Kenneth Holmstrom, Mattias Bjorkman and Erik Dotzauer

Research Report in MATHEMATICS / APPLIED MATHEMATICS

TOMLAB v1.0 User’s Guide

Applied Optimization and Modeling Group (TOM) 2

Center for Mathematical Modeling
Department of Mathematics and Physics
Malardalen University
P.O. Box 883, SE-721 23 Visteras, Sweden

Technical Report IMa-TOM-1999-01

April 26, 1999

2

161

D - 5 _ (\\.
DpAN

051

1 Puge
\,

Max[reri EM' Epst

Eigrnai 03 EpsFl

1
Diefaults I
Advanced]

Subject

g Uncanstrained [uc] v]

Prakiem

iHosenbmcks batians Arl

Llasothm

iSafe Guard 4 BEGS v]
Pt

gl:nnlour ‘;

Stating Walues

”‘W 9“rm?mw

e

):me | B
we

sl wi
Plot I
Info I

Fun
Close l

KEYWORDS: MATLAB, Optimization, Mathematical Software, Algorithms, Nonlinear Least Squares.

2The TOM home page is

http://www.ima.mdh.se/tom.

TOMLAB v1.0 User’s Guide

Contents

1 The TOMLAB Environment

1.1 Basic Questions About TOMLAB e
1.2 Background e e e e
1.3 Imstallation of TOMLAB L e
1.4 Installation of NLPLIB TB e
1.4.1 Imstallation on PC systems e
1.4.2 Installation on UNIX systems o o o i
1.5 Imstallation of OPERA TB e
1.5.1 Imstallation on PC systems L e
1.5.2 Installation on UNIX systems o i
1.6 Using Matlab 5.0 or 5.1 e
NLPLIB TB
2.1 The Design of NLPLIB e
2.1.1 Global Variables
2.2 Solver Routines in NLPLIB TB e
2.3 Utility Routines in NLPLIB TB s
2.3.1 Low Level Routines and Test Problems
2.3.2 Test Routines for the System L
2.4 The Menu Systems oL e e e e e e e e
2.5 The Graphical User Interface e
2.5.1 The Advanced Mode L
2.6 How to Define Optimization Problems in NLPLIBTB
2.6.1 Defining Unconstrained Problems L
2.6.2 Defining Box-bounded Global Optimization Problems
2.6.3 Defining Nonlinear Least Squares Problems,
2.6.4 Defining Constrained Problems L oo oo
2.6.5 Defining Global Mixed-Integer Nonlinear Programming Problems
2.6.6 Defining Constrained Nonlinear Least Squares Problems
2.6.7 Defining Quadratic Problems L oL o
2.6.8 Defining Exponential Sum Fitting Problems oL 0oL
2.6.9 Defining Problems in Own Problem Definition Files
2.6.10 Special Notes oL e
2.7 How to Solve Optimization Problems Using NLPLIB TB
2.7.1 Using the Driver Routines L L
2.7.2 Direct Call to an Optimization Routine
2.7.3 A Direct Approach toa QP Solution
2.8 Printing Utilities and Print Levels o . oL L
2.9 Notes about Special Features e e
2.9.1 Approximation of Derivatives L

2.9.2 Partially Separable Functions L

© © © 0w 0 W 0 o N N

TOMLAB v1.0 User’s Guide 3

2.9.3 Recursivesolvercalls. oL L 60

2.10 Driver Routines in NLPLIB TB e 61
2.10.1 clsRun . . . oL 61
2.10.2 conRun e e e 61
2.10.3 glbRuno 62
2104 glcRun 63
2.10.5 IsRun . . . L 64
2.10.6 gpRun 65
2.10.7 ucRun . . .o 66

2.11 Optimization Routines in NLPLIB TB 67
2.11.1 clsSolve L 67
2.11.2 conSolve L e 69
2.11.3 gblSolve o e 70
2.11.4 gelSolve . . . L L e 71
2.11.5 glbSolve 73
2.11.6 gleSolve 75
2.11.7 1sSolve . . . o o e e 76
2.11.8 nlpSolve L e e 78
2019 gpe . ..o 79
2.11.10gpBiggs . . . o . e e 80

210 10gpIm . . . oL 80
2.11.12gpSolve e e 81
2.11.13sTrustR . . . o o e e e 82
2.11.14ucSolveo e 84

2.12 Optimization Subfunction Utilities in NLPLIBTB 85
2.12.1 0ntpol2 . . L 85
2,122 intpold L 85
2023 TIT . . L L e e e e 86
2.12.4 LineSearch e 87
2.12.5 preSolveo L e e 88

2.13 User Utility Functions in NLPLIB TB o oo .. 88
2.13.1 PrintResult oL e 88
2.13.2 PrintSolvers oL e e e 89
2.13.3 runtesto e 89
2,134 systest L 90

3 OPERA TB 91
3.1 Optimization Algorithms and Solversin OPERA TB 91
3.1.1 Linear Programming L L e 91
3.1.2 Transportation Programming L L e 93
3.1.3 Network Programming L e 93

3.1.4 Integer Programming L L 94

TOMLAB v1.0 User’s Guide 4

3.2

3.3
3.4

3.5

3.6

3.1.5 Dynamic Programming L o 94
3.1.6 Lagrangian Relaxation L L e 94
3.1.7 Utility Routines e 95
How to Solve Optimization Problems Using OPERATB 96
3.2.1 How to Solve Linear Programming Problems 96
3.2.2 How to Solve Transportation Programming Problems 102
3.2.3 How to Solve Network Programming Problems 102
3.2.4 How to Solve Integer Programming Problems 103
3.2.5 How to Solve Dynamic Programming Problems, 104
3.2.6 How to Solve Lagrangian Relaxation Problems 106
Printing Utilities and Print Levels o o 107
Driver Routines in OPERA TB L 107
3.4.1 IpRun 107
Optimization Routines in OPERA TB o 108
3.5.1 akarmark ... e e 108
3.5.2 balas e e 109
3.5.3 cutplaneo L e 110
3.5.4 dijkstra e e e e 110
3.5.5 dpinvent L e e e e e e 111
3.5.6 dpknap 112
3.5.7 DualSolve e 112
3.5.8 karmark oL e e e e 114
3.5.9 ksrelax e 115
3.5.10 labelcoro e 116
3.5.11 Ipdualo 116
3.5.12 Ipkarma e e e 117
3.5.13 Ipsimplo e e e e 118
3.5.14 Ipsimp2 e e e 118
3.5.15 IpSolve . . . L 119
3.5.16 maxflow e e 120
3.5.17 mipSolve . . .o e e e e 121
3.5.18 modlabel e 122
3.5.19 NWsimplx oo o e e 123
3.5.20 PhaselSimplex e e e e e 123
3.5.21 Phase2Simplex e e e 125
3.5.22 salesman Lo e e e 126
3.5.23 TPsimplx o o e e e 126
3.5.24 travelng e e e 127
3.5.25 wrelax e e e 128
Optimization Subfunction Utilities in OPERA TB 129
3.6.1 afrstar e e e 129

3.6.2 gsearch e 129

TOMLAB v1.0 User’s Guide

3.6.3 gsearchq
3.6.4 mintree L e e e
3.6.50 TPImMC e e e
3.6.6 TPOW
3.6.7 TPvogel e
3.6.8 z2frstaro e e e
3.7 User Utility Functions in OPERA TB
3.7.1 cpTransf o L e

4 Interfaces
4.1 The MEX-file Interface
4.2 The Matlab Optimization Toolbox Interface
4.3 The CUTE Interface L e
4.4 The AMPL Interface o . L o e

A Description of Algorithms in NLPLIB TB
A1 csSolve . ..o
A.1.1 Convergence criterias. o v i e e e
A1.2 Stopcriterias oL e e
A.1.3 Computation of Search Direction
A.1.4 Update Procedure e e
A2 glbSolve e
A21 conhull

A3 Intpol2 e e e
A4 Intpol3d e e
A5 LineSearch L e
A5.1 Bracketing Phase L
A.5.2 Sectioning Phase
A6 IsSolve . . . L
A6.1 Convergence criterias. e
A.6.2 Stopcriterias e e
A.6.3 Computation of Search Direction
A.6.4 Update Procedure e
A7 ucSolve . L
A7 1 Convergence Criterias. o vt e e
A7.2 Stopcriteriaso L e e
A.7.3 Computation of Search Direction
A.7.4 Update Procedure e e

B Description of Algorithms in OPERA TB
B.1 akarmark e

130
130
131
131
132
132
133
133

134
134
134
134
135

136
136
138
139
139
139
140
141
141
142
142
142
143
143
144
144
146
146
146
146
148
150
150
150
151

153

TOMLAB v1.0 User’s Guide 6

B.2 cutplane 153
B.3 dijkstra e e 154
B4 dpinvent L e e e e 155
B.5 dpknap e e e 155
B.6 gsearch e 156
B.7 gsearchq L 156
B.8 karmark 156
B.9 ksrelaxo e 157
B.10labelcor e e 158
B.11 Ipdual e e e e 158
B2 lpkarmao e e e e 159
B.13 Ipsimpl . . . o e e 160
B.14 Ipsimp2 . . . L e e e e 160
B.lbmaxflow L 161
B.16 modlabel 162
B.17 mintree e 162
B8 TPme o o e 162
B9 TPonw . . .o e 162
B.20 TPsimplx o o e e e 163
B.21 TPvogel o e 164

B.22 urelax e e e s e 165

TOMLAB v1.0 User’s Guide 7

1 The TOMLAB Environment

In this section the main features of TOMLAB are presented. This will include some frequently asked questions,
stated and answered in Section 1.1, and its historical background, outlined in Section 1.2. The installation of its
two major parts, the NLPLIB TB toolbox and the OPERA TB toolbox, are discussed in Section 1.4 and Section
1.5, respectively.

