based on Algorithm LABEL CORRECTING in [3, page 260].

e Solve the shortest path problem using a modified label correcting method (modlabel).
The implementation is based on Algorithm MODIFIED LABEL CORRECTING in
[3, page 262], including the heuristic rule discussed to improve running time in
practice.

e Solve the maximum flow problem using the Ford-Fulkerson augmenting path method
(mazflow). The implementation is based on the algorithm description in Luenberger
[35, pages 144-145].

e Solve the minimum cost network flow problem (MCNFP) using a network simplex
algorithm (NWsimplz). The implementation is based on Algorithm network simplex
in Ahuja et al. [4, page 415].

e Solve the symmetric traveling salesman problem using Lagrangian relaxation and
the subgradient method with the Polyak rule II (salesman), an algorithm by Held
and Karp [26].

To solve mixed linear inequality integer programs two algorithms are implemented. The
first implementation (branch) is a branch and bound algorithm from Nemhauser and
Wolsey [38, chap. 8]. The second implementation (cutplane) is a cutting plane algorithm
using Gomory cuts. Both routines are using linear programming routines in the toolbox
OPERA TB 1.0 (Ilpsimp1, lpsimp?2, Ipdual) to solve relaxed subproblems. Balas method
for 0/1 integer programs restricted to integer coefficients is implemented in the routine
balas [27].

Two simple examples of dynamic programming are included. Both examples are from
Winston [45, chap. 20]. Forward recursion is used to solve an inventory problem (dpinvent)
and a knapsack problem (dpknap).

The usage of Lagrangian relaxation techniques is exemplified by the routine ksrelaz, which
solves integer linear programs with linear inequality constraints and upper and lower
bounds on the variables. The problem is solved by relaxing all but one constraint and
hence solving simple knapsack problems as subproblems in each iteration. The algorithm
is based on the presentation in Fischer [18], using subgradient iterations and a simple
line search rule. Lagrangian relaxation is also used by the symmetric travelling salesman
solver, see [30]. Also a routine to draw a plot of the relaxed function is included.

5 The NLPLIB Toolbox

The development of NLPLIB TB 1.0 started in 1989. MATLABroutines were developed
to illustrate numerical optimization algorithms and were used in computer exercises in
different optimization courses. The first version of several of the routines was the result
of computer exercises solved by the students.

The main purpose of the development of NLPLIB TB 1.0 is to develop tools to be used
in teaching optimization algorithms. The principle is that all algorithms discussed in a
course should be available as an easy-to-read computer implemented algorithm.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 14

The current status of NLPLIB TB 1.0 is:

e 39 700 lines of MATLAB code in the directories niplib and nipdemo.
e 234 files with algorithms, utilities and predefined problems.
e Menu programs and driver routines for

— unconstrained optimization.
— quadratic optimization.

— constrained optimization

— nonlinear least squares.

— constrained nonlinear least squares.

New algorithms for the nonlinear parameter estimation problem of fitting sums of
exponential functions to empirical data.

A graphical user interface (GUI) from which all types of problems can be solved
(Only working in MATLAB 5.1).

Most of the code is compatible with both MATLAB 4.2¢ and MATLAB 5.1.

Suitable for teaching basic courses in optimization and mathematical programming;

The solver for unconstrained optimization, ucSolve, and the solver routine for nonlinear
least squares, IsSolve, are both written as a prototype routine. The prototype algorithm
[sSolve for nonlinear least squares is described in detail in Section 6.

The routine ucSolve implements a prototype algorithm for unconstrained optimization
with simple bounds on the parameters. It includes several of the most popular search
step methods for unconstrained optimization. Bound constraints are treated as described
in Gill et al.[24]. The search step methods for unconstrained optimization are

e The Newton method;

e The quasi-Newton BFGS method (safeguarded);

e The quasi-Newton inverse BFGS method (safeguarded);
e The quasi-Newton DFP method (safeguarded);

e The quasi-Newton inverse DFP method (safeguarded);
e The Fletcher-Reeves conjugate gradient method;

e The Polak-Ribiere conjugate gradient method;

e The Fletcher conjugate descent method;

e A structural trust region algorithm combined
with an initial trust region radius algorithm.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 15

The first eight methods are implemented as part of the prototype algorithm ucSolve. For
the Newton and the quasi-Newton methods the code is using a subspace minimization
technique to handle rank problems, see Lindstrom [34]. The quasi-Newton codes also use
safe guarding techniques to avoid rank problem in the updated matrix.

