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Abstract

Exponential sum models are used frequently: In heat diffusion, diffussion of
chemical compounds, time series in medicine, economics, physical sciences and tech-
nology. Thus it is important to find good methods for the estimation of parameters
in exponential sums. In this paper we review and discuss results from the last
forty years of research. There are many different ways of estimating parameters in
exponential sums and model a fit criterion, which gives a valid result from the fit.

We find that a good choice is a weighted two-norm objective function, with
weights based on the maximum likelihood (ML) criterion. If the number of expo-
nential terms is unknown, statistical methods based on an information criterion or
cross validation can be used to determine the optimal number.

It is suitable to use a a hybrid Gauss-Newton and Quasi-Newton algorithm to
find the unknown parameters in the constrained weighted nonlinear least squares
problem formulated using a ML objective function. The problem is highly ill-
conditioned and it is crucial to find good starting values for the parameters. To
find the initial parameter values, a modified Prony method or a method based upon
rewriting partial sums as geometrical sums seems promising. The latter method
deserves further investigation for the use as an initial value algorithm.

!The TOM home page is http://www.ima.mdh.se/tom.
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1 Introduction

In empirical sciences, there is an increasing use of mathematical models to describe various
phenomena in society. One typical situation is a time series of vector measurements (t,y),
ie. (tj,y;), j =1,..,n. In this paper we consider the problem to determine parameters
a = [ay,...,ap] and b = [by, ..., b,] and the number of terms p in a model of exponential

type:

ft)= Zai exp (—b;t) . (1)

The parameters are determined to fit the empirical data observations y by e.g. using a
weighted least-squares criterion

’fl

Fa,b) =) (w;(f(t) —y)) (2)

Jj=1

Figure 1 and Figure 2 illustrates the approximation problem for the empirical Steyn and
Wyk series [85]. The figures show the data together with the optimal approximating
exponential model with p =1, p = 2 and p = 3. Dependent on the weighting either two
or three terms seem to be optimal. More details on this particular problem is given in
our paper [68].

Weighted with estimates. Data from Steyn & Wyk

with p terms
5
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Figure 1: The empirical Steyn and Wyk data series and the approximating exponential
model for one, two and three terms. The residuals are weighted with the data values
(wj =1/y;,7 =1,...,n). Three terms seem to be optimal.

In this review, we discuss some ways of attacking problem 2. Although some authors claim
to have achieved successful results using easy methods, their claim have been disputed
strongly by others. The problem is difficult and we think there is a need for more efficient
and reliable algorithms.

In Section 2 we present some graphical methods. They have been used before the event
of computers to find solutions and later on also to find acceptable starting values for
nonlinear least squares (NLLS) algorithms. In Section 3 we mention some results for
Prony methods. The classical Prony method is generally regarded as not satisfactory, but
modified versions are reported as effective. Section 4 treats a solution method, which we
call generalized interpolation. Classical interpolation methods use one equation for each
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Figure 2: The empirical Steyn and Wyk data series and the approximating exponential
model for one, two and three terms. The residuals are unweighted (w; = 1,7 = 1,...,n).
Two terms seem to be enough.

data point. Here we discuss a method that divides the data points into 2p subgroups of
partial sums where 2p is the number of parameters to be estimated. Then each partial
sum is used to form one equation. For data equidistant in time the partial sums can be
rewritten as geometrical sums and the equations become simpler. This method seems
promising and we discuss our results in this section. We presented preliminary results for
this method at the International Symposium of Mathematical Programming 1997 and in
[65]. Further developments are described in a series of papers [68, 67, 66, 70, 69]. Section
5 presents some statistical aspects such as Monte-Carlo methods, information theory, the
choice of weights in weighted least squares estimation and autocorrelation. Monte-Carlo
methods seems to be of less use, but an information criterion looks helpful in determining
the number of terms. In nonlinear parameter estimation using a weighted least squares
criterion, weights w; = 1/y; or w; = 1/f (¢;) are recommended.

Section 6 compares some transform techniques that have been used for this problem.
Some authors are sceptical to transform methods. In Section 7 we study some iterative
methods based upon removing and adding terms a; exp (—b;t) by clustering and splitting
techniques. These methods automatically determine the number of exponential terms p
in (1). Such methods is of use if the number of exponential terms is unknown. Section
8 treats optimization algorithms for nonlinear least squares problems. We discuss both
Gauss-Newton type methods, hybrid methods and adaptive structured secant methods.
Structured secant methods are especially designed for nonlinear least squares methods. In
Section 9 we study some theoretical results from approximation theory and catastrophe
theory. It explains why noise may transform an extremum to a saddle points and vice
versa. In Section 10 the relation to mathematical system theory is discussed. Finally
we draw some conclusions in Section 11 and give suggestions for further work.

2 Graphical methods

Graphical methods depend upon properties, which are ”easy to watch”. Their results
are often not very accurate, but can be used as an initial guess for more sophisticated
iterative methods.
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Graphical methods are discussed by Steyn and Wyk [85] and Wiscombe and Evans [88].
The main idea in the parameter identification is: Plot the curve (¢,Ilny). Study if the
tail stabilizes along a straight line. Then the slope of the tail is —b;. Find a; as a linear
least-squares estimate using the tail. Now one term a; - exp (—bit) in (1) is identified.
Next, compute i := y — a1 - exp (—b1t) and repeat the procedure on the plot (¢,Iny) to
get —b,y. Find new values of all a; by simultaneous linear least-squares fit using all the so
far obtained b;.

Steyn et al. [85] does not go this far. They treat only the cases with one or two terms
identified ”by hand”. Wiscombe and Evans [88] reports that Avrett and Hummer [8] and
Hunt and Grant [40] has made something like the procedure above. They report that this
method usually fails when tried on the problem of identifying more than two terms.

An explanation to this failure is found when studying a Taylor expansion. First write y
in the form

p

y = Zai exp (—=bit) = ay - exp (—b;t) Z % cexp ((by — b)) t). (3)

i=1 i=1 1

Then make a logarithmic transformation

P
Iny =1Ina; — bt + In (1+Z%~exp((b1—bi)t)>. (4)
i=2 1

Make a Taylor expansion of the last expression in parenthesis around ¢ = s:
v 2a1 (by — b;) - exp ((by — b;) 5)

<1+Z,2&l exp ((by — b;) ) (t—s +O((t—3)2)- (5)

Iny =1Ina;, — bjt +

If the components are not well resolved, exp ((b; — b;) s) will not be small and if a slow
component b; has a small amplitude, it will be distorted by a big factor 7. Thus the
method has its severe limitations. Wiscombe et al. [88] reports that the error is at best

1%.