1.1 Basic Questions About TOMLAB

What is TOMLAB? TOMLAB is a general purpose, open and integrated development environment in Matlab
for research and teaching in optimization. The main paper on TOMLAB is [33]. The main parts of TOMLAB is
the toolboxes NLPLIB TB and OPERA TB.

What is NLPLIB TB? NLPLIB TB is a Matlab toolbox for nonlinear programming and parameter estimation,
presented in [34].

What is OPERA TB? OPERA TB is a Matlab toolbox for linear and discrete optimization, presented in. [35].

Why should T use TOMLAB? TOMLAB gives you easy access to a large set of standard test problems,
optimization solvers and utilities. Furthermore, you can easily define your own problems and try to solve them
using any solver. The basic design principle in TOMLAB is: Define your problem once, run all available solvers.

Can I reach other program packages using TOMLAB? Yes, by use of the TOMLAB MEX-file interfaces
it is possible to call general-purpose solvers implemented in Fortran or C. It is also possible to call solvers in the
Matlab Optimization Toolbox. Furthermore, using the MEX-file interfaces, problems in the CUTE test problem
data base and problems defined in the AMPL modeling language can be solved.

How do T solve a problem using TOMLAB?Y You can solve a problem either by a direct call to a solver or a

general multi-solver driver routine, or interactively, using a graphical user interface (GUI) [17] or a menu system.

1.2 Background

Many scientists and engineers are using Matlab as a modeling and analysis tool, but for the solution of optimization
problems, the support is weak. That was the motive for starting the development of TOMLAB; a general-purpose,
open and integrated development environment in Matlab for research and teaching in optimization.

To solve optimization problems, traditionally the user has been forced to write a Fortran code that calls some
standard solver written as a Fortran subroutine. For nonlinear problems, the user must also write subroutines
computing the objective function value and the vector of constraint function values. The needed derivatives
are either explicitly coded, computed by using numerical differences or derived using automatic differentiation
techniques.

In recent years several modeling languages are developed, like AIMMS [8], AMPL [24], ASCEND [46], GAMS [9, 14]
and LINGO [1]. The modeling system acts as a preprocessor. The user describes the details of his problem in a very
verbal language; an opposite to the concise mathematical description of the problem. The problem description file
is normally modified in a text editor, with help from example files solving the same type of problem. Much effort
is directed to the development of more user friendly interfaces. The model system processes the input description
file and calls any of the available solvers. For a solver to be accessible in the modeling system, special types of
interfaces are developed.

The modeling language approach is suitable for many management and decision problems, but may not always
be the best way for engineering problems, which often are nonlinear with a complicated problem description.
Until recently, the support for nonlinear problems in the modeling languages has been crude. This is now rapidly
changing [18].

For people with a mathematical background, modeling languages often seems to be a very tedious way to define an
optimization problem. There has been several attempts to find languages more suitable than Fortran or C/C++
to describe mathematical problems, like the compact and powerful APL language [37, 47]. Nowadays, languages
like Matlab has a rapid growth of users. Matlab was originally created [43] as a preprocessor to the standard
Fortran subroutine libraries in numerical linear algebra, LINPACK [16] and EISPACK [51] [25], much the same
idea as the modeling languages discussed above. Matlab of today is an advanced and powerful tool, with graphics,

TOMLAB v1.0 User’s Guide 8

animation and advanced menu design possibilities integrated with the mathematics. The Matlab language has
made the development of toolboxes possible, which serves as a direct extension to the language itself. Using Matlab
as an environment for solving optimization problems offers much more possibilities for analysis than just the pure
solution of the problem.

The concept of TOMLAB is to integrate all different systems, getting access to the best of all worlds. TOMLAB
should be seen as a complement to existing model languages, for the user needing more power and flexibility than
given by a modeling system.

1.3 Installation of TOMLAB

The normal distribution of TOMLAB includes NLPLIB TB and OPERA TB and some extra sub directories
described in the file contents.m in the main TOMLAB directory. This directory also includes a file tomlab.m,
which describes the installation. There are two options. Either the Matlab search paths for TOMLAB should be
made permanent or set temporarily for each run of TOMLAB. To make the Matlab search path permanent, either
the file startup.m should be edited or the user may set the search paths according to the general instructions given
by Math Works, Inc. To make temporarily search paths, the easiest way is to start Matlab, go to the TOMLAB
main directory, and call findpath. If, for example, on a PC, TOMLAB is installed in \matlab\tomlab, execute

cd c:\matlab\tomlab
findpath

If you are using an old Matlab version, see the installation instructions for NLPLIB TB and OPERA TB below.

The normal distribution of TOMLAB does not include the DLL files for CUTE, AMPL and the MEX solvers that
are needed on PC systems, neither the code to generate these files on Unix systems. Contact the authors if any of
these options are needed.

1.4 Installation of NLPLIB TB

If NLPLIB TB is installed as a stand-alone toolbox, the routines PhaselSimplex, Phase2Simplez, lpDef, mPrint,
printmat, print, rprinte and xprinti must be included from OPERA TB.

1.4.1 Installation on PC systems

NLPLIB TB is normally installed as part of TOMLAB, with the subpath \tomlab\nlplib. On PC systems a
normal choice of full path is \matlab\tomlab\nlplib or \matlab\toolbox\tomlab\nlplib. This path must be added
to the Matlab search path. Before starting a session running NLPLIB TB, call nilplibInit, which sets the number
of output characters per row used and declares nearly all the global variables. If the user has a screen with less
than 120 columns, the variable MAXCOLS in nilplibInit should be changed to the correct number.

1.4.2 Installation on UNIX systems

NLPLIB TB is normally installed as part of TOMLAB, with the subpath /tomlab/nlplib. A possible full path is
/home/tomlab/nlplib or /home/matlab/toolbox/tomlab/nlplib. This path must be added to the Matlab search
path. Before starting a session running NLPLIB TB, call niplibInit, which sets the number of output characters
per row used and declares nearly all the global variables. If the user has a screen with less than 120 columns, the
variable MAXCOLS in nilplibInit should be changed to the correct number.

1.5 Installation of OPERA TB

If OPERA TB is installed as a stand-alone toolbox (not recommended), the routines inputR, inputSet, optParamDef,
optParamSet, backsub and goptions must be included from NLPLIB TB. The LP multi-driver routine IlpRun, the
LP menu program lpOpt, and the solvers IpSolve and DualSolve will not work without NLPLIB TB.

TOMLAB v1.0 User’s Guide 9

1.5.1 Installation on PC systems

OPERA TB is normally installed as part of TOMLAB, with the subpath \tomlab\opera. On PC systems a normal
choice is \matlab\tomlab\opera or \matlab\toolbox\tomlab\opera. This path must be added to the Matlab search
path. Before starting a session running OPERA TB, call operalnit, which sets the number of output characters
per row used and declares nearly all the global variables. If the user has a screen with less than 120 columns, the
variable MAXCOLS in operalnit should be changed to the correct number.

The example files are stored in a separate directory, \tomlab\operdemo. The full path should be added to the
Matlab search path. As a possible alternative you can move to this directory when you want to run these files.

1.5.2 Installation on UNIX systems

OPERA TB is normally installed as part of TOMLAB, with the subpath /tomlab/opera. A possible full path is
/home/tomlab/opera or /home/matlab/toolbox/tomlab/opera. This path must be added to the Matlab search
path. Before starting a session running OPERA TB, call operalnit, which sets the number of output characters
per row used and declares nearly all the global variables. If the user has a screen with less than 120 columns, the
variable MAXCOLS in operalnit should be changed to the correct number.

The example files are stored in a separate directory, usually in a directory /home/tomlab/operdemo or
/home/matlab/toolbox/tomlab/operdemo. The full path could be added to the Matlab search path. As a possible
alternative you can move to this directory when you want to run these files.

1.6 Using Matlab 5.0 or 5.1

Are you are running TOMLAB under Matlab 5.0 or 5.17

If running on PC then the directory matlab5.1 must be put before the directories nilplib and opera in the Matlab
search path. This could be done by calling the routine bugs1.

If running on Unix then the directory wuniz5.1 must be put before the directories nlplib and opera in the Matlab
search path. This could be done by calling the routine uniz51.

The matlab5.1 directory contains two routines, strempi and znargin. The command strempi, used by some
TOMLAB routines, is a Matlab 5.2 command. Therefore, the matlab5.1 directory routine strcmpi is created
for 5.0/5.1 users. It simply calls stremp after doing upper on the arguments.

A bug in Matlab 5.1 on PC for the nargin command makes it necessary to call nargin with only non-capitalized
letters. The routine znargin in Matlab 5.1 does lower on the arguments in the call to nargin, and the znargin
routine in the nlplib directory does not do it. On unix systems it is necessary to keep the exact function name.

The unizb.1 directory contains one routine, strempi.

TOMLAB v1.0 User’s Guide 10

2 NLPLIB TB

NLPLIB TB is a Matlab toolbox for nonlinear programming and parameter estimation and gives you easy access
to a large set of standard test problems, optimization solvers and utilities. Furthermore, you can easily define your
own problems and try to solve them using any solver.