The structural trust region algorithm sTrustR is based on the algorithms in [12] and [42],
but using the same framework as ucSolve and the same treatment of problems with bound
constraints.

For general nonlinear problems with nonlinear constraints a sequential quadratic
programming (SQP) method by Schittkowski [43] is implemented in the routine conSolve.

Quadratic programs (qp) are solved with a standard active set method [35], imple-
mented in the routine gpSolve. The algorithm explicitly treats both inequality and equal-
ity constraints as well as lower and upper bounds on the variables (simple bounds). It
converges for some indefinite qps, but the code is not entirely robust for indefinite prob-
lems.

NLPLIB TB 1.0 includes two algorithms for solving qp with equality constraints; a
null space method (gpe) and Lagrange’s method gplm).

The line search algorithm linesrch used by the solvers conSolve, [sSolve and ucSolve is a
modified version of the algorithm by Fletcher [20, chap. 2]. The use of quadratic (intpol2)
and cubic interpolation (intpol3) is possible in the line search algorithm. For more details,
see [29].

6 Nonlinear Least Squares Algorithms

In NLPLIB TB 1.0 the prototype nonlinear least squares algorithm [sSolve treats prob-
lems with bound constraints in a similar way as the routine ucSolve described in Section 5.
In Figure 6 the algorithm is described in a flow sheet. There are six methods to compute
the search direction. The two last, which are using inverses, are not practical methods,
and included only to illustrate the drawbacks of using them.

If rank problems occur the prototype algorithm is using subspace minimization, see Lind-
strom [34]. It is only possible to use this method and determine the pseudo rank using
the first four methods to compute the search direction. The line search algorithm used is
the same as for unconstrained problems.

The prototype routine IsSolve includes four optimization methods for nonlinear least
squares problems:

e The Gauss-Newton method.

e The Al-Baali-Fletcher hybrid method [5].
e The Fletcher-Xu hybrid method [19].

e The Huschens TSSM method [31].

To handle constrained nonlinear least squares problems a new prototype routine clsSolve
based on IsSolve is developed. Currently clsSolve can treat linear equality and inequality



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 16

(init, iteration &k = 1]

F=hil l
Check bounds

Compute 7(z) and J(z), if  changed

Convergence?

Determine pseudo rank and modified step Py

Determine maximal steplength aynqz

Determine steplength oy by a line search

Update zy41 =z + appi

Method update?

Gauss-Newton Fletcher-Xu Al-Baali-Fletcher Huschens TSSM

Figure 6: The NLPLIB TB 1.0 prototype routine for nonlinear least squares



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 17

constraints, but the intention is to develop it further to handle general constraints. The
search methods in clsSolve are the same as in [sSolve. Constraints are treated using an
active set strategy.

7 Installation of TOMLAB

TOMLAB is distributed either as a file tomlab.tar.gz for UNIX systems or a file tom-
lab.zip for PC systems. A date could be added to the file name. The file system on the
packed file is the tree showed in Figure 5. Some directories may not be included.

The important files for the installation is stored in the top level directory tomlab.

The file tomlab.m has instructions about the unpacking of the distribution and pointers
to the relevant files to continued reading.

The file contents.m has a description of all directories in TOMLAB.

The file startup.m is the startup file for MATLAB, which should be edited to set the
correct absolute paths on the machine. Instructions for the editing is included.

The file tomlab.bib is a file with all references for TOMLAB and its toolboxes. The format
is the bibtex data base format.

8 Conclusions

TOMLAB may be used for computer based learning in optimization courses and in
computer exercises. TOMLAB is currently used in Sweden at Malardalen University and
Uppsala University. Now introduced at Umea University and at Linkoping University.

It may be used as a research tool to solve applied optimization problems. Currently it is
used in our applied research in the Applied Optimization and Modeling Group.

TOMLAB is a flexible tool, with both menu programs and driver routines. It is also a
powerful environment for solving optimization problems, with an increasing list of callable
solvers.

