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Abstract

A cogeneration plant, feeding its output water into a district-heating grid, may
include several types of energy producing units. The most important being the
cogeneration unit, which produces both heat and electricity. Most plants also have
a heat water storage. Finding the optimal production of both heat and electricity
and the optimal use of the storage is a difficult optimization problem. This pa-
per formulates a general approach for the mathematical modeling of a cogeneration
plant. The model objective function is nonlinear, with nonlinear constraints. Inter-
nal plant temperatures, mass flows, storage losses, minimal up and down times and
time depending start-up costs are considered. The unit commitment, i.e. the units
on and off modes, is found with an algorithm based on Lagrangian relaxation. The
dual search direction is given by the subgradient method and the step length by
the Polyak rule II. The economic dispatch problem, i.e. the problem of determining
the units production given the on and off modes, is solved using a combination of
dynamic programming and general-purpose solvers. The model and algorithms are
implemented in MATLAB.
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Unit | Name

HWC | Heat water central unit
ELH | Electric heater

HEP | Heat exchange pump
CHP | Cogeneration unit
HWS | Heat water storage

Table 1: Production units.
1 Introduction

In Sweden the district-heating technique is common for house warming, see [FW93]. In a
district-heating system usually the heating units are gathered in a plant. The production
plant, named cogeneration plant when there are production of both heat and electric
power, may include several production units of different type, see Table 1. Together these
units shall cover the required heat demand. The most dominating types of units are
combustion units. These can either be Heat water central units, which are units for heat
production only, or Cogeneration units, which produces both heat and electric power. Two
other common types of units are Heat exchange pumps and FElectric heaters. Normally
production plants also include a Heat water storage, in which it is possible to store energy,
i.e. hot water or steam, for later use.

When the electricity price is high the aim is to produce as much electric power as possible
and make a profit of it at the electricity market. Using a cogeneration plant it is possible
to have the process to operate with a much higher level of total cost effectiveness than
a pure electric power plant. However, at this high degree of efficiency the produced heat
and electric power are proportional, i.e. producing more electric power necessarily means
producing more heat power. This proportionality is often a problem. The demand of
electricity is higher during the working day, leading to a higher price in daytime. The
heat demand on the other hand is depending on the out door temperature, i.e. it is lower
in summer and higher in winter. This problem is partly solved using the Heat water
storage. Discharging the storage when the electricity price is low, it is possible to charge
it when the price is high, i.e. produce more heat power than the heat demand. Producing
more heat power, that gives extra production of electric power that may be sold for a
high price.

The Swedish district-heating systems are built for a forward water temperature of 80 —120
°C'. The forward temperature is chosen to give a return temperature about 50 — 60 °C'.
The input and output temperature of an individual unit does not have these restrictions,
as the output from the units are mixed to give the correct forward temperature. The
input temperature will be much higher than the return temperature when the units are
connected in series. In all cases a high input temperature to a unit leads to a lower degree
of efficiency. Previously this point has been neglected in the modeling of district-heating
plants.

This paper considers the problem of finding the best production schedule for the near
future using a combination of mathematical models and computer algorithms. The prob-
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lem is called the short-term production-planning problem. All plant flows and internal
plant temperatures are included in the model. This will lead to a better view of the
pros and cons of the use of units in series, like Heat exchange pumps feeding its output
water with relatively high temperature into a Cogeneration unit. The aim is to find the
production that minimizes a mathematical model description of the cost to run the cogen-
eration plant taking into account different constraints on the production. The schedule
is normally computed for the next twenty-four hour period. The intention is that the
computations should be easy and fast and enable recomputation of the schedule as often
as necessary. In principle each time new information arrives, about once an hour. This
paper presents only the basic strategy used to model and solve the problem. A detailed
description, including a literature review, a MATLAB implementation, numerical exam-
ples and algorithm performance analysis, is to be presented in the forthcoming licentiate
thesis by Erik Dotzauer [Dot97].

2 Problem Formulation

When creating the mathematical model it is natural to partition the time horizon over
which the problem is to be solved into a finite number of time intervals. Therefore, define
I time intervals in the range [0, 7| defined by I + 1 time points 7¢, 71, ..., 77, where 7o = 0
and 7; = T. The length of the ¢th time interval is Ar; = 7; — 7;_1.