In the following subsections, NLPLIB TB is presented. In Section 2.1, its design and basic structure are discussed.
Section 2.2 - Section 2.3.1 gives an overview of the implemented solver and utility routines. The menu system is
presented in Section 2.4 and the Graphical User Interface in Section 2.5. How to define new problems is described
in Section 2.6 and a description of how to solve a problem is given in Section 2.7. The possible amount of print
output is discussed in Section 2.8. Finally, detailed descriptions of all implemented routines are given in Section
2.10 - 2.13.

2.1 The Design of NLPLIB

In this section we discuss the design of NLPLIB TB. As the scope of NLPLIB TB is large and broad, there is a
clear need of a well-designed system. It is also necessary to use the power of the Matlab language, to make the
system flexible and easy to use and maintain. We have used the concept of structure arrays and made heavy use of
both the ability in Matlab to execute Matlab code defined as string expressions and to execute functions specified
by a string.

Currently NLPLIB TB consists of about 48000 lines of m-file code in more than 265 files with algorithms, utilities
and predefined problems. This motivates a well-defined naming convention and design.

NLPLIB TB solves a number of different types of optimization problems. Currently, we have defined the types
listed in Table 1. The global variable probType is the current type to be solved. An optimization solver is defined
to be of type solvType, where solvType is any of the probType entries in Table 1. It is clear that a solver of a certain
solvType is able to solve a problem defined to be of another type. For example, a constrained nonlinear programming
solver should be able to solve unconstrained problems and constrained nonlinear least squares problems.

Table 1: The different types of optimization problems treated in NLPLIB TB.

probType Number Description of the type of problem

uc 1 Unconstrained optimization (incl. bound constraints).

qp 2 Quadratic programming.
con 3 Constrained nonlinear optimization.

Is 4 Nonlinear least squares problems (incl. bound constraints).
exp) Exponential fitting problems.

cls 6 Constrained nonlinear least squares problems.

nts 7 Nonlinear time series.

Ip 8 Linear programming.

glb 9 Box-bounded global optimization.

glc 10 Global mixed-integer nonlinear programming.

Define probSet to be a set of defined optimization problems to be solved. Each probSet belongs to a certain class
of optimization problems of type probType. Each probSet is physically stored in one file. In Table 2 the currently
defined problem sets are listed, and new probSet sets are easily added. The probSet usr is defined in order to make
the inclusion of a few optimization problems of any type a simple and fast task. This method is to prefer when
NLPLIB TB is used in optimization courses.

A flow-sheet of the process of optimization in NLPLIB TB is shown in Figure 1. Normally, a single optimization
problem is solved running any of the menu systems (one for each solvType), or using the Graphical User Interface
(GUI). When several problems are to be solved, e.g. in algorithmic development, it is inefficient to use an interactive
system. This is symbolized with the Advanced User box in the figure, which directly runs the Optimization Driver.
The Interface Routines in Figure 1 are used to convert computational results to the form expected by different
solvers.

A set of Matlab m-files are needed to implement the chain of function calls for all solver types and problem sets,

TOMLAB v1.0 User’s Guide

User

Menu SYSteHj/G) Advanced User

Optimization Driver : Setup Problem |
— |

———————————————

Define names of functions
computing f(x), g(z) etc.

MEX-file interface
—

NLPLIB/OPERA solver I Optimization Toolbox Solver I MEX-file Solver I

Interface Routines

—————————————————————

v nlpf, nlp_g, nlp_H, nlp_c, nlp_dc, nlp_d2c, nlp_r, nlp_J, nlp_d2r

te---s----o---o-----. Compute f(z), g(x), H(x), c(x), dc(x)/dz, 3, Nid?c;(x)/da?
i Low Level Routines | For NLLS residual r(z), Jacobian J(z), 3, 7;(2)0%r;(z)/dz?

Figure 1: The process of optimization in TOMLAB.

TOMLAB v1.0 User’s Guide 12

Table 2: Defined test problem sets in TOMLAB.

probSet probType Description of test problem set

uc 1 Unconstrained test problems.

qp 2 Quadratic programming test problems.

con 3 Constrained test problems.

Is 4 Nonlinear least squares test problems.

exp b) Exponential fitting problems.

cls 6 Linear constrained nonlinear least squares problems.
nls 6 Nonlinear constrained nonlinear least squares problems.
glb 9 Box-bounded global optimization test problems.

gle 10 Global MINLP test problems.
mgh 4 More, Garbow, Hillstrom nonlinear least squares problems.
amp 3 AMPL test problems as nliles.

cto 3 CUTE constrained test problems as dll-files.

ctl 3 CUTE large constrained test problems as dll-files.

uto 1 CUTE unconstrained test problems as dll-iles.

utl 1 CUTE large unconstrained test problems as dll-files.
nts 7 Nonlinear time series.

usr 1-9 User defined problems of probType 1-9.

i.e. for the menu systems, driver routines etc. Table 3 shows the naming convention. The names of the problem
setup routine and the low level routines are constructed as two parts. The first part being the abbreviation of the
relevant probSet, see Table 2, and the second part denotes the computed task, shown in Table 4. An example,
illustrating the constrained nonlinear programming case (solvType = con, probSet = con) is shown in Figure 2.

Table 3: Names of main m-file functions in NLPLIB TB.

Generic variable Purpose (solvType is ¢, e.g. o=con)
oOpt Menu program.

oRun Multi-solver optimization driver routine.
oDef Routine defining optimization parameters.
oSolve (Prototype) solver.

The problem setup routine has two modes of operation; either return a string matrix with the names of the
problems in the probSet or a structure with all information about the selected problem. The structure, named
Prob, is shown in Table 5. Using a structure makes it easy to add new items without too many changes in the rest
of the system. The menu systems and the GUI are using the string matrix for user selection of which problem to
be solved.

There are default values for everything that is possible to set defaults for, and all routines are written in a way
that makes it possible for the user to just set an input argument empty and get the default.

The results of the optimization attempts are stored in a structure array named Result. The currently defined
fields in the structure are shown in Table 15. The use of structure arrays make advanced result presentation and
statistics possible.

The field zState describes the state of each of the variables. In Table 16 the different values are described. The
different conditions for linear constraints are defined by the state variable in field bState. In Table 17 the different
values are described.

To conclude, the system design is flexible and easy to expand in many different ways.

TOMLAB v1.0 User’s Guide

(User]

Either choose problem from

conOpt / GUI menu or silent setup

/ Advanced User] /

—————————————

L b Define names of functions: con_f,
conRun ., con.pro : con_g, con_H, con_c, con_dc, con_d2c

MEX: minos, npsol or npopt
——

conSolve (NLPLIB) constr (OPTIM) MINOS I NPSOL I NPOPT I

Interface: nilp_fe, nlp_gdc, nlp_fg, nlp_cdcS, nlp_cdc

———

—————————————————————

. "7 Gateway routine Prob.pf="nlp_{’ computes f(x)
| NLPLIB Gateway routines Called by f(z) = feval(Prob.pf, x, Prob)

! ! 'nlp_f’ calls f(z) = feval(Prob.USER.f, x, Prob),
! where Prob.USER.f="con_{’

Figure 2: Solution of constrained nonlinear problems in TOMLAB.

TOMLAB v1.0 User’s Guide

Table 4: Names on the low level m-files in NLPLIB TB.

Generic name

Purpose (¢ is any probSet, e.g. o=amp)

o_prob

of
°-g

o H
oC
o_dc
o_d2c

o
o.J
o_d2r

Define string matrix with problems and a structure prob for each
problem.

Compute objective function f(z).

Compute the gradient vector g(z).

Compute the Hessian matrix H(z).

Compute the vector of constraint functions c¢(x).

Compute the matrix of constraint normals, dc(x)/dz.

Compute the 2nd part of 2nd derivative matrix of the Lagrangian
function, Y, X\i0%c;(z)/dz?.

Compute the residual vector r(z).

Compute the Jacobian matrix J(z).

Compute the 2nd part of the Hessian matrix, Y, r;(2)0%r; () /da?

14

TOMLAB v1.0 User’s Guide 15

Table 5: Information stored in the problem structure Prob.

Field Description

Name Problem name.

P Problem number.

probType TOMLAB problem type, see Table 1.

probFile Name of m-file in which problem are defined.

zName Name of each decision variable.

cName Name of each general constraint.

optParam Structure with special fields for optimization parameters, see Table 6.

Solver Structure with fields Name and Alg. Name is the name of the solver and Alg
is the solver algorithm to be used. See the solver descriptions Section 2.11.

uP User supplied parameters for the problem.

uPName Problem name connected to the user supplied parameters.

ExpFit Structure with special fields for exponential fitting problems, see Table 7.

QP Structure with special fields for quadratic problems, see Table 8.

NLLS Structure with special fields for nonlinear least squares, see Table 9.

NTS Structure with special fields for nonlinear time series, see Table 10.

PartSep Structure with special fields for partially separable functions, see Table 11.

GLOBAL Structure with special fields for global optimization, see Table 12.

A Constraint matrix for linear constraints, one constraint per row.

b_L Lower bounds on the linear constraints.

b_U Upper bounds on the linear constraints.

cL Lower bounds on the general constraints.

c.U Upper bounds on the general constraints.

z_L Lower bounds on the variables.

.U Upper bounds on the variables.

z-0 Starting point.

N Problem dimension (number of variables).

f-Low Lower bound on function value. Used in line search by Fletcher, default,
—realmax = —1.7977E308.

x_opt Optimal point z* (if known).

f-opt Optimal objective function value f(z*).