3 The Prony method

In the Prony method the wanted solution f (¢) = > a;exp (—b;t) is interpreted as a
solution to a homogeneous ordinary differential equation 0 = P (D)y. Then —b; will be
roots to the characteristic polynomial. It is common to illustrate the method by assuming
equidistant time points ¢; and then reparametrize the exponential sum as f (t;) = > ¢;u]
which is a solution to a homogeneous difference equation

roYjyo + r1Yyj+1 + roy; = 0. (6)

We illustrate the method for two terms. The details are given in [36]. Denote f; =
clul + couj and multiply f;j 1,42 with coefficients ro; o for different indices j in the



A Review of the Problem of Fitting Positive Exponential Sums to Empirical Data 5

difference equation. For example:

rofo =10 (c1 + ¢2)

(
rifi =1 (cruy + cousg)
rofa = 12 (cru? + coul) (7)
rof1 = 1o (cruy + cousz)
rifo = Eclul + CQU/Q;

7‘2f3 =

Sum the two groups together and note that the left hand side is the difference equation
(6). Choose 7, = 1 and formulate it as a Hankel system of equations.

{ 0=rofo+rifi+rafo
0=rofi +rifo+rafs

=

(E)=(r ) @

Solving this with respect to r¢; gives a solution to the difference equation (6). Find u; o
by solving the characteristic equation of (6). Then find ¢ » for example as the linear least
squares solution of (7). The Prony method can be generalized to higher order exponential
sums and also modified to an overdetermined system. The overdetermined variant is
named the Pisarenko method, autocorrelation analysis or the covariance method.

Early implementations suffered from problems satisfying constraints b € R" and a > 0.
This is overcome by algorithms for nonnegative least squares (NNLS) for a and nonlinear
programming methods for getting real b. Raschke and Stucke [72] was the first to solve
the NNLS problem for the Prony method. They developed an empirical method.

Marple [54] compares the Pisarenko (autocorrelation analysis) and Prony (least-squares
estimate) methods. The examined case is a sum with components of the type f;(z) =
exp(b;z) sin(y;z). The Prony method is reported to have two advantages: It has lower
computing complexity and it gives fewer spurious components.

In 1977 Wiscombe et al. [88] investigated the Prony method rather thoroughly. The
method needs good initial values to cope with three terms. In fact, the original Prony
method is inconsistent even as the number of observations increases to infinity [44].

But since then Osborne and others in a series of articles have developed modified Prony al-
gorithms for several problems satisfying a linear homogeneous difference equations, giving
the maximum likelihood estimate. In [59] Osborne shows how to overcome the numerical
difficulties in the Prony method. This he extends to rational fitting in [60] and proves
by a convergence theorem in [61]. In [83, 62, 63, 44, 53, 64] Osborne and others tries
to explain the reported good results from [60] and show some consistency, convergence
and asymptotic stability properties with stronger results for damped sinusoids then pure
exponentials. The algorithms are scale dependent and objective function reweighting is
the preferable choice [44].

In the recent article [64], Osborne and Smyth report that the modified Prony algorithm
is insensitive to initial values. They make numerical experiments with data generated by
f(t) = 0.542exp (—4t) — 1.5 exp (—7t) with added noise from different distributions, four
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choices of standard deviations and different sample sizes. They find their implementation
of the modified Prony method superior to Levenbergs method and only little affected
by different types of added noise. But sometimes their Prony algorithm converges to a
damped sinusoid.

4 Methods based upon geometrical sums

A method based upon geometrical sums is primarily developed for equally spaced data t;,
but Steyn and Wyk [85] mention that interpolation could be used to give equal distances
by introducing artificial data points. The method should not be used with too few data
points. Della Corte, Buricchi and Romano [26] use linear interpolation to augment the
number of data points. With this trick they get more reliable results, i.e. the risk of failures
in the fit is diminished. In their data series, this was of extra importance since they worked
with both positive and negative intensities in the powers. Then false peaks could show up
when having too large space between data points. The use of linear interpolation does not
seem natural for this kind of decay curves. In a context of transform techniques, Smith et
al. [82] discusses linear interpolation on semilog data. They also report that one should
not try to smooth the curve by using several data points. It can deteriorate the result as

several intensity components are involved and thus change the shape of the interpolated
curve over larger time intervals. They report that Shapiro [81], [80] tried interpolation by
curve fit which take into account the curvature. This was not more successful then log-
linear fit. In the context of transform methods, Smith et al. [82, page 477] also discusses
cubic interpolation and splines for interpolation. Cubic interpolation can introduce false
peaks (for transform methods). They have not tried splines.

Cornell [21] has another approach of forming a geometrical sum. If the data is equally
spaced in time, t; =ty +d- (j — 1), then

p /4

f(t) = Zai wexp (—bit;) = Zai Sl (9)

(3
called an exponential polynomial. From this Cornell derives an analytical expression for

one term case p = 1 and present a numerical procedure for the case p = 2. For p = 1, the

Here @; = a; - exp (—b; - (t, —d)) and u; = exp (—b;d). The form 37 @ - u! in (9) is

expected value F [Z?:l y(tj)] =", au’ is a geometrical sum.
Set ¢ =n/2, or ¢ = (n—1) /2 if n is odd, and partition into

Si=> aw =du(l—u)/(l—u) =3, (10)

7=1
and .
Sy = Z au! =au (u! —u") /(1 —u) = 3. (11)
Jj=q+1

Then we have two equations which are linear in @ and nonlinear in u. For several terms,
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a set of equations are derived: Partition the data into

kq

Sk = Z Yijs k= ]-7 "'72p7 (12)

J=(k—1)q+1

where e.g. S9 = Yg41 + Yg+2 + ... + Y24 and let 7 = n — nmod 2p giving 2p partial sums of
equal length ¢ = r/ (2p). Rewrite the geometrical sums and solve the equations

Ek - Sk = 0, k= 1, ,2p (13)

They are linear in the vector a and nonlinear in the vector u. Cornell finds the equations
too complex to be solved except for the case p = 1. Steyn and Wyk [85] compare this
method with two other methods. One based on overlapping partial sums by Agha [1],
and the regression-difference method by Shah [79]. Steyn and Wyk give some guidelines
in getting an initial good estimate and recommend how many data points to interpolate
when needed. They conclude that the method of Agha is the most reliable initial estimate
method of these three. The best overview of methods based on geometrical sums is also
found in their paper. We have improved the method of Cornell for the case p = 2
by finding an analytical expression for u. Furthermore we have developed a numerical
algorithm which extends the method to the cases p = 3,4. Preliminary results for our
methods is presented in [65]. It has been further developed in [68, 69] and applied to
similar exponential sum problems in [67, 66].