For unit & in time interval 7, define the heat power production g;, the electric power
production p;j, the output temperature tl’:k, the input temperature #{, and the mass flow
rate m; . Let u;; be a binary variable indicating if unit £ in time interval 7 is on or off,
i.e. producing or not producing heat and electric power. If the unit is on u;j is equal to
one. If the unit is off u; is zero.

In every time interval the relation
Qik = Cpmi,k(tzf,k —tin) (1)

holds, together with the upper and lower bounds

D; Uik < Pik < Dy pUiks (2)
t i < th <H i (3)

and
My Wiy < Mg < TG Ui gy (4)

where ¢, is defined as the specific heat capacity. The production of electricity, p; , is
always zero for a heat only unit.

Define T}, to be the running time for unit £ at the end of time interval ¢, i.e. the time
since the unit was switched on. T; j is negative if the unit has been off, positive otherwise.
Let the equations describing 7; ; be

T%_Lk + ATZ' if T’i—l,k > 0 and Ui — 1
. AT; if E—l,k < 0 and Ui = 1
Tz’k o —AT; if T%—l,k > 0 and Ui = 0 (5)

T%—l,k — ATZ' if E—l,k < 0 and Ui = 0.
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The minimal up and down times for each unit give limits on 7; ;. Minimal up time is the
time a unit must be on when it has been started. Minimal down time is the time a unit
must be off when it has been shot down.

When unit £ in time interval ¢ is switched on, i.e. T;_;, < 0 and w;; = 1, a start-up cost

i is defined. This cost is a function of the running time T;_, ,

et =y (1= i), (6)

The unit specific parameters fyi are non-negative, i.e. 7{% >0, j=1,2,3, and estimated
separately for each unit. Since T;_; j is by definition negative in the case of start-up, the
term (1—e77-1%) has a value between one and zero. If |Tj_; x| > 0 the term (1 —e7i%i-1%)
is close to one and the resulting start-up cost is almost v; + 2. This situation is called
cold start. For a warm start, when the term (1 — e”’zTi—l’k) is close to zero, the cost is
approximately ;. The start-up cost equation (6) has been widely used, see for example
Magnusson [Mag91].

The costs and constraints so far presented are common for all types of units. Now define
ci,k(tlf’ ko Ui k> Qisks Piks Miks Uik) — @s  the unit  specific  production  cost and
Qi,k(tlf’k,t{’k, Qi k> Diks M, Ui j) as the unit specific constraints for unit & in time interval
i. A detailed description of these costs and constraints are given in [DH97].

To make the model as general as possible, introduce a new type of production unit, the
Dummy unit (with the abbreviation DUM). The Dummy unit is not producing any heat
or electric power. Using (1) this restriction is fulfilled defining the constraint

The production cost for the Dummy unit is equal to zero, i.e.

Cik = 0. (8)

When modeling a production plant, including arbitrary number of production units in
an arbitrary configuration, the natural is to introduce some sort of network description.
Define G = (N, A) as the network which describes the unit configuration. The directed
graph G consists of a set N of nodes and a set A of arcs. Every single arc (s,t) € A from
node s to node t corresponds to a production unit. Notice that more than one arc can be
connected from node s to node t. The number of nodes depends on the plant specific unit
configuration, but there are never less then two, since it always exist one input-node s™
and one output-node t°*. Figure 1 gives a graph describing a plant with five units (arcs)
and three nodes.

Define for every node s € N\ {s™, t°**} in time interval i the mass flow equality constraint

Do Mg = Y Mg (9)

keg(s) keA(s)

where A(s) = {k : k corresponds to (t,s) € A and t € N}, i.e. k corresponds to an
incoming arc of s, and A(s) = {k : k corresponds to (s,t) € A and t € N}, ie. k
corresponds to an outgoing arc of s. Or equally, the mass flow rate into node s equals the
mass flow rate out from node s.



Optimal Scheduling of Cogeneration Plants 5

tout

Figure 1: A network describing a plant with five units (arcs) and three nodes.