AutoDiff If true, use automatic differentiation.

NumDiff Numerical approximation of derivatives. If set to 1, classical approach with
forward or backward differences together with automatic step selection will be
used. If set to 2, 3 or 4 the spline routines csapi, csaps or spaps in SPLINE
Toolbox will be used. If set to 5, derivatives will be estimated by use of
complex variables.

p-f Name of gateway routine computing the objective function f(z).

p-g Name of gateway routine computing the gradient vector g(x).

p-H Name of gateway routine computing the Hessian matrix H(x).

p-c Name of gateway routine computing the vector of constraint functions c(z).

p-dc Name of gateway routine computing the matrix of constraint normals
Oc(z)/dx.

p-d2c Name of gateway routine computing the 2nd part of 2nd derivative matrix of
the Lagrangian function, Y, X\;0%c(z)/dz?.

p-r Name of gateway routine computing the residual vector r(z).

p-J Name of gateway routine computing the Jacobian matrix J(z).

p-d2r Name of gateway routine computing the second part of the Hessian for a

m
nonlinear least squares problem, i.e. Z; ri(x) gz:g;z

USER Structure with user defined names of the m-files computing the objective,
gradient, Hessian etc. See Table 13. These routines are called from the corre-
sponding gateway routine

x_min Lower plot region parameters.

r_maz Upper plot region parameters.

TOMLAB v1.0 User’s Guide

Table 6: Information stored in the structure Prob.optParam

Field Description

alg Optimization Algorithm. Dependent on type of problem. Default 0.

method Solver sub-method technique. Default 0.

PriLev Print level in optimization solver, default 1.

eps_x Convergence tolerance in optimal solution z, distance between suc-
cessive z, ||xpy1 — 21|, default 1078,

eps_f Convergence tolerance on f. Also used when testing on the directed
derivative, default 1078,

eps_dirg Convergence tolerance on the directed derivative, default 1078.

eps_c Constraint violation convergence tolerance, default 1076,

LineAlg Line search algorithm. 0 = quadratic interpolation, 1 = cubic in-
terpolation, 2 = curvilinear quadratic interpolation, 3 = curvilinear
cubic interpolation. Default LineAlg = 0.

GradCheck Set to 1 if you want to check user-supplied gradients, default 0.

Mazlter Maximum number of iterations, default 500.

DiffGradMinChange Minimum change in variables for finite difference gradients, default
1078,

DiffGradMazChange Maximum change in variables for finite difference gradients, default
0.1.

InitStepLength Initial step length, default 1 or less.

eps_g Gradient (or reduced gradient) convergence tolerance, default 10~°.

eps_Rank Rank test tolerance, default 10710,

wait Flag if to use pause statements after output, default 0.

eps_absf Convergence tolerance on absolute function value, default realmin.

PreSolve Flag if presolve analysis is to be applied on linear constraints, default
0.

QN_InitMatriz Initial matrix for Quasi-Newton, may be set by the user. When
QN_InitMatriz is empty, the identity matrix is used.

LineSearch Structure with special fields for the line search, see Table 14.

Penalty Penalty parameter for constrained problems.

xTol If v € [x_L,x_L + bTol] or [x.U — bTol,x U], fix x on bound.

bTol Feasibility tolerance for linear constraints.

cTol Feasibility tolerance for nonlinear constraints.

fTol Accuracy in the computation of the function value, default eps®?.

size_t Size at optimum for the variables z, used in the convergence tests.
Default 1.

size_f Size at optimum for the function f, used in the convergence tests.
Default 1.

size_c Size at optimum for the constraints ¢, used in the convergence tests.
Default 1.

Lowlts Number of iterations with low reduction before convergence.

NOT._release_all
subalg

splineSmooth

splineTol

Set to 1 if not to release more than one variable at the time.
Optimization sub algorithm. Dependent on type of problem. Default
0.

Smoothness parameter sent to the SPLINE Toolbox routine csaps.m
when computing numerical approximations of the gradient and the
Jacobian. Default 0.4.

Tolerance parameter sent to the SPLINE Toolbox routine spaps.m
when computing numerical approximations of the gradient and the
Jacobian. Default 1073.

16

TOMLAB v1.0 User’s Guide

Table 7: Information stored in the structure Prob.EzpFit

Field Description

P Number of exponential terms, default 2.

wType Weighting type, default 1.

eType Type of exponential terms, default 1.

infCR Information criteria for selection of best number of terms, default 0.
dType Differentiation formula, default 0.

geo Type Type of equation, default 0.

qType Length ¢ of partial sums, default 0.

sig Type Sign to use in (P 4+ +/Q)/D in ezp_geo for p = 3, 4, default 0.
lambda Vector of dimension p, intensities.

alpha Vector of dimension p, weights.

20Type Type of starting value algorithm.

sumType Type of exponential sum.

t_eqdist Flag if data is equidistant in time.

Table 8: Information stored in the structure Prob.QP

Field Description

F Constant matrix, the Hessian

c Constant vector.

B Logical vector of the same length as the number of variables. A one

corresponds to a variable in the basis.

Table 9: Information stored in the structure Prob.NLLS

Field Description

weight Type Weighting type:

0 No weighting.

1 Weight with data in Yt¢. If Yt = 0, the weighting is 0, i.e.
deleting this residual element.

2 Weight with weight vector or matrix in weightY. If weightY is
a vector then weighting by weigthY. xr (elementwise multipli-
cation). If weightY is a matrix then weighting by weigthY xr
(matrix multiplication).

3 nlp_r calls the routine weigthtY (must be a string with the
routine name) to compute the residuals.

weightY Either empty, a vector, a matrix or a string, see weightType.

t Time vector t.

Yt Matrix with observations Y'(t).

UseYt If UseYt = 0 compute residual as f(z,t) — Y (t) (default), other-

wise Y (¢) should be treated separately and the residual routines just
return f(z,t).

SepAlg If SepAlg = 1, use separable non linear least squares formulation,
default 0.

TOMLAB v1.0 User’s Guide

Table 10: Information stored in the structure Prob.NTS

Field Description
SepAlg If SepAlg = 1, use separable non linear least squares formulation,
default 0.
ntsModel Nonlinear model number
P The number of terms (lags) in the model.
pL The number of nonlinear parameters.
pA The number of linear parameters.
ntsSeed Reset number for random generator or Time series number.
N Total number of data points.
t1 The starting point for the estimation.
tN The end point for the estimation.
gamma, Exponential weighting factor, default 0.99.
lambdaArt Nonlinear parameters used to create the artificial data.
alphaArt Linear parameters used to create the artificial data.
lambda Exponential parameters in autoregressive models.
alpha Weights in autoregressive models.
Table 11: Information stored in the structure Prob.PartSep
Field Description
pSepFunc Number of partially separable functions.
index Index for the partially separable function to compute, i.e. if ¢ =

index, compute f;(z). If index = 0, compute the sum of all, i.e.

M
flz) = ; fi(x).

18

TOMLAB v1.0 User’s Guide

19

Table 12: Information stored in the structure Prob. GLOBAL

Field Description
iterations Number of iterations, default 50.
MazFEval Number of function evaluations, default 500.
Integers Set of integer variables.
epsilon Global/local weight parameter, default 10~%.
K The Lipschitz constant. Not used.
tolerance Error tolerance parameter. Not used.
c Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d_min Row vector of minimum function value for each distance.
Split Split(i, 7) is the number of splits along dimension ¢ of rectangle j.
T T'(i) is the number of times rectangle 7 has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection proceedure.
IL I_L(i,) is the lower bound for rectangle j in integer dimension I(%).
1.U I1_.U(i,j) is the upper bound for rectangle j in integer dimension (7).
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
5.0 5.0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(7) is the total number of splits along dimension 3.
Table 13: Information stored in the structure Prob. USER
Field Description
f Name of m-file computing the objective function f(z).
g Name of m-file computing the gradient vector g(z). If Prob.USER.g
is empty then numerical derivatives will be used.
H Name of m-file computing the Hessian matrix H(z).
c Name of m-file computing the vector of constraint functions c¢(x).
dc Name of m-file computing the matrix of constraint normals dc(x) /dx.
d2c Name of m-file computing the 2nd part of 2nd derivative matrix of
the Lagrangian function, >, X\;0%c(x)/dz?.
r Name of m-file computing the residual vector r(z).
J Name of m-file computing the Jacobian matrix J(z).
d2r Name of m-file computing the 2nd part of the Hessian for nonlinear

m
. 8%ri (x
least squares problem, i.e. 3 1 Ti(x)ﬁz_,%'
i=

TOMLAB v1.0 User’s Guide

Table 14: Information stored in the structure Prob.optParam.LineSearch

Field

Description

stgma

rho
taul
tau?
taud
epsl
eps?2
MaxlIter

Line search accuracy; 0 < sigma < 1. stgma = 0.9 inaccurate line
search. sigma = 0.1 accurate line search, default 0.9.

Determines the p line, default 0.01.

Determines how fast step grows in phase 1, default 9.

How near end point of [a,], default 0.1.

Choice in [a, b] phase 2, default 0.5.

Minimal length for interval [a, b], default 10~7.

Minimal reduction, default 10~'2.

Maximum number of line search iterations.

20

TOMLAB v1.0 User’s Guide

21

Table 15: Information stored in the global Matlab structure Result.

Field Description

Iter Number of major iterations.

Minorlter Number of minor iterations.