5 Statistical aspects

In this section we study the statistical properties of the exponential sum fitting problem.
One method using jack-knife estimates is examined by Duncan [29]. He concludes that
it is "marginally effective in establishing confident regions for moderate (=~ 24) samples”.
But in nonlinear regression, the samples are often of small size. The article also refers to
Beale (1960), who constructed a measure of nonlinearity, which quantifies when a linear
approximation can be done.

Burstein [17] has tried a Monte-Carlo method which he calls "algorithm of root variation’.
He chooses a random vector u with p entries in the interval (0,1). A linear least-squares
approximation is used to compute the linear coefficients (amplitudes) a. To compare dif-
ferent amplitudes he uses a criterion of fit, e.g. standard deviation. The set corresponding
to the best fit is chosen. He discusses some improvements: Form an expanding list by
adding a new result if it is "the best result so far”. This list is used to extract the best
result. Furthermore he uses the same algorithm in the transformed space for Laplace
transformed data series and truncated series expansions.

Another point of view is "which criterion of fit give most reliable results?” Price [71]
discusses this problem. The least squares (LS) criterion 3 (y; — f(;))? for measuring the
errors in absolute distance means that a big y; and a big f(¢;) could give a big absolute
error y; — f(t;) although it is small in percentage and a small y; with small error y; — f(¢;)
could be big in relative measure. For decaying curves like exponential sums this is "not
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fair” for the tail of the time series. It would be more realistic measuring the relative
distance, either weighting with the data giving

> (s = ft) v3) (14)

> ;= Ft))/ f(t7)* (15)

The equation (15) is the maximum likelihood (ML) criterion derived by Price [71]. It
is simpler to use weighted least squares (wLS) than ML. And ML does not take into
account the fact that systematic errors may not be proportional to y. Price [71] makes a
comparison between wLLS and ML for a time series following the Poisson distribution and
finds ML to be the better. Statisticians prefer ML because it often gives more effective
estimates.

The number of exponential terms is often not known in advance. A kind of Occam’s razor
is needed. This problem is treated in information theory. If few terms are used, the fit
to data will not be very good, but the model is easy to handle. If many terms are used,
the fit to data will be very good, but the model is clumsy. It may be even unrealistic,
because the curve fits the random errors in the data points (Ljung [52, page 417]). To
avoid this overfitting problem, measures of information distance have been developed.
The information distance has a physical interpretation as a measure of negative entropy.
Ljung [52, page 421] suggests a pragmatic formulation of the information criterion:

WO (0, M,2Z") =V, (0, 2") + U, (M). (16)

Here 0 is the parameters to be determined, M is the model space (exponential sums
in our case) and Z" is the discrete space of the n data points. V,, is a measure of
the fit of the curve to data and U, is a penalty term for the complexity of the model.
V, can be chosen as a prediction-error criterion V,, = 23%7. | I(e(t;,6),1;,6) where
€(t,0) = y(t) —y(t,0). As a minimizer of the prediction-error, Ljung [52, page 175]
suggests [ (€ (t,0),t,0) = 3" A~'e. The matrix A is the covariance matrix. Assuming the
observation errors € are uncorrelated, the covariance matrix is a diagonal matrix. For the
ML-criterion A = diag (3* (¢;),j = 1..n) is the estimated (co-)variance and thus

It corresponds to a minimized variance (and a weighted least squares with ML-weights).

The term U,, should measure the complexity of the model. How to chose U, is subjective.
Ljung [52, page 421] has two suggestions, either the Akaike criterion [3, 4]

dim 6
Un (M) = = (18)
n
or the Rissanen criterion [74]
1
U, (M) = 22" dim. (19)
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The goal of the Akaike criterion is to find a system description that gives the smallest
mean-square error. The goal of the Rissanen criterion is to achieve the shortest possible
description of data.

A common choice of the function W2 (0, M, Z") is the Akaike Final Prediction-Error
Criterion (FPE), first described by Akaike 1969 [2],

FPE(dim#6) = % - % ’ (y; — f(t;))7, (20)

which reflects the prediction-error variance that one will obtain, on the average, when the
model is applied as a predictor to other data sets than those used for the identification.

6 Transform techniques

Transforms y = fooo yg (t) dt is another class of methods, which is a main tool in analyzing
frequency spectra. They work well for signals consisting of sines and cosines, but how
do they work for signals without that kind of structure? Decaying exponential sums
has a lack of structure like peaks or valleys. They contain simply a descending slope.
The literature is concerned about three major tasks: Which transforms are more suited
or less suited for the problem? When planning measurements, should we use linearly
or exponentially distant data points? Is transforms superior to other methods such as
optimizing least squares objective functions?

Examples of transform techniques are the Orthonormal, Laplace, Gardner, I" and x?
transform. They are briefly discussed below.

Smith et al. [82] study three types of transforms. The first one is the orthonormal
exponential transform. In the interval [0, c0] an orthonormal (ON) set of basis functions
is @, (t) = > 4o, Ckm exp (—kt), where

com = (1) (k+m—+1)!-m!/ [k (m — k)! (k+1)! (m +1)!].

Coefficients By, = [~ ®p, (¢) f (t) dt is computed and the original function has the spec-
trum

F) =Y Byu®y(t) =Y Dpexp(—kt). (21)

The conclusion from two single component decays exp (—2t) and exp (—2.1¢) is that only
integer components k are resolved. This method is of use only when searching among a
discrete set of decay constants, which can be numbered. Next the inverse Laplace trans-
form is investigated. The problem here is t}}&t the integral f (t) = f:figo f(2)exp (tz) dz
is performed in the complex plane, while f (z) is known only on the real axis. Smith et
al. reports that a number of techniques (e.g. approximation f(z) with Jacobi polyno-
mials) has been tried. They found that this method failed even when analyzing a single

component. The third transform is defined as a function

[ (exp (z) f (x)) )

(exp (—x) exp (—exp (z)))

G (exp () =17 ( (22)
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of Fourier transforms I' on exponential expressions. When this was presented by Gardner
et al. 1959, the computer resources were too limited for the numerical processes. In [82]
Smith et al. investigated if this transform could be of use for exponential sums, because
it has been tried with success for some other types of functions. There are three things
to worry about: The infinite Fourier transform (FT) must be approximated by a Discrete
FT (DFT), computational noise in the transforms and finally errors due to interpolation
and approximation.

They assumed that the measurements were made at equal time distances in an interval of
six to ten times longer than the time constant. They found out that to analyze a single
component decay, an interval of less than 22 time constants made the signal to noise ratio
S/N poor. To overcome this, some different methods of extrapolations are discussed.
The draw-back is that they introduce noise (S/N decreases). Smith et al. [82, page 477]
report of an earlier examination of the effect of prefiltering. Prefiltering will damp fast
intensities. On the other hand it will greatly magnify the quotient S/N. This is important
because even noise of small amplitude significantly decreased the quality of the spectrum.
To interpolate they used different polynomials, cubic least squares fit to the logarithm of
the data. The final conclusion is that the Gardner transform is not yet (1976) mature
for high resolution multicomponent analyze even though they use prefiltering and post
filtering. A verdict from Wiscombe and Evans 1977 [88] mention disappointing results
from investigations made by Arking, Grossman and Domoto and claims that ”Gardner
methods are hopelessly ill suited to exponential sum fitting of transmissions”.