Constraints relating the input and output temperature for each unit are defined in every
single node. A unit directly connected from the return pipe of the plant, i.e. a unit
corresponding to an outgoing arc of s, always have a input temperature ti , equal to the
plant return temperature ;... The input temperature for a unit not directly connected

to the return pipe of the plant is computed as a mixture of output temperatures from
units connected into it. This gives

o thmig =Y tgmin (10)

keA(s) kEA(s)

and
tr, =1, ifke A(s)and k' € A(s), (11)
where s # 5™ and s # t°%,

Solving the short-term production-planning problem over the time horizon [0, 7] parti-
tioned into I time intervals, the following assumptions are made for every time interval
1

{ =1 if k € A(s™)

e The forward temperature demand tzf, p 1s known.
e The heat demand ¢; p is known.

e The plant return temperature ¢ ... is known.

net 3

e The produced net electric power p}* is sold for the market electricity price ¢; .

The flow of the Heat water storage always goes directly from the return pipe of the plant
to the forward pipe of the plant. Using the network description, the storage corresponds
to an arc from node s to node t°“*. Unlike the other units, it is not possible to control

the forward temperature t£ g for the Heat water storage. Since the storage just is a big

tank containing hot water, /¢ is given as the storage top temperature ti’%. Defining %

2y
as the storage bottom temperature, the contribution from the Heat water storage may be

directly inserted. This gives the corrected temperature demand as

mi,Dp—"M;,s

(12)
tlh if Mg < 0

f top
te ymi p—t.cmis .
.M, ,s M,
- : : if m; g >0
D —
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and the corrected plant return temperature as

r .
/ tz’,res if mi,s Z 0
tr t: resmi»D_t?oStmi,S :

: 2 if mis < 0.

1,res

(13)

Mg, p—mM4,s

Here the mass flow rate demand m; p is given by (1), i.e. as m; p = qi’D/cp(th’D — 1] res)-
Deciding the effect on tff’g and tf"g when charging and discharging the storage, i.e. when
m;s < 0 and m; ¢ > 0, is a difficult problem not considered in this paper. We assume
that the storage temperature has no effect on the rest of the system, i.e. t{i ’D = t{i p and

£ es = U, irTespective of the storage mass flow rate m; g in (12) and (13).

The demand constraints that must be satisfied in time interval 7 are

K
> ik +4s > Gip (14)
k=1

and
kZM mi,kti,k ;

S > ¢t 15
Z Mk = "3,D> ( )
keM

where K is the number of production units. The set M is defined as all units directly
connected to the forward pipe of the plant, i.e. M = A(t°*"). The Heat water storage is
not included in either the set of K units or the set M.

The decision variables for the production units are the binary variable w;j, the output
temperature tzf, k> the input temperature ¢{,, the mass flow rate m;;, the heat power
production g; ; and electric power production p; . For the Heat water storage the binary
variable u; g, the heat power production ¢; ¢ and the energy content e; ¢ are decision
variables.

To summarize, define the short-term production-planning problem as the following math-
ematical program,

I K 1
min ‘211;1 (ci’k(tlf,k,t{,k, Giske> Pisks Moy Wik) + 5 (ug))+ 21 ¢i,s(qis, €is, Uis)
1= = 1=
Sttt Gigos Piks Mk, Qi €15 € Q2 (16)

Ui, uis € 10,1}
minimal up and down times.

The feasible region (2 is defined by the unit specific constraints €2; ;, and €; g, the con-
figuration constraints (9), (10), (11) and the demand constraints (14) and (15). The
objective function is the total production cost, i.e. the sum of all units’ start-up costs and
production costs. Notice that no start-up cost is associated with the Heat water storage.

3 Solution Strategy

The solution procedure is based on Lagrangian relaxation, see [Min86]. Relaxing all unit
coupling constraints, the short-term production-planning problem (16) decomposes into
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Figure 2: The unit configuration.

one separate problem for each single unit. This methodology was also used by Magnusson
in [Mag91] for the solution of the closely related short-term power production-planning
problem of an electricity grid. In (16) the unit coupling constraints are the heat demand
constraints (14), the forward temperature constraints (15), the mass flow constraints (9)
and the temperature constraints (10) and (11). The exact number of relaxed constraints
are dependent on the number of time intervals I, on the number of units K and on the
unit configuration, i.e. on the number of nodes |N| in the modeled network.