ExitFlag 0 if convergence to local min. Otherwise errors.

Inform Information parameter, type of convergence.

fk Function value at optimum.

g9-k Gradient value at optimum.

HE Hessian value at optimum.

Bk Quasi-Newton approximation of the Hessian at optimum.

z-0 Starting point.

f0 Function value at start i.e. f(z.0).

z_k Optimal point.

vk Lagrange multipliers.

rk Residual at optimum.

J_k Jacobian matrix at optimum.

ck Value of constraints at optimum.

cJac Constraint Jacobian at optimum.

zState State of each variable, described in Table 16 .

bState State of each linear constraint, described in Table 17.

cState State of each general constraint.

optParam Structure with special fields for optimization parameters, see Table 6.

Name Problem name.

P Problem number.

p_dz Matrix where each column is a search direction.

alphaV Matrix where row i stores the steplengths tried for the i:th iteration.

T_min Lowest, z-values in optimization. Used for plotting.

r_maz Highest z-values in optimization. Used for plotting.

FX F_X is a global matrix with rows: [iterno f(x)].

GLOBAL Structure with special fields for global optimization, see Table 18.

SepNLLS General result variable with fields z and Jz. Used when running sepa-
rable nonlinear least squares problems

Solver Solver used.

SolverAlgorithm Solver algorithm used.

CPUtime CPU time used.

REALtime Real time elapsed.

Nflops Number of floating point operations.

probType TOMLAB problem type.

solvType TOMLAB solver type.

FuncEv Number of function evaluations needed.

GradEv Number of gradient evaluations needed.

ConstrEv Number of constraint evaluations needed.

ResEv Number of residual evaluations needed.

JacFEv Number of Jacobian evaluations needed.

Prob Problem structure, see Table 5.

plotData Structure with plotting parameters.

TOMLAB v1.0 User’s

Guide

Table 16: The state variable zState for the variable.

Value Description

0 A free variable.

1 Variable on lower bound.

2 Variable on upper bound.

3 Variable is fixed, lower bound is equal to upper bound.

Table 17: The state variable bState for each linear constraint.

Value Description

0 Inactive constraint.

1 Linear constraint on lower bound.

2 Linear constraint on upper bound.

3 Linear equality constraint.

Table 18: Information stored in the structure Result. GLOBAL

Field Description
c Matrix with all rectangle centerpoints in original coordinates.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d_min Row vector of minimum function value for each distance.
Split Split(i, 7) is the number of splits along dimension ¢ of rectangle j.
T T'(i) is the number of times rectangle 4 has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection procedure.
IL I_L(i, j) is the lower bound for rectangle j in integer dimension (7).
.U I1.U(i,7) is the upper bound for rectangle j in integer dimension I ().
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
s_0 5.0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(7) is the total number of splits along dimension i.

22

TOMLAB v1.0 User’s Guide 23

2.1.1 Global Variables

The use of globally defined variables in NLPLIB TB is well motivated. For example to avoid unnecessary evalua-
tions, storage of sparse patterns, internal communication, computation of elapsed CPU time etc.

Even though global variables is efficient to use in many cases, it will be trouble with recursive algorithms and
recursive calls. Therefore, the routines globalSave and globalGet are used. The globalSave routine saves all global
variables in a structure glbSave(depth) and then initialize all of of them as empty. By using the depth variable,
an arbitrarily number of recursions are possible. The other routine globalGet retrieves all global variables in the
structure glbSave(depth).

The global variables used in NLPLIB TB are listed in Table 19 and 20.

Table 19: The global variables used in NLPLIB TB

Name Description

MAXCOLS Number of screen columns. Default 120.

MAXMENU Number of menu items showed on one screen. Default 50.

MAX_c Maximum number of constraints to be printed.

MAX z Maximum number of variables to be printed.

MAX_r Maximum number of residuals to be printed.

CUTEPATH The path ending with \cute.

CUTEDLL Name of CUTE DLL file.

DLLPATH Full path to the CUTE DLL file.

CUTE_g Gradient.

CUTE_H Hessian.

CUTE_Hzx Value of & when computing CUTE_H.

CUTE_dc Constraint normals.

CUTE_Equal Binary vector, element ¢ equals 1 if constraint ¢ is an equality con-
straint.

CUTE_Linear Binary vector, element ¢ equals 1 if constraint ¢ is a linear constraint.

n_f Counter for the number of function evaluations.

n-g Counter for the number of gradient evaluations.

n_H Counter for the number of Hessian evaluations.

n_c Counter for the number of constraint evaluations.

n_dc Counter for the number of constraint normal evaluations.

n_d2c Counter for the number of evaluations of the 2nd part of 2nd deriva-
tive matrix of the Lagrangian function.

n_r Counter for the number of residual evaluations.

n_J Counter for the number of Jacobian evaluations.

n_d2r Counter for the number of evaluations of the 2nd part of the Hessian
for a nonlinear least squares problem .

NLP_x Value of x when computing NLP_f.

NLP_f Function value.

NLP_zc Value of # when computing NLP_c.

NLP_c Constraints value.

NLP_pSepFunc Number of partially separable functions.

NLP_pSepIndex Index for the separated function computed.

TOMLAB v1.0 User’s Guide

Table 20: The global variables used in NLPLIB TB

Name Description

LS_A Problem dependent information sent from residual routine to Jaco-
bian routine.

LS z Value of x when computing LS_r

LS_r Residual value.

LS_xJ Value of # when computing LS_J

LS_J Jacobian value.

SEP_z Separated variables z.

SEP_Jz Jacobian for separated variables z.

wNLLS Weighting of least squares residuals (internal variable in nlp_r and
nip_J).

alphaV Vector with all step lengths « for each iteration.

BUILDP Flag.

F X Matrix with function values.

pLen Number of iterations so far.

p_dx Matrix with all search directions.

X_maz The biggest z-values for all iterations.

X_min The smallest z-values for all iterations.

X_NEW Last « point in line search. Possible new x_k.

X_OLD Last known base point xj

prob Type Defines the type of optimization problem.

solvType Defines the solver type.

answer Used by the GUI for user control options.

instruction Used by the GUI for user control options.

question Used by the GUI for user control options.

plotData Structure with plotting parameters.

Prob Problem structure, see Table 5.

Result Result structure, see Table 15.

runNumber Vector index when Result is an array of structures.

TIMEO Used to compute CPU time and real time elapsed.

TIME1 Used to compute CPU time and real time elapsed

c¢JPI Used to store sparsity pattern for the constraint Jacobian when au-
tomatic differentiation is used.

HPI Used to store sparsity pattern for the Hessian when automatic dif-
ferentiation is used.

JPI Used to store sparsity pattern for the Jacobian when automatic dif-
ferentiation is used.

SparseStructure Used by MINOS (sparse structure).

NonZeros Number of nonzero matrix elements in SparseStructure.

glbSave Used to save global variables in recursive calls to TOMLAB.

PATHDEL PC or UNIX way of path delimiter i.e. ”\” or 7 /”.

24

TOMLAB v1.0 User

’s Guide

2.2 Solver Routines in NLPLIB TB

25

In Table 21 the optimization solvers in NLPLIB TB are listed. The solver for unconstrained optimization, ucSolve,
the nonlinear least squares solvers IsSolve and clsSolve, and the constrained solver conSolve, are all written as

prototype routines.

Table 21: Optimization solvers in NLPLIB TB.

Function Description Section Page
ucSolve A prototype routine for unconstrained optimization with simple 2.11.14 84
bounds on the parameters. Implements Newton, quasi-Newton and
conjugate-gradient methods.
glbSolve A routine for box-bounded global optimization. 2.11.5 73
gblSolve Stand-alone version of glbSolve. Runs independently of NLPLIB TB. 2.11.3 70
gleSolve A routine for global mixed-integer nonlinear programming. 2.11.6 75
gclSolve Stand-alone version of glcSolve. Runs independently of NLPLIB TB. 2.11.4 71
IsSolve A prototype algorithm for nonlinear least squares with simple bounds. 2.11.7 76
Implements Gauss-Newton, and hybrid quasi-Newton and Gauss-
Newton methods.
clsSolve A prototype algorithm for constrained nonlinear least squares. Cur- 2.11.1 67
rently handles simple bounds and linear equality and inequality con-
straints using an active-set strategy. Implements Gauss-Newton, and
hybrid quasi-Newton and Gauss-Newton methods.
conSolve Constrained nonlinear minimization solver using two different sequen- 2.11.2 69
tial quadratic programming methods.
nipSolve Constrained nonlinear minimization solver using filter SQP. 2.11.8 78
sTrustR Solver for constrained convex optimization of partially separable func- 2.11.13 82
tions, using a structural trust region algorithm.
qpBiggs Solves a general quadratic program. 2.11.10 80
gpSolve Solves a general quadratic program. 2.11.12 81
qpe Solves a qp problem, restricted to equality constraints, using a null 2.11.9 79
space method.
qplm Solves a qp problem, restricted to equality constraints, using La- 2.11.11 80

grange’s method.

Table 21 lists the NLPLIB TB internal solvers. To get a list of all available solvers, including Fortran, C and Matlab
Optimization Toolbox solvers, for a certain solvType the user just calls the routine PrintSolvers with solvType as
argument. solvType should either be a string (*uc’, ’con’ etc.) or the corresponding solvType number, see Table 1.
As an example, assume you want a list of all available solvers of solvType con. Then

PrintSolvers(’con’)

gives the printing output

nlpSolve
conSolve
sTrustR
constr
minos
npsol
npopt

3 conRun
3 conRun
3 conRun
3 conRun
3 conRun
3 conRun
3 conRun

TOMLAB v1.0 User’s Guide 26

and if PrintSolvers is called with no given argument then all available solvers for all different solvType is printed.