Other transforms have been derived by Nakamura et al. in [56, 57]. Nakamura and
Takahashi derived a formula for the inverse x? transform. The formula is an infinite sum
including Laguerre polynomials. A quite complex but at least direct formula. These two
authors have also, together with Kodama, derived a formula for the I" transform defined
as

Definition 1 . G (o, 8) = [;° ﬂ,t:T_(;)eXp(—t/ﬁ) f@&)dt, a>0,8>0.

This formula can be approximated as

G, )~ Y Q) (14 p;/T)". (23)

=1

Here z; is the jth zero of the Kth Laguerre polynomial and (); is determined by solving
a system of linear equations f (¢,) ~ Z]K:l Qjexp (—z;tp/T), h =1,2,..., K. Instead of
using Laguerre polynomials, the quadrature can also be performed by using Legendre,
Hermite or Chebyshev polynomials. The accuracy of the estimated parameters does not
always increase with smaller steps in «, 8 and T. They compared the accuracy of the
parameters estimated by the I' transform with parameters estimated with the Prony
method. Their method based upon the I' transform gave better results.

Another one who has investigated transforms with exponentially spaced data is Steyn
[84]. He uses the ”graphical method” by Steyn and van Wyk [85] to determine initial
values and then uses a Gardner-type method based on DFT. Together with this, filtering
and smoothing is used. This produces a spectrum, from which peaks can be identified by
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hand. To make a judgement of the peaks, Steyn [84] divides the height of a peak with its
width at half height. This favors narrow peaks compared to error ripples.

Planning the placement of the measurements is not unimportant. Bertero et al. [9, 10]
determines an efficient placing of data points ¢;. Their prerequisite is a fixed number of
linearly spaced data. They derive the placing of ¢; which minimizes the condition number
of singular value inversions and report that this would further reduce the number of sample
points required for inversion of the Laplace transform. They report problems with edge
effects during the inversion procedure and discuss how to overcome these difficulties.

Kammler [46] studies theoretically the Laplace transform for this problem. Define the set
Voi=A{f:feR, f(t)=>"aexp(—b;t)} and the auxiliary function

£ (b) = / " exp (—bt) du ().

Choose either the measure
du (t) = dt (24)

p(t) = ijx (t—1;), (25)

where y (t) is the step function.

Compute the Laplace transform of both the data y(¢) and the approximating function
f(t), i.e. define N
T (b) = Jy exp (<bi) y (0 dpe(t) b > L 0
F(b)= [ exp(=bt) f(t)du(t) b>L,
where L = inf{b : £(b) < oo} and also L < 2-b;, ¢ = 1,...,p. The choice of the
measure (24) gives the value L = 0 and a continuous L, approximation problem, whereas
the measure (25) gives the value L = —oo and a weighted discrete L, approximation
problem.

In the paper the investigation is restricted to the case of monotonic y on (0,400). The
Generalized Aigrain-William (GAW) equations are defined as

i;(bl) = F(b), i=1,..,p
{?'(bi) = F'(b), i=1,...,p (27)

Kammler proves the following practical result:

Theorem 1 . There exists a best approximation Fe V, solving the GAW equations (27).

Kammler suggests the dual algorithm of Rice to solve the GAW equations, using repeated
solutions of nonlinear Hermite interpolation problems. One numerical example is pre-
sented, and the algorithm converges nicely up to p = 6 terms. He also comments on other
approaches:

e Solving the GAW equations numerically demands good initial values to work well,
as well as a low order p.
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e Using the common choice of minimizing || f(t,a,b) — y(t)||* by eliminating the linear
parameters a gives notoriously difficult problems already for p = 2,3 and next to
impossible problems for p > 3.

Varah [87] makes an empirical continuation of the theoretical work of Kammler. Varah
gives examples of numerical results and some explanations of it. Two sides of the problem
are studied. A continuous subproblem (C) and a discrete one (D):

{ I(a,b) =1 [>(y(t)— f(t:ab))dt (C) (28)
I(a,b)=1%" (y;— f(t;:a,b))’ (D)

The Laplace transform of the first order conditions of the continuous subproblem (C) gives
the GAW-equations. As a comparison, a solution for the classic Lanczos and Osborne data
is made. The Lanczos data are generated in time steps of At = 0.5 by the exponential
sum

f(t) =0.0951 exp (—t) + 0.8607 exp (—3t) + 1.5576 exp (—5t) .

But Varah chooses At = 0.1 instead and 0 < ¢ < 3.2. The Lanczos- and Osborne data are
presented with some plots of min I (a, b) as a function of b. When solving the continuous

subproblem (C) in (28), he derives the Hessian for the GAW equations and finds a part
of it to be the Hilbert matrix, which is known to be ill-conditioned. Also the eigenvalues
are close to that of the minimum point and besides all this, the extrema and saddles are
multiple.

Braess has studied this approximation problem in several papers [11, 12, 13, 15, 14]. He
refers to Hobby and Rice who introduced the idea of a v polynomial, defined as

Definition 2 . Let v (b,t) be an extended totally positive Kernel defined on B x T, a
rectangle in R*. Then a vy polynomial F of order p is defined as F (t) = > 5, a; -y (b;, 1),
a; € R, b; € B.

As an example he gives v (b,t) = (1 —bt)"" on (=1,1) x [—=1,1]. From this he derives
the minimization problem 7 (a,b) = ||f — a/ (1 — bt)||*, which is the same problem that
appears when solving the Aigrain-Williams equations discussed above. Braess [11] shows
that the solution is not unique in the ||-||,-norm for these rational approximation problems.

If several terms p are involved, the expression a/ (1 — bt) extends to a rational expression
> ai/ (1 =bit) = P/Q where the degrees of P and @ are 9P and 0(Q) with 0P < 0Q). In
[12] Braess discusses such rational Ls-approximation. He shows that critical points are
either isolated or belong to one-dimensional analytical submanifolds for 0@ = 1,2. The
consequence of this is that local best approximations may hinder an iterative algorithm
to find a global minimum.