8.1 Future work

To test new algorithms a good test bench is needed. Standard is the CUTE set of test
problems [9]. CUTE gives an easy access to a huge set of test problems. Moreover, CUTE
has a set of MATLAB m-files and MEX-file routines which can be used to interface with
TOMLAB.

It is also desirable to develop an interface to one or more of the modeling languages.
The AMPL system [21] has already MEX-file interface routines that communicate with
MATLAB on UNIX systems [23]. This should make it easy to interface to TOMLAB.

We will develop interfaces to CUTE and AMPL as well as a more complete set of MEX-file
interfaces.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 18

The graphics and menus should be improved. A graphical user interface (GUI) for non-
linear programming is being developed. Also plotting routines to follow the decrease of
the objective function values and estimate the convergence rate during the iterations. For
least squares problems a routine that plots the estimated model against data is developed.
We would also like to include more routines for network programs and integer programs.
Later we will work on a mixed integer nonlinear optimization (MINLP) solver.

References

[1] SINDdata. Presentation and Handledning. Stockholm, Sweden, 1985.

[2] LINGO - The Modeling Language and Optimizer. LINDO Systems Inc., Chicago, 1L,
1995.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser,
A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of Handbooks
in Operations Research and Management Science. Elsevier/North Holland, Amster-
dam, The Netherlands, 1989.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice-Hall Inc., Kanpur and Cambridge, 1993.

[6] M. Al-Baali and R. Fletcher. Variational methods for non-linear least squares. J.
Oper. Res. Soc., 36:405—421, 1985.

[6] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear Programming and
Network Flows. John Wiley and Sons, New York, 2nd edition, 1990.

[7] J. Bisschop and R. Entriken. AIMMS - The Modeling System. Paragon Decision
Technology, Haarlem, The Netherlands, 1993.

[8] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling
system in a strategic planning environment. Mathematical Programming Study, 20:1—
29, 1982.

[9] 1. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint. CUTE: Constrained and
Unconstrained Testing Environment. ACM Transactions on Mathematical Software,
21(1):123-160, 1995.

[10] Mary Ann Branch and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime
Park Way, Natick, MA 01760-1500, 1996.

[11] A. Brooke, D. Kendrick, and A. Meeraus. GAMS - A User’s Guide. The Scientific
Press, Redwood City, CA, 1988.

[12] A. R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties
of minimization algorithms for convex constraints using a structured trust region.
SIAM Journal on Scientific and Statistical Computing, 6(4):1059-1086, 1996.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 19

[13]

[14]

[15]

23]

[24]

[25]

[26]

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s
Guide. STAM, 1979.

Erik Dotzauer and Kenneth Holmstrom. Models for short-term production planning
of cogeneration plants. Research and Reports Opuscula ISSN 1400-5468, ISRN HEV-
BIB-OP-21-SE, Malardalen University, Vasteras, Sweden, 1997.

Erik Dotzauer and Kenneth Holmstrom. Optimal Scheduling of Cogeneration
Plants.  Technical Report IMa-TOM-1997-4, Department of Mathematics and
Physics, Mélardalen University, Sweden, 1997. Presented at the 16th International
Symposium on Mathematical Programming, Lausanne, Switzerland, August 24-29,
1997.

Arne Stolbjerg Drud. Interactions between nonlinear programing and modeling sys-
tems. Mathematical Programming, Series B, 79:99-123, 1997.

S. I. Feldman, David M. Gay, Mark W. Maimone, and N. L. Schryer. A Fortran-to-C
converter. Technical Report Computing Science Technical Report No. 149, AT&T
Bell Laboratories, May 1992.

Marshall L. Fisher. An Application Oriented Guide to Lagrangian Relaxation. In-
terfaces 15:2, pages 10-21, March-April 1985.

R. Fletcher and C. Xu. Hybrid methods for nonlinear least squares. IMA Journal of
Numerical Analysis, 7:371-389, 1987.

Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York,
2nd edition, 1987.

R. Fourer, D. M. Gay, and B. W.Kernighan. AMPL - A Modeling Language for
Mathematical Programming. The Scientific Press, Redwood City, CA, 1993.

B. S. Garbow, J. M. Boyle, J. J. Dongara, and C. B. Moler. Matrix Eigensys-
tem Routines-EISPACK Guide Extension. In Lecture Notes in Computer Science.
Springer Verlag, New York, 1977.