The routine ucSolve implements a prototype algorithm for unconstrained optimization with simple bounds on
the parameters (uc), i.e. solves the problem

mzin f(z)
(1)

s/t oz, < z < ay,

where z,zp, 2y € R” and f(z) € R wucSolve includes several of the most popular search step methods for
unconstrained optimization. Bound constraints are treated as described in Gill et. al. [28]. The search step
methods for unconstrained optimization included in wcSolve are: the Newton method, the quasi-Newton BFGS
and inverse BFGS method, the quasi-Newton DFP and inverse DFP method, the Fletcher-Reeves and Polak-Ribiere
conjugate-gradient method, and the Fletcher conjugate descent method. For the Newton and the quasi-Newton
methods the code is using a subspace minimization technique to handle rank problems, see Lindstrom [41]. The
quasi-Newton codes also use safe guarding techniques to avoid rank problem in the updated matrix.

The routine glbSolve implements an algorithm for box-bounded global optimization (glb), i.e. problems of
the form (1) that have finite simple bounds on all the variables. glbSolve implements the DIRECT algorithm [38],
which is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. In glbSolve no derivative information is used. For global mixed-integer nonlinear programming
(gle), glcSolve implements an extended version of DIRECT, see [39], that handles problems with both nonlinear
and integer constraints. There are also stand-alone versions of both glbSolve and glcSolve named gblSolve and
gclSolve respectively. These stand-alone versions runs independently of NLPLIB TB.

For global optimization problems with expensive function evaluations the routine ego that implements the Efficient
Global Optimization (EGO) algorithm [40]. The idea of the EGO algorithm is to first fit a response surface to data
collected by evaluating the objective function at a few points. Then, EGO balances between finding the minimum
of the surface and improving the approximation by sampling where the prediction error may be high.

The constrained nonlinear optimization problem (con) is defined as

min f(z)

rr < T < zy, (2)
S/t b, < Az < by

c, < cr) < v

where z,zp, 2y € R, f(z) € R, A € R™*" b by € R™ and cp,c(x),cy € R™2. For general constrained
nonlinear optimization a sequential quadratic programming (SQP) method by Schittkowski [50] is implemented
in the routine conSolve. Like ucSolve, IsSolve and clsSolve, conSolve is a prototype routine and also includes an
implementation of the HanPowell SQP method. There are also a routine nlpSolve which implements the Filter
SQP by Roger Fletcher and Sven Leyffer presented in [23].

Another constrained solver in NLPLIB TB is the structural trust region algorithm sTrustR, combined with an
initial trust region radius algorithm. The code is based on the algorithms in [15] and [49], and treats partially
separable functions. Safeguarded BFGS or DFP are used for Quasi-Newton update, if not the analytical Hessian
is used. Currently, sTrustR only solves problems where the feasible region defined by the constraints is convex.

A quadratic program (qp) is defined as

min f(z) = 2" Fe + 'z
x

®3)

T

Az

Ty,

s/t oL b

br,

INIA
INIA

where ¢, z,zp, 2y € R*, FF € R**", A € R™*" and bg,by € R™ . Quadratic programs are solved with a
standard active-set method [42], implemented in the routine gpSolve. gpSolve explicitly treats both inequality and
equality constraints, as well as lower and upper bounds on the variables (simple bounds). It converges to a local

TOMLAB v1.0 User’s Guide 27

minimum for indefinite quadratic programs. NLPLIB TB also includes a similar routine ¢gpBiggs, which is using a
more simple algorithm for negative definite quadratic problems, described by Bartholomew-Biggs in

NLPLIB TB includes two algorithms for solving quadratic programs restricted to equality constraints (EQP); a
null space method (gpe) and Lagrange’s method (gpim).

The nonlinear least squares problem (ls) is defined as

(4)

»
~

~

8
~
IN

T S Ty,

where z, 71,7y € R* and r(z) € RV.

In NLPLIB TB the prototype nonlinear least squares algorithm IsSolve treats problems with bound constraints in
a similar way as the routine ucSolve.

The prototype routine IsSolve includes four optimization methods for nonlinear least squares problems: the Gauss-
Newton method, the Al-Baali-Fletcher [4] and the Fletcher-Xu [21] hybrid method, and the Huschens TSSM
method [36]. If rank problems occur, the prototype algorithm is using subspace minimization. The line search
algorithm used is the same as for unconstrained problems.

The constrained nonlinear least squares problem (cls) is defined as

mgn f(@) = 3r(z)"r(z)

rp, < x < oy, (5)
S/t b, < Axr < by
c. < clr) < cv

where z, 27,z € R?, r(z) € RNV, A € R™ > by, by € R™ and cr,c(x),cy € R™2.

The constrained nonlinear least squares solver clsSolve is based on IsSolve and its search steps methods. Currently
clsSolve treats linear equality and inequality constraints using an active-set strategy.

TOMLAB v1.0 User’s Guide 28

2.3 Utility Routines in NLPLIB TB

There are six menu programs defined in NLPLIB TB see Table 22, one for each type of optimization problem
(probType). NLPLIB TB also includes a graphical user interface (GUI), which has the same functionality as all
the menu programs.

Table 22: Menu programs.

Function Description

nlplib Graphical User Interface (GUI) for nonlinear optimization. Handles all types of nonlinear
optimization problems.

ucOpt Menu for unconstrained optimization.

glbOpt Menu for box-bounded global optimization.

glcOpt Menu for global mixed-integer nonlinear programming.

qp Opt Menu for quadratic programming.

conOpt Menu for constrained optimization.

IsOpt Menu for nonlinear least squares problems.

clsOpt Menu for constrained nonlinear least squares problems.

Each menu program calls a corresponding driver routine, having the same probType, viz. either of ucRun, glbRun,
gpRun, conRun, IsRun or clsRun.

NLPLIB TB is using the structure variable optParam, see Table 6, with optimization parameters. For each type of
optimization problem, there is a corresponding definition routine which calls optParamDef and defines the default
parameter values for optParam. Dependent on probType, it is any of ucDef, qpDef, conDef, lsDef or clsDef.

In Table 23, the utility functions needed by the solvers in Table 21 are displayed. The function #trr implements
the initial trust region radius algorithm by Sartenaer [49].

The line search algorithm LineSearch, used by the solvers conSolve, IsSolve, clsSolve and ucSolve, is a modified
version of an algorithm by Fletcher [22, chap. 2]. The use of quadratic (intpol2) and cubic interpolation (intpol3)
is possible in the line search algorithm. For more details, see Section 2.12.4.

The routine preSolve is running a presolve analysis on a system of linear equalities, linear inequalities and simple
bounds. An algorithm by Gondzio [30], somewhat modified, is implemented in preSolve. See [10] for a more
detailed presentation.

Table 23: Utility routines for the optimization solvers.

Function Description Section Page
itrr Initial trust region radius algorithm. 2.12.3 86
LineSearch Line search algorithm by Fletcher. 2.12.4 87
intpol2 Find the minimum of a quadratic interpolation. Used by LineSearch. 2.12.1 85
intpol3 Find the minimum of a cubic interpolation. Used by LineSearch. 2.12.2 85
preSolve Presolve analysis on linear constraints and simple bounds. 2.12.5 88

2.3.1 Low Level Routines and Test Problems

We define the low level routines as the routines that compute the objective function value, the gradient vector,
the Hessian matrix (second derivative matrix), the residual vector (for NLLS problems), the Jacobian matrix (for
NLLS problems), the vector of constraint functions, the matrix of constraint normals and the second part of the
second derivative of the Lagrangian function. The last three routines are only needed for constrained problems.

The names of these routines are defined in the structure fields Prob. USER.f, Prob.USER.g, Prob.USER.H etc. It
is the task of the problem setup routines in NLPLIB TB (routines with names of the type *_prob) to set the names
of the low level m-files. This is done by a call to the routine mFiles with the names as arguments. As an example,
see the last part of the code of con_prob below.

TOMLAB v1.0 User’s Guide 29

Prob=mFiles(Prob,’con_f’,’con_g’,’con_H’,’con_c’,’con_dc’,’con_d2c’);

robSet;

Only the low level routines relevant for a certain type of optimization problem need to be coded. There are dummy
routines for the others. Numerical differentiation is automatically used for gradient, Jacobian and constraint
gradient if the corresponding user routine is nonpresent or left out when calling mFiles.

NLPLIB TB is using gateway routines (nlp_f, nlp_g, nip_H, nilp_c, nlp_dc, nlp_d2c, nlp_r, nip_J, nlp_d2r). These
names are put in Prob.p_f, Prob.p_g etc. by NLPLIB TB automatically. These routines extract the search directions
and line search steps, count iterations, handle separable functions, keep track of the kind of differentiation wanted
etc. They also handle the separable NLLS case and NLLS weighting. By the use of global variables, unnecessary
evaluations of the user supplied routines are avoided.