In [13] Braess discusses Chebyshev approximation by 7 polynomials. The numerical con-
sequences are that difficulties in the classical algorithms for treating spline functions with
free knots may be overcome by the regularization procedure. He uses complicated Morse
theory to establish this.
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7 Iteratively adding and removing terms

Another type of method has been developed by Gustafson [35], Kaijser [45], Ruhe [76]
and Evans et al. [30]. Kaijser studies a fit of log-normal functions and not an exponential
sum, but the idea is the same and Kaijser has got inspiration and advice from Gustafson.
The methods are stepwise nonlinear regression methods and the basic algorithmic steps
are:

1. Make a grid with N points in the space of b and compute the corresponding N
optimal values for a subject to a > 0. When determining a, algorithms for nonneg-
ative least squares (NNLS) can be used. Compute the distance between data points
and the exponential sum (1) with estimated parameters for some chosen measure of
distance, e.g. the weighted sum of squares.

2. Cluster close terms a; - exp (—b;t) with an ”averaging formula”, in such a way that
the distance does not increase too much.

3. Use an algorithm for nonlinear least squares optimization to compute the optimal
parameters a and b in the chosen norm.

4. If step 3 results in a decreased distance, repeat the clustering step. If the distance
is increased and it is the first iteration, then go to step 1 and make a finer grid, else
stop.

Gustafson suggests the grid in step 1 to be chosen by an auxiliary function s = ¢ (b). This
function is strictly decreasing. Two examples are g (b) = exp (—b) and g (b) = 1/ (1 + b).
The advantage of an auxiliary function is that s € [0, 1] for b > 0, which is an easier interval
to survey. Use this to make a grid in s-space [0, 1] and then compute b; = g~! (s;).

In Gustafsson [35] all details of the clustering algorithm is given. He also gives the advice
that clustering should be made in such a way that ”"the distance does not increase too
much”. Kaijser [45] gives another description. He makes the following two definitions:

Definition 3 . A vector a = [ay, as, ...ay] € RY is said to be singular if most coordinates
are equal to zero.

Definition 4 . A singular vector a is said to have the m-mode-property if the non-zero
components can be grouped, in a natural way, into m different subgroups.

He gives a rule of thumb for the m-mode-property. ”If there is no background information,
the natural way to define a subgroup is to require that all components in a subgroup
shall have indices which differ at most 5, say, or by some other small number (Small in
comparison with the dimension N).” This idea is expressed as a formula by Ruhe [76] and
discussed later in this section.

Kaijser omits the nonlinear optimization in step 3, while Gustafson suggests Gauss-
Newton for this. Ruhe and Wedin [78] presents three algorithms for separable nonlinear
least squares of Gauss-Newton type. They separate the linear variables a from the non-
linear variables b and optimize in a keeping b constant and then optimize in b keeping
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a constant. The first optimization is simple, it reduces to a linear least squares problem.
In the second optimization, different methods to correct the residual vector and Jaco-
bian matrix are presented. Two of the methods give superlinear convergence; the same
convergence rate as the ordinary Gauss-Newton method. The third, and most simple,
algorithm has only linear convergence. All algorithms converge almost quadratically for
almost compatible problems. Thus are these algorithms very suitable for the exponential
fitting problem. One of the algorithms is implemented in our nonlinear program package
NLPLIB TB [38], which is part of the optimization environment TOMLAB [39].

In 1970 Cantor and Evans [18] wrote a paper on exponential sum fitting for equally distant
data points [18]. In 1977 Wiscombe and Evans rewrote this paper [88]. They said that
[18] seems to have been forgotten due to being theoretically quite advanced. In a third
paper by Evans, Gragg and LeVeque [30] the algorithm is extended to nonequidistant
time spacing and together with the use of divided differences overcome numerical ill-
conditioning when computing a. We first present some theory from [18] and then the
algorithms in [88] and [30].

Cantor and Evans use the exponential polynomial form (9) for equally distant data,
f( J)=>"r, 'diu{ . In the following we, for simplicity, make no difference between a and a
and assume n+1 data points 0, 1,...,n. Let a > 0 and u; € S =[0,1] . Then f(]) is called
a "positive exponential polynomial on S of degree p”. If ordered in the form 0 < u; <
;11 < 1, the representation is unique and is called "reduced form”. Denote the space F :=

[f(O) , f(l) s f(n)] and define C), := {F . f is positive exponential polynomial on S},
i.e. the smallest cone of all sequences (1,u,u?,...,u"). Based on these definitions they
derive two existence theorems. The existence of a unique representation is proved in

Theorem 2 . Ify := {y;}}_y € Cy is on the boundary of C, = then there erists a
unique positive exponential polynomial f of degree < n on S, representing y.

|7‘—1

Denote p(e) = le|” sgn (e).

Definition 5 . Py (z,y,7) =77 jw;u <f(n) - yj) 2.

The notation is Py (z,y,r) = Pr (), if y and r are understood. Using this definition it is
easy to see that Py (z) =0 (||F —yl||,)" /0a;, and we have

Theorem 3 . If 1 <1 < oo then the following equivalence is true:
A positive exponential polynomial f on S is a best approzimation to'y in the norm ||-||, <
Ps(z) >0 Vo € S and each Py (u;) = 0.

f is a strong best approximant to y if the following statement holds: If f is a best
= [[F =¥l

o

f(()) — Yo

approximant in the norm ||-||__, and, in addition 0 € S = wy

Theorem 4 . There exists a strong best approzimant f to y. If |IF — vyl #0, then f
1S UNLQqUE.
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The algorithm developed in [18] and [88] builds upon the optimality criterion for the
residual polynomial in Theorem 3:

Pi(x)>0 Vees b) (29)

Best fit & {

Criterion (29 a) is the common least-squares criterion for a. The idea of the method is
to jump between finding the linear coefficients a in (29 a) and solving (29 b) to obtain a
new best b. The algorithm is of stepwise regression type and starts with no terms and
iteratively adds and removes terms. The idea is different from that of Gustafson [35],
which starts with a lot of candidates and iteratively coalesce them. To minimize Py (z)
they use a special algorithm, which is not presented in their paper [88]. For the optimizing
in z, one could just form a grid in the S-space and make a direct computation of P (z) to
find its minimum. They claim that in practice u; tend to cluster close to v = 1 and thus
an equidistant distribution of the search points is not needed. A finer grid around old u;
can be used. The reason why they do not use a root search with derivatives involved, is
that such a search is notoriously ill-conditioned for high degree polynomials. The degree
in u becomes equal to n, one less than the number of measurement points.

The linear optimization is solved using a divided difference technique. They use a factor-
ization and orthogonalization process. The dropping of terms is done using a nonlinear
least squares algorithm. The least desirable term is determined and dropped by look-
ing for the first element passing zero while passing through the convex combinations of
old and new values of a. Let a®? denote the old a;-values, together with the new term
ap+1 = 0. Let a™ be the last computed a, possibly with some negative entries. The
studied convex combination is a%? (1 — 3) + a"* 3, searching from 8 = 0 towards 3 = 1.
Drop the first zero term and then compute a new least-squares solution.