David M. Gay. Hooking your solver to AMPL. Technical report, Bell Laboratories,
Lucent Technologies, Murray Hill, NJ 07974, 1997.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London, 1982.

D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H.
G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of Handbooks in

Operations Research and Management Science. Elsevier/North Holland, Amsterdam,
The Netherlands, 1989.

Michael Held and Richard M. Karp. The Traveling-Salesman problem and minimum
spanning trees: Part II. Mathematical Programming, 1:6-25, 1971.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 20

[27] Kaj Holmberg. Heltalsprogrammering och dynamisk programmering och fléden i
natverk och kombinatorisk optimering. Technical report, Division of Optimization
Theory, Linkoping University, Linkoping, Sweden, 1988-1993.

[28] Kenneth Holmstrom. Algorithms for Equilibrium Analysis in Solution Chemistry.
PhD thesis, Institute of Information Processing, Umea University, Sweden, 1988.

[29] Kenneth Holmstrém. NLPLIB TB 1.0 - A MATLAB Toolbox for Nonlinear Optimiza-
tion and Parameter Estimation. Technical Report IMa-TOM-1997-2, Department of
Mathematics and Physics, Malardalen University, Sweden, 1997.

[30] Kenneth Holmstrom. OPERA TB 1.0 - A MATLAB Toolbox for Optimization Al-
gorithms in Operations Research. Technical Report IMa-TOM-1997-1, Department
of Mathematics and Physics, Méalardalen University, Sweden, 1997.

[31] J. Huschens. On the use of product structure in secant methods for nonlinear least
squares problems. SIAM Journal on Optimization, 4(1):108-129, february 1994.

[32] N. Ingri, I. Andersson, L. Pettersson, L. Andersson, A. Yagasaki, and K. Holmstrém.
LAKE - A Program System for Equilibrium Analytical Treatment of Multimethod
Data, Especially Combined Potentiometric and NMR Data. Acta Chem.Scand.,
50:717-734, 1996.

[33] Kenneth Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

[34] P. Lindstréom. Algorithms for Nonlinear Least Squares - Particularly Problems with
Constraints. PhD thesis, Inst. of Information Processing, University of Umea, Swe-
den, 1983.

[35] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 2nd edition, 1984.

[36] C. B. Moler. MATLAB —an interactive matrix laboratory. Technical Report 369,
Department of Mathematics and Statistics, University of New Mexico, 1980.

[37] J. J. More, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. ACM Trans. Math. Software, 7:17-41, 1981.

[38] G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser, A. H.
G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of Handbooks in
Operations Research and Management Science. Elsevier/North Holland, Amsterdam,
The Netherlands, 1989.

[39] Joran Petersson and Kenneth Holmstrom. Fitting of Exponential Sums to Empirical
Data. Technical Report IMa-TOM-1997-5, Department of Mathematics and Physics,
Malardalen University, Sweden, 1997. Presented at the 16th International Symposium
on Mathematical Programming, Lausanne, Switzerland, August 24-29, 1997.

[40] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND:
An object-oriented computer environment for modeling and analysis: The modeling
language. Computers and Chemical Engineering, 15:53-72, 1991.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 21

[41] Raymond P. Polivka and Sandra Pakin. APL: The Language and Its Usage. Prentice
Hall, Englewood Cliffs, N. J., 1975.

[42] A. Sartenaer. Automatic determination of an initial trust region in nonlinear pro-
gramming. Technical Report 95/4, Department of Mathematics, Facultés Universi-
taires ND de la Paix, Bruxelles, Belgium, 1995.

[43] K. Schittkowski. On the convergence of a sequential quadratic programming method
with an augmented lagrangian line search function. Technical report, Systems Opti-
mization laboratory, Stanford University, Stanford, CA, 1982.

[44] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,
and C. B. Moler. Matriz Figensystem Routines - EFISPACK Guide Lecture Notes in
Computer Science. Springer-Verlag, New York, 2nd edition, 1976.

[45] Wayne L. Winston. Operations Research: Applications and Algorithms. International
Thomson Publishing, Duxbury Press, Belmont, California, 3rd edition, 1994.