To get a picture of how the low-level routines are used in the system, consider Figure 3 and 4. In Figure 3, we
illustrate the chain of calls when computing the objective function value in ucSolve for a nonlinear least squares
problem defined in mgh_prob, mgh_r and mgh_J. In Figure 4, we illustrate the chain of calls when computing the
numerical approximation of the gradient (by use of the routine fdng) in ucSolve for an unconstrained problem
defined in wc_prob and uc_f.

ucSolve nlp_f Is_f nlp_r mgh_r

Figure 3: The chain of calls when computing the objective function value in ucSolve for a nonlinear least squares
problem defined in mgh_prob, mgh_r and mgh_J.

ucSolve nlp_g fdng nlp_f uc_f

Figure 4: The chain of calls when computing the numerical approximation of the gradient in wcSolve for an
unconstrained problem defined in uc_prob and uc_f.

Information about a problem is stored in the structure variable Prob, described in Table 5. This variable is an
argument to all low level routines. In the field element Prob.uP, problem specific information needed to evaluate
the low level routines are stored. A more detailed description of how to define new problems is given in Section
2.6.

Different solvers all have different demand on how information should be supplied, i.e. the function to optimize, the
gradient vector, the Hessian matrix etc. To be able to code the problem only once, and then use this formulation
to run all types of solvers, interface routines that returns information in the format needed for the relevant solver
were developed.

Table 24 describes the low level test functions and the corresponding problem setup routines needed for the
predefined constrained optimization (con) problems. For the predefined unconstrained optimization (uc) problems,
the global optimization (glb, glc) problems and the quadratic programming problems (qp) similar routines are
needed.

The problem of fitting positive sums of positively weighted exponential functions to empirical data may be formu-
lated either as a nonlinear least squares problem or a separable nonlinear least squares problem. Some empirical
data series are predefined and artificial data series may also be generated. Algorithms to find starting values for
different number of exponential terms are implemented. Table 25 shows the relevant routines.

TOMLAB v1.0 User’s Guide

Table 24: Generally constrained nonlinear (con) test problems.

Function Description

con_prob Initialization of con test problems.

con_f Compute the objective function f(z) for con test problems.

con_g Compute the gradient g(z) for con test problems.

con_H Compute the Hessian matrix H(z) of f(x) for con test problems.

con_c Compute the constraint residuals ¢(x) for con test problems.

con_dc Compute the derivative of the constraint residuals for con test problems.

con_fm Compute merit function 6(zy).

con_gm Compute gradient of merit function 8(xy).

Table 25: Exponential fitting test problems.

Function Description

exp_ArtP Generate artificial exponential sum problems.

expInit Find starting values for the exponential parameters A.

exp_prob Defines a exponential fitting type of problem, with data series (¢,y). The file includes
data from several different empirical test series.

Helaz_prob Defines 335 medical research problems supplied by Helax AB, Uppsala, where an expo-
nential model is fitted to data. The actual data series (¢,y) are stored on one file each,
i.e. 335 data files, 8MB large, and are not distributed. A sample of five similar files are
part of exp_prob.

erp-r Compute the residual vector r;(z),i =1,....m. x € R

exp-J Compute the Jacobian matrix Or;/dz;,i =1,...,m,j=1,...,n.

exp_d2r Compute the 2nd part of the second derivative for the nonlinear least squares exponential
fitting problem.

exp-c Compute the constraints A\; < A2 < ... on the exponential parameters A\;,i = 1,..., p.

exp-dc Compute matrix of constraint normals for constrained exponential fitting problem.

exp-d2c Compute second part of second derivative matrix of the Lagrangian function for con-
strained exponential fitting problem. This is a zero matrix, because the constraints are
linear.

erp_q Find starting values for exponential parameters \;,¢ =1, ..., p.

exp_p Find optimal number of exponential terms, p.

30

Table 26 describes the low level routines and the initialization routines needed for the predefined constrained
nonlinear least squares (cls) test problems. Similar routines are needed for the nonlinear least squares (Is) test
problems (here no constraint routines are needed).

Table 27 describes the low level test functions and the corresponding problem setup routines needed for the
predefined unconstrained and constrained optimization problems from the CUTE data base [11, 12].

There are some options in the menu programs to display graphical information for the selected problem. For
two-dimensional nonlinear unconstrained problems, the menu programs support graphical display of the relevant
optimization problem as mesh or contour plots. In the contour plot, the iteration steps are displayed. For higher-
dimensional problems, iterations steps are displayed in two-dimensional subspaces. Special plots for nonlinear least
squares problems, such as plotting model against data, are available. The plotting utility also includes plot of
convergence rate, plot of circles approximating points in the plane for the Circle Fitting Problem etc.

TOMLAB v1.0 User’s Guide 31

Table 26: Constrained nonlinear least squares (cls) test problems.

Function Description

cls_prob Initialization of cls test problems.

cls_r Compute the residual vector r;(z),i = 1,...,m. x € R" for cls test problems.

cls_J Compute the Jacobian matrix J;;(x) = Or;/dzj,i = 1,..,m,j = 1,...,n for cls test
problems.

cls_c Compute the vector of constraint functions ¢(z) for cls test problems.

cls_de Compute the matrix of constraint normals dc¢(z)/dz for for cls test problems.

cls_d2c Compute the second part of the second derivative of the Lagrangian function for cls test
problems.

Is_f General routine to compute the objective function value f(z) = r(z)”r(z) for nonlinear
least squares type of problems.

Is_g General routine to compute the gradient g(z) = J(z)Tr(x) for nonlinear least squares
type of problems.

Is.H General routine to compute the Hessian approximation H (z) = J(z)? % J(x) for nonlinear
least squares type of problems.

Table 27: Test problems from CUTE data base.

Function Description

ctools Interface routine to constrained CUTE test problems.

utools Interface routine to unconstrained CUTE test problems.

cto_prob Initialization of constrained CUTE test problems.

ctl_prob Initialization of large constrained CUTE test problems.

cto_f Compute the objective function f(z) for constrained CUTE test problems.

cto_g Compute the gradient g(z) for constrained CUTE test problems.

cto-H Compute the Hessian H(z) of f(z) for constrained CUTE test problems.

cto_c Compute the vector of constraint functions ¢(z) for constrained CUTE test problems.

cto_dc Compute the matrix of constraint normals for constrained CUTE test problems.

cto_d2c Compute the second part of the second derivative of the Lagrangian function for con-
strained CUTE test problems.

uto_prob Initialization of unconstrained CUTE test problems.

utl_prob Initialization of large unconstrained CUTE test problems.

uto_f Compute the objective function f(z) for unconstrained CUTE test problems.

uto_g Compute the gradient g(z) for unconstrained CUTE test problems.

uto_H Compute the Hessian H(z) of f(z) for unconstrained CUTE test problems.

TOMLAB v1.0 User’s Guide 32

2.3.2 Test Routines for the System
NLPLIB TB is constantly being developed and improved. Therefore it is important to have some routines who

run a whole bunch of test problems with all different solvers to check for bugs. The routines listed in Table 28
perform such tests.

Table 28: System test routines.

Function Description Section Page
runtest Runs all selected problems defined in a problem file for a given solver. 2.13.3 89
systest Runs big test to check for bugs in NLPLIB TB. 2.13.4 90

The runtest routine may also be useful for a user running a large set of optimization problems, if the user does not
need to send special information in the Prob structure for each problem.

2.4 The Menu Systems

This section describes the menu routines ucOpt gpOpt, conOpt, IsOpt, clsOpt and glbOpt. The Graphical User
Interface, which has the same functionality, is presented in Section 2.5. The ucOpt menu is shown in Figure
5. The other menus look the same, possibly with some extra items corresponding to options needed for the
relevant problem and solver type. In the following of this section, the most important standard menu choices are
commented.

The Choice of Problem File and Problem button selects the problem setup file and the problem to be solved.
Correspondingly, the Choice of optimization algorithm button selects the optimization algorithm to be used.

From the Optimization Parameter Menu, parameters needed for the solution can be changed. The user selects new
values or simply uses the default values. See Figure 6. The parameters are those stored in the optParam structure,
see Table 6. The Output print levels button selects the level of output to be displayed in the Matlab Command
Window during the solution procedure. The Optimization Parameter Menu also allows the user to choose the
differentiation strategy he wants to use.

Pushing the Optimize button, the relevant routines are called to solve the problem.

When the problem is solved, it is possible to make different types of plots to illustrate the solution procedure.
Pushing the Plot Menu button, a menu choosing type of plot will appear. A overview of the available plotting
options are given in connection with the Graphical User Interface described in Section 2.5.

The menu routines are started by just typing the name of the routine (e.g. ucOpt) at the Matlab prompt. In Section
3.2.1 we illustrate how to use the menu system for linear programming problems (lpOpt). The menu routines in
NLPLIB TB work in a similar way.

Calling any of the menu routines in NLPLIB TB (e.g. ucOpt) by typing Result = ucOpt will return a structure
array containing the Result structures of all the runs made. As an example, to display the results from the third
run, enter the command Result(3). To display the solution found in the third run, enter the command Result(3).z_k.
The information stored in the structure are given in Table 15.

2.5 The Graphical User Interface

The Graphical User Interface is started by calling the Matlab m-file nlplib.m, i.e. by entering the command niplib
at the Matlab prompt. The GUI has two modes; Normal and Advanced. At start the GUI is in Normal mode,
shown in Figure 7.

There are one axes area, four menus; Subject, Problem, Algorithm and Plot, and six push buttons; Defaults,
Advanced, Plot, Info, Run and Close.