Based on empirical tests, they have developed a set of convergence criteria:

i) % <€ Decrease of the total residual in a step.
i) Py (ug) > —e€o Residual polynomial almost positive. (30)

) uo —wil < €3 New terms close.
iv) Too many iterations Emergency stop.

Coalescence: At the end of the algorithm, close u; are replaced by a single term. The
method used find new parameter estimates by solving a set of nonlinear equations with
the Newtons method. They report that the loss of accuracy is usually tolerable and with
14 significant digits computations, they coped up to 150 data points. With 29 significant
digits computations, they coped up to 250 data points. A typical error was within 0.01%
to 0.001% and the number of terms were between 3 and 8. They find their method good
at recovering constructed data. In fact ”excellent ability” is reported. They also made a
preliminary test with inverse Laplace transform using Laguerre interpolation but found
it totally unsatisfactory. In [30] the algorithm is extended to the case of non equidistant
data points. Also a weighted norm is used in the least squares fitting.

Two algorithms by Ruhe. The first algorithm by Ruhe [77] is a stepwise nonlinear
regression algorithm. Define the inner product (x,y),, = x’ Wy with W =diag (1/y]2)
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and the exponential vector
exp (—bty)
e(d)=| : : (31)
exp (—bty,)

Ruhe considers two kinds of fitting criteria, either weighted least squares (Equation (14))
or maximum likelihood (Equation (15)). He states the convex cone optimality criterion

p(b) <0, b€, f], (32)

where p (b) = (y — y*, e (b)), is the discrete Laplace transform of the residual r = y — y*.

The algorithm to fulfil (32) makes a grid in b € [a, §]. If (32) is fulfilled, then stop.
Otherwise add the value b, to the vector b, which maximizes (y — y*, e (b));,. Find
the vector a corresponding to the new b using a nonnegative least squares algorithm
(NNLS). Then solve a weighted nonlinear least squares problem (or a maximum likelihood
approximation problem) to find the optimal values of the parameters (a,b) by a Gauss-
Newton algorithm. Ruhe uses a primitive cross validation method to find the optimal
number of terms, which sometimes indicates too few terms. In such cases he recommends
a more general cross validation method.

In [76] Ruhe analyses the sensitivity to data, which is detected as close terms in b; and by
looking at the size of @;. Defining the matrix E(b) = [e (b1), ..., e (b,)], the residual vector
r with elements 7; = >7_ a; exp (—b;t;) —y; is written asr = E(b)a — y and y*= E(b)a.
The second new main algorithm by Ruhe has three phases. The Phase I algorithm gives
the maximal number of terms:

1. Make a grid in b € [«, 3] giving [by, ..., bn].

2. Solve man [[E(b)a — yl|;, using a NNLS-algorithm.

3. Condense clusters with the formula 5" := 3% a;6;/ 3°¥ a; where r and k are
defined from a,_1 =0, a, - ap41 - Apio-...-ar >0, ag_; = 0. The result is a vector b
with p terms.

The clustering formula is the same as in [35] and the choice of terms to cluster is based
on the m-mode-property presented in [45]. The finer the grid, the more computational
effort needed and the more ill-conditioned is the matrix E(b). On the other hand, the
1-mode-property is nothing to strive for. Ruhe [75, page 17] recommends three terms for
each final exponent as ideal. For n data points, the usual result is p < (n+1) /2 and
most often a much smaller p.

In Phase II a nonlinear least squares algorithm finds the optimal parameter values with
p terms. If using a weighted least squares fit criterion, a separable algorithm is used with
the vector b from Phase I as initial values. If ML-weighting is used, a separable algorithm
can not be used as the vector a is no longer linear in the residual vector. In this case
the vector b from Phase I is used as initial values together with a vector a obtained by
solving a linear least squares problem using a NNLS algorithm.

The Hessian has a 2 x 2-block structure in the variables a and b. Ruhe uses a Marquardt-
like method: He sets the [1,2] and [2, 1]-block to zero and replaces the diagonal element
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in the [2, 2]-block with their absolute values. Ruhe motivates the method with three argu-
ments: The problem can be solved as an augmented least-squares problem; a nonpositive
definite Hessian is avoided; quadratic convergence close to a minimum is achieved.

Phase III investigates if the current p is optimal by checking criterion (32). Ruhe also
plots the transformed residual p (b) on [, §]. If the transformed residual is nonpositive,
an optimum is found. Otherwise go to Phase I.

Tests were made on some artificial and some empirical data series. There were some
problems with convergence to local minima. A plot of the transformed residual showed
to be positive sometimes.

8 Minimizing the least-squares objective by optimiza-
tion

In this section we consider the problem of minimizing the nonlinear least squares objective
by standard optimization techniques. This problem (NLLS)) is formulated as to minimize
a function

1 1
min s (x) = 5 Zr? (x) = §rTr. (33)
7j=1

As we have seen in previous sections some kind of nonlinear least squares problem is a
subproblem in many of the more advanced algorithms for the exponential fitting problem.
One problem, which is much more prominent for the exponential fitting problem, is the
choice of initial values for the optimization. This problem is often overlooked. We first
discuss some of the references that have used standard numerical optimization code and
then give some general views of the pros and cons of different algorithms for the nonlinear
least squares problem.

Steyn and Wyk [85] present some initial value techniques (see Section 2 and 4) and then
compare two implementations of nonlinear least squares algorithms for three special sets of
initial values. A Gauss-Newton routine named BMDP3R and a Marquardt-routine in the
program SHARE Program Library Agency. The two implementations were approximately
equal, maybe with some differences dependent on the implementations. They preferred
the Marquardt method due to better implementation and that this method is less sensitive
to initial values.

Jennrich and Bright [42] also use the Gauss-Newton routine BMPD3R. Their data origi-
nates from a two-compartment model of sulfate in the body of a baboon. From the slope
of the logarithm of the first part and the last part of the time series, they pick out an
initial b. A variety of other initial values were also tried with the same result. Thus the
initial values for the Gauss-Newton method were not critical in this case.

In the early seventies Kirkegaard and Eldrup [47] developed a Fortran program POSITRON-
FIT implementing a separable nonlinear least squares algorithm to estimate positron
lifetime spectra in nuclear physics. The algorithm is a semi-linear Marquardt type of
algorithm. The function to be fitted is a sum with constant background ag, defined as
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fi =ao+ > 5 F;; of decaying exponentials
Fij = a;[Yij = Yign — et ((t; = To) /o) +erf (11 = To) /o)] (34)

where

Y, = exp <—bz~ <<tj ST %bﬁ))) . <1 " <%bia (- T) /a>> . (3)

The noise is assumed to be Gaussian. The unknown parameters to be determined are

a =lap, a,...,ay] and b =[Ty, by,....;b,]. (36)

The program converges rapidly in most cases and has been used by many research groups.
In their tests the program convergenced in about fifteen iterations to the same point for
different initial values, except for a few cases where the background was mixed with a very
long lifetime. Only a few cases gave more than three terms due to the variance, which
did not decrease compared to three terms. But two terms were normally insufficient to
give a good fit. Later they extended the program [48] for non-Gaussian errors. Problem
with sensitivity for fast components were reported. Very short lifetimes are reasonably
resolved, but the results are sensitive to input data.