The inequality constraints (14) and (15) are relaxed using the non-negative multipliers \;
and A7, i = 1,..., I. The equality constraints (9) and (10) are relaxed using the multipliers
A" and A\j", i =1,...,] and n =1, ..., |N| — 2. They are unrestricted in sign. The reason
why |N| is subtracted by two in the set describing n is because (9) and (10) not are
defined in the input-node s or in the output-node t°**. Finally, the equality constraints
(11) are relaxed using the unrestricted multipliers )\f’k yi=1,..,land k=1,.. K.

As an illustrative example, consider the unit configuration in Figure 2. Using the net-
work description gives the directed graph in Figure 1. The sets used in (9) and (10)
are A(1) = {DUM,HEP} and A(1) = {CHP,ELH}. In this case the short-term
production-planning problem (16) is

min Zilkfl (Ci,k(tzf,lw £ ko Qisks Pier Mok Wisk) + 357 (ug))+ 12131 ¢i,s(is, €9, Ui,s)
st. Qihwe T Qidum + Qihep + Qisehp + Qieth + Gis 2 G p

mi,hwctzf,hwc + mi,chptlf,chp + mi,elhtlf,elh 2 mi,hwctlf,p + mi,chptzf,D + mi,elhtlf,p
My dum + M hep = Mi,chp + M elh 17
tlf,dummi,dum + tlf,hepmi,hep = t;‘,chpmi,chp + t;‘,elhmi,elh ( )

gchp = t;‘,elh

ti kot k> Qisks Disks Miks G55 €35 €

Ui,k, UZ',S € {O, 1}

minimal up and down times,

where all unit coupling constraints are expressed separately. The feasible region ' is
given as 2 in (16) excluding all unit coupling constraints. The relaxed problem in this
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algorithm short-term production-planning
Let € = 0o and ® = —
Initiate lagrange multipliers A.
while not convergence
Solve the unit specific problems.
Generate a primal feasible solution.
Update ¢ and ®.
ifc—®<e¢
convergence
endi
Update lagrange multipliers .
endwhile

Table 2: The short-term production-planning algorithm.
example becomes

I
21 (k 3 (¢, K(t! T Lo Qiskes Dier Mk Wik) + ¢ (ur)) + €i,5(dis, €05, Uis)

+)\11 (ql D QZ hwe — QZ dum — 4 shep — q; ,chp — QZ,elh - Qi,S)
+)\2(mz hwct{D + m; chpt{D + m; elht@ D
—my hwctl hwe — T4 Chptz chp — T Elhtz elh)
+)\3 1(mz chp + mz elh — mz,dum mz,hep) (18)
+)‘ ( i,chpMMiychp + t: elhMielh — tzf,dummi,dum - tzf,hepmi,hep)
)‘5 . p( i,chp tl,elh))
s.1. tzf,k,tf,k,Qi,kapz,k,mz,k,%,s, eis €Y
Ui,k, ui,g € {O, 1}
minimal up and down times.

~.

The complete algorithm for the solution of the short-term production-planning problem
(16) is given in Table 2. In the algorithm ¢ and @ are the best primal and dual solution
found so far. The algorithm terminates when the difference ¢ — ® (the duality gap) is
small, say less than 0.1 percent of €. The multipliers A are determined using a subgradient
method with step length given by the Polyak rule II.

Problem (18) separates into one problem for each unit. These unit specific problems are
solved using a dynamic programming algorithm, giving a unit commitment feasible with
respect to the minimal up and down times. A feasible solution to (16) is then generated
using a combination of heuristics and mathematical algorithms. First the unit commit-
ment is corrected with a heuristic method. Given the feasible set of binary variables
u;, and u; g, the economic dispatch problem, i.e. the problem of determining the units
production, is solved using a combination of dynamic programming and general-purpose
solvers. The solution algorithm for the economic dispatch problem is described in detail
in [DHI7].
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