There are also eleven edit controls where it is possible to enter parameter values used by the solution algorithm.
To the right of the axes area, starting values for two dimensional problems can be given. How to define starting
values for problems with more than two decision variables is discussed in Section 2.5.1. The edit controls labeled

TOMLAB v1.0 User’s Guide 33

File Edit Window Help

Unconstrained Optimization

Choice of Problem File and Problem g
Ak ¢ NOT ask problem dependent questions é
Choice of aptimization algonthm and solver é

Optim solver sub-method choice:

. , |
UOptimization Farameter Menu 3

Fause / Na Pause after each iteration é
Clutput print levels é
Optimize é

He-ﬁptin‘rize with latest solution a3 starting value

Delete all generated figures

Figure 5: The main menu in ucOpt.

’Axes’ set the axes in the contour plot and the mesh plot. The edit controls below the axes area are used to set the
optimization parameters sent to the solver. These parameters are the maximum number of iterations (MaxIter),
the line search accuracy o (Sigma), the termination tolerance on the change in the decision variables (EpsX), the
termination tolerance on the function value (EpsF) and the termination tolerance on the gradient (EpsG). If a
solver for constrained optimization is selected, a twelfth edit control (EpsC) is shown. This edit control sets the
termination tolerance on the constraint violation.

In the axes area plots and information given as text are displayed.

The Subject menu is used to select subject, i.e. which type of problem to be solved. There are currently six
main problem types; unconstrained optimization, quadratic programming, constrained optimization, nonlinear
least squares, exponential sum fitting and constrained nonlinear least squares.

From the Problem menu, the user selects the problem to be solved. Presently, there are about 15 to 50 predefined
test problems for each problem type. The user can easily define his own problems and try to solve them using any
solver, see Section 2.6.

The Algorithm menu is used to select solver. It can either be a NLPLIB TB internal solver, a solver in the Matlab
Optimization Toolbox or a general-purpose solver implemented in Fortran or C.

Changing type of optimization problem in the Subject menu, will change the menu entries in the Problem menu
and Algorithm menu.

From the Plot menu, the type of plot to be drawn is selected. The different types are contour plot, mesh plot,
plot of function values and plot of convergence rate. The contour plot and the mesh plot can be displayed either
in the axes area or in a new figure. The plot of function values and convergence rate are always displayed in a new

TOMLAB v1.0 User’s Guide 34

figure. For least squares problems and exponential fitting problems it is possible to plot the residuals, the starting
model and the obtained model.

When pushing the Defaults button, the default values for every parameter are displayed in the edit controls. If
pushing the button again, the parameters will disappear. Before solving a problem, the user can change any of
the values. If leaving an edit control empty, the default values are used.

The Advanced button and the Advanced mode is described in Section 2.5.1.

Pushing the Plot button gives a plot of the current problem. In the contour plot, known local minima, known local
maxima and known saddle points are shown. It is possible to make a contour plot and a mesh plot without first
solving the problem. After the problem is solved, a contour plot shows the search direction and trial step lengths
for each iteration. A contour plot of the classical Rosenbrock banana function, together with the iteration search
steps and with marks for the line search trials displayed, is shown in Figure 8.

A contour plot for a constrained problem and a plot of the data and the obtained model for a nonlinear least
squares problem are given in Figure 9. In the contour plot, (inequality) constraints are depicted as dots. Starting
from the infeasible point (z1,z2) = (—5.0,2.5), the solution algorithm first finds a point inside the feasible region.
The algorithm then iteratively finds new points. For several of the search directions, the full step is too long and
violates one of the constraints. Marks show the line search trials. Finally, the algorithm converges to the optimal
solution (z7,x3) = (—9.5474,1.0474).

The Info button gives some information about the current problem, e.g. the number of variables.

When the user has chosen a solver and a problem, he then pushes the Run button to solve it. When the algorithm
has converged, information about the solution procedure are displayed. This information will include the solution
found, the function value at the solution, the number of iterations used, the number of function evaluations, the
number of gradient evaluations, the number of floating point operations used and the computation time. If no
algorithm is selected as in Figure 7, the Run button has the same function as the Plot button.

To close the GUI, push the Close button.

2.5.1 The Advanced Mode

When pushing the Advanced button, the GUI will change to Advanced mode. The axes area is replaced by more
edit controls and menus, see Figure 10.

Furthermore, the Advanced button is renamed to Figure button. To change from Advanced mode to Normal
mode, push the Figure button.

There are some new edit controls in the Advanced mode. FLow, the best guess on a lower bound for the optimal
function value, is used by NLPLIB TB solver algorithms using the Fletcher line search algorithm [22]. The
parameter EpsR is the rank test tolerance in the subspace minimization technique used when determining the
search direction in some of the algorithms.

For problems with more than two decision variables, starting values for decision variable x3 to x,, are given in the
edit control named ’Starting Values x3 - xn’. Starting values for z; and z» are given in the edit controls labeled
"Starting Values’. To make a contour plot or a mesh plot for problems with more than two decision variables, the
user selects the two-dimensional subspace to plot. The indices of the decision variables defining the subspace are
given in the edit controls called ’Variables At Axis When n > 2’. The view for a mesh plot is changed using the
edit controls 'Mesh View’.

There are six new menus in the Advanced mode. The first menu selects method to compute first and second
derivatives. Except for using an analytical expression, these can be computed either by automatic differentiation
using the ADMAT Toolbox, distributed by Arun Verma at http://simon.cs.cornell.edu/home/verma/AD, or by
five different approaches for numerical differentiation. Three of them requires the Spline Toolbox to be installed.
The second menu determines if a quadratic or a cubic interpolation shall be used in the line search algorithm.

Two menus are used to select the level of output from the optimization driver and the optimization solver. All
output printed during the optimization are displayed in the Matlab Command Window. If the ’Pause Each
Iteration’ check box is selected, the NLPLIB TB solvers are using the pause statement to halt after each iteration.
The menu ’Init File’ selects the file defining the current set of problems. Changing the set of problems will
automatically modify the Problem menu. The menu named 'Method’ differs between problem types. Using an
unconstrained solver, a least squares solver or an exponential fitting solver, the menu selects method to compute

TOMLAB v1.0 User’s Guide 35

the search direction. In the constrained case, the Method menu gives the quadratic programming solver to be used
in SQP algorithms.

If the check box ’Hold Previous Run’ is selected, all information about the runs are stored. Making a contour plot,
the step and trial step lengths for all solution attempts are drawn. This option is useful, e.g. when comparing the
performance of different algorithms or checking how the choice of starting point affects the solution procedure.

For some predefined test problems, it is possible to set parameter values when initializing the problem. These
parameters can for example be the size of the problem, the number of residuals or the number of constraints.
Questions about the parameters will appear when selecting the check box named "User Control’. If the 'User
Control’ check box is not selected, default values will be used.

When selecting an exponential fitting problem, two new menus and a new edit control will appear. The number
of exponential terms in the approximating model and which of four types of residual weighting to be used are
determined by the user. Furthermore, there is a choice whether to solve the weighted least squares fitting problem
using an ordinary or separable nonlinear least squares algorithm.

In the Advanced mode there are three new push buttons. If a contour plot is displayed in the axes area and the
user pushes the button named 'x0’; it is possible to select starting point for the current algorithm using the mouse.
Pushing the 'ReOpt’ button, the current problem is re-optimized with the starting point defined as the solution
found in the previous solution attempt.

Entering a name in the edit control labeled 'Define’ and pushing the Save button, two files will be generated; one
Matlab mat-file and one Matlabm-file. The name should not include any extension. For example, entering the
name test in the edit control, the files test.mat and test.m will be generated. The files are saved in the current
directory. In the mat-file parameters are stored, and in the m-file all commands needed to make a stand-alone run
without using the GUI are defined. The parameter values are those currently used by the GUI.

If entering a name in the 'Define’ edit control and pushing the Defaults button, the default values for all parameters
will be loaded from the current mat-file.

When a problem is solved, the user can access the results from the Matlab Command Window, stored in the global
structure Result. If the user has not run the NLPLIB TB initialization command nilplibInit , he must enter the
command global Result at the Matlab prompt to declare Result as a global structure. To display the full structure,
enter Result at the prompt. To display a specific field in the structure, e.g. the solution found, enter Result.z_k.
All information stored in the structure are given in Table 15. When the check box "Hold Previous Run’ is selected,
Result becomes a structure array. As an example, to display the results from the third run, enter the command
Result(3). To display the solution found in the third run, enter the command Result(3).x_k.

The user could also access the plotting parameter structure plotData in the same way as described for the Result
structure above.

TOMLAB v1.0 User’s Guide

File Edit ‘window Help

St Dplimization Parameters in structure optFaram

How to compuite derivatives 1
Seb sigma: Line search accuracy i
Seteps # convergence tolerance for & ’

Set Maslter maximal number of iterations

Betf Low lower bound on function value]

Setw [starting values for

Setx L lower hounds on x 1
Setw L upper bounds » L 1
Toggle Linetlg: Buadiabic or Cubic line search alaonthm 1

Seteps g Convergence bolerance for gradient

Setepz o Maximal constraint violation
Convergence tolerance for directed derivative
Seteps Rank; Rank test tolerance
Toogle Sepély: Separable norlinear least squares onfolf

Main menu

Figure 6: Setting optimization parameters in ucOpt.

36

TOMLAB v1.0 User’s Guide

EINLPLIB
Fle Edit “indow Help

Subject
09r -
g Unconstrained (uc) - l
0sr Froblem
Rosenbrocks banans =
0.7+

Alnanthm

nEL gﬂawtm »‘
05 gﬁontow .vé

0.4

Starting Values

0.2

0.1F

Ma;-:!leré Eps]W EpsG]w Detaults l

Sigma Epsk