Since the development of the basic Gauss-Newton and Levenberg-Marquardt type of algo-
rithms, new types of optimization algorithms have been developed for the NLLS problem.
Combining such an algorithm with a separable technique, a powerful algorithm for the
exponential fitting problem is obtained. We now discuss in more general terms algorithms
for nonlinear least squares.

The derivatives of (33) are Vs = J'r = g and V?s = JTJ+ 37" r; (%) S; (x) = H. We
denote the two parts of the Hessian C = J*J and S = > -1 75 (x)Si (x). The problem
is that S is usually computationally expensive. The Jacobian J may also be expensive
to compute and it is common to make errors in the analytic derivation and coding of
this matrix. Therefor it is an advantage if computer algebra or automatic differentiation
techniques are possible to use. From an optimization point of view, the nonlinear least
squares problems are often divided into two or three classes:

Definition 6 . Zero residual problem (Z): The residual in a (local) optimum x* is zero.

Definition 7 . Small residual problem (S): The residual in a (local) optimum z* is small
and s is close to linear.

Definition 8 . Large residual problem (L): The residual in a (local) optimum z* is large
or s is strongly nonlinear.

The problem of fitting an exponential sum, is classified as (L) due to its nonlinearity.
As the number of terms p increases, the exponential fitting problem gets more and more
ill-conditioned, which demands more and more on the numerical implementation and
properties of the algorithm used. A short overview of some quasi-Newton methods for
getting a search direction d and their performance are:
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e The standard DFP and BFGS methods lack some of the second order information
in C and S and are not locally quadratic convergent. BFGS gives superlinear but
not quadratic convergence for (7).

e More suited for minimizing sum of squares is the Gauss-Newton method (GN): solve
Cd = —g. Near a local optimum of the kind (Z) we have r ~ 0 and thus H ~ C.
The GN method has local quadratic convergence and behaves well. For (S) it has
quick linear convergence but for (L) it behaves poorly (see [27, page 225]).

e If the Jacobian J is strongly rank deficient, the system Cd = —g has not a well-
defined solution. The Levenberg-Marquardt method (LM) overcome this by adding
a diagonal matrix kI or D so that the system (C+kI)d = —g or (C+D)d = —g
get a unique solution. This give a robust method, but on the other hand it might
behave more like steepest descent and get a slow convergence. For problems (L) this
Hessian approximation does not take into account the second part S of the Hessian.
Nazareth [58] presents some results from Meyer (1970) and McKeown (1975). By
studying the spectral radius p of C™'S in a local optimum z*, he concludes only
linear convergence for GN and LM if the spectral radius is not small. (See also [27,
page 233] or [32, page 116]).

e Another way to handle the ill-conditioning of the Jacobian is to use some kind of
regularization, like subspace minimization [51]. We have implemented this technique
in the nonlinear least squares solvers in NLPLIB TB [37], and this works well for
the exponential fitting problem.

e Hybrid methods. As GN has good properties for (Z) and (S) and BFGS has good
properties for general NLP, one can invent a criterion for switching between GN and
BFGS. This strategy is used by Al-Baali and Fletcher [6] and Fletcher and Xu [31].
The critical point is when to switch between the two algorithms in a hybrid method.
Fletcher simply suggests a GN-step when s¥ — s¥1 > ¢ . % with e.g. ¢t = 0.2 ([32,
page 117]).

e Structured secant methods: Another way is to invent a QN-updated approximation
S for the S-part of the Hessian and use H ~ C+S = B. Such methods has been
discussed in [28], [27], [89] and [41].

The motivation for structured secant methods differs. Some hope for a better convergence
property than LM. Huschens worries about the switch criterion in hybrid methods. As
GN has local quadratic convergence for (Z), it is also desirable to get an approximation
matrix S which approaches zero in the case of a zero residual problem (Z). This is obtained
by either sizing B = C+0S with some o or using S = ||r|| A as an adaptive scaling. The
aim of these methods could be viewed as finding a hybrid method with continuous switch.

In recent years parallel computing algorithms using distributed systems for the NLLS
problem has been investigated. In [19] Coleman and Plassmann propose a parallel LM
algorithm for solving NLLS. In [20] they analyze the efficiency of this method. They find
the experimental results to be ”essentially full efficiency when the row size is sufficiently
larger than the number of processors”.
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9 Some theoretical results

Cromme has written some papers on approximation in Chebyshev norm. In [22] he shows
that ’local strong unicity’ is sufficient to give good numerical behavior of the algorithms.
He investigates the usefulness of Chebyshev-approximation also for exponential sums and
the use of strong local unicity. Cromme works in the same spirit in [25]. A theorem about
strong unique local best approximations and regularity in a for a problem of minimizing
Ilf — F (a)]|, implies quadratic convergence for a sequence of iterations in this norm.

In [23] Cromme gives a basis for convergence analysis for a large class of iterative methods.
He studies the notion ”strong uniqueness” and prove a theorem on convergence order. He
gives some examples of applications. One of these is the exponential sum problem. To
overcome problems of separating close terms, he propose a second order method to be
used.

In [24] and [25] Cromme derives a differential characterization. He reports that it retains
differentiability and regularity even for coalescing terms. This helps to derive necessary
and sufficient conditions for local best approximations. It could be of use in the develop-
ment of numerical procedures.

In 1981 Braess writes an introduction to the critical point theory [15] and some conse-
quences of it [14]. In [15] he discusses C''-manifolds, Strong unique local best approxima-
tions (1.b.a), the Haar-property ( i.e. Spanning a Haar subspace under some conditions)
and descending flow (described as continuous variant of Newton iteration).

In [14] Braess theorem on unique Haar-embedded manifolds is applied to the exponential
sum problem. The main result of this paper is that the number of solutions are bounded
by ﬁ?"/?’ < ¢, < n! Thus it is no idea to try to find all local best approximations in a
general case.

An empirical illustration is given by Van den Bos in [86]. He finds that a small number
of data points may give fewer terms then expected. He gives an explanation to some of
this phenomena in terms of catastrophe theory. His hope is that future research (after
1980) will enable experimental design to avoid what he calls structural differences, i.e.
the fit gives fewer terms then is hidden in the source of the data points. To explain this
phenomena start by defining a weighted sum of functions g (¢) as

f(t,a,b) Za, (37)

The function g (t) can be exponential type, Gaussian peaks etc. The normal equations
for the residual square sum

—Z f(t;,a,b)]? (38)

(39)

Sy — f(t,ab)gtb) = 0, i=1,..p
n g(t,bs . .
Z] 1 [y f (tj7a b)] gg;) ) = O, 1 = ]., ey P
If we have a solution (stationary point) (a*, b*) to the normal equations and split one

term into two: a; = a;; + a2, b; = by = b, we get a bigger set of variables (a*',b’“),
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which is also a solution to the normal equations. This can be viewed as a bifurcation
point in the fitting process. A numerical example by Van Den Bos [86] is illustrated
below. Set f(t) = 0.7 exp(—t) + 0.3 exp(—0.8t), use equidistant data ¢t = {0.4,0.8,...,4.0}
and distort the exact data with errors e; so that y; = f(¢;) +e;. Plot the sum of squared
residuals (38) with and without errors as a function of by 2, shown in Figure 3 and Figure
4, respectively.

Van Den Bos studied three standard deviations in twenty experiments and found that
sometimes the saddle point has turned into a unique minimum or that the absolute min-
imum and the second one have changed place with respect to the line by = by,. That
the three stationary points have become one, he explains by making a Taylor expansion
around some point b; = by = b and then making the variable transformation b, = b; — b,
b, = by — b. By diagonalizing the Hessian of the least squares function in this point b he
finds conditions for the types of the stationary points. This explains why the stationary
points become one. To explain why the two minima are interchanged, he uses catastrophe
theory and views it as a cusp point, which defines a bifurcation set. As a simple example
we 1llustrate with errors e; = 0.005, e; = 0.005 and the other errors set to zero.

.

Figure 3: Van Den Bos example. The undisturbed squared norm of the least squares
residual as a function of the parameters b; and b,. The figure show two minima and one
saddle point.

Without distortion there are minima in (1.0, 0.8) and (0.874,1.096) and a saddle point in
(0.933,0.933). The first minimum is absolute. Note that the saddle is on the line b; = b,.
The disturbed data give a unique minimum. The bifurcation is between 0.0035 and 0.004
for the errors, where the plot turn from a saddle as in Figure 3 to a bowl as in Figure 4.

Structural stability is also discussed by Jongen and Weber [43]. They present a result on
necessary and sufficient conditions for structural stability of a constrained optimization
problem defined as

min f (x)
hi(x) =0, i €1 ( set of indices) (40)
gj(x) <0, jeJ (setof indices).

They define equivalent optimization problems as the existence of continuous mappings



A Review of the Problem of Fitting Positive Exponential Sums to Empirical Data 22

0.0001 /////W%V
. = Ei )
8e-05

b2 1.1

121

Figure 4: Van Den Bos example. The disturbed squared norm of the least squares residual
as a function of the parameters b; and b,. The function now has one unique minima. The
banana shaped valley looks narrow due to the small vertical scaling. With equal vertical
and horizontal scaling the figure will be much more flat.

with some homeomorphic properties and define Structurally stable as equivalence between
two problems in a C?—neighborhood. A third definition is a constraint qualification:

Definition 9 . The Mangasarian-Fromovitz constraint qualification (MFCQ) holds if the
following two conditions (MF1, MF2) are satisfied:

MF1: The gradient vectors Dh; (x) of the equalities in (40) are linearly independent.
MF2: There exists a vector £ € RN satisfying both
Dhi(z)€=0, i€l

and
Dg;(2)§ >0, j € Jy(x),

where Jo () = {j : g; (xr) = 0}.
The main theorem proved is

Theorem 5 . An optimization problem (40) with compact feasible set is structurally
stable < The conditions C1, C2 and C3 are fulfilled. The conditions are:

C1: The MFCQ) condition is satisfied at every feasible point.
C2: Fvery Karush-Kuhn-Tucker point is strongly stable in the sense of Kojima [/9].

C3: Different Karush-Kuhn-Tucker points have different function values.

It seems that condition C3 is not fulfilled, because numerically, the goodness of fit seems to
coincide for different points according to [86]. So the problem is probably not structurally
stable. Jongen has written other articles on the subject, e.g. [34].
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10 Relations to mathematical systems theory

Rewriting a linear homogeneous differential equation as a square system x= Ax and
summing the parts together by y = Cx exemplifies the relation between the exponential
sum problem (2) and the partial realization problem of identifying matrices A, C in a
linear control problem with a finite data set. If there is an external linear input u with
x= Ax + Bu, a transfer function W(z) = C(zI — A)"'B can be defined as a matrix
fraction description (MFD). There is much written literature in this field. Here follows a
brief outline.

In [73] Rissanen developed an iterative algorithm by letting the numerical rank of a
Hankel matrix A determine the order of the system. This is the same matrix as in (8). In
his thesis on MFD-theory, Kung [50] developed algorithms for determining the greatest
common divisor of two polynomial matrices and extended some results for systems of one
independent variable to the two variable case. As a tool in systems theory, Brockett [16]
showed that sequences of at least McMillan degree k is a differentiable manifold. A result
which simplifies some proofs in systems theory. Gragg studied the correspondence between
infinite Hankel matrices, their associated formal Laurent series f(2) = > 72 f;2/~" and
real sequences {f;}32,. On the other hand, if the numbers f; are regarded as moments,
the theory of the moment problem can be applied. A classical book on this is the one by
Akhiezer [5]. Gragg and Lindquist [33] studied the scalar partial realization problem from
a numerical linear algebra point of view. Another article pointing out the interdependence
between the different mathematical branches is the one by Martin and Clyde [55]. They
showed that the question of observability is equivalent to the existence of a solution to a
boundary value problem. In the case where the linear differential equation has multiple
roots, the coefficients a; in the exponential sum model (1) become polynomials. From a
mathematical systems theory point of view Ammar et al. developed an algorithm for this
problem in [7].

11 Conclusions and further work

The exponential fitting problem is a tough one and although very much research has been
done for the problem more efficient and reliable algorithms should be developed. Given
good enough starting points, it seems like a stepwise regression algorithm is preferable. To
find the optimal parameters given the number of exponential terms p, a constrained non-
linear least squares algorithm with robust performance should be run. The currently best
choice is probably a hybrid Gauss-Newton and Quasi-Newton algorithm. An information
criterion is then used to determine the optimal number of terms p.

It is essential to have good starting values for the nonlinear parameter estimation. To find
good starting values we have found the idea of geometrical sums, described in Section 4,
to be fruitful and an alternative to a modified Prony algorithm. Work on finding good
starting values should be continued and used in a forth-coming general, robust exponential
fitting algorithm.
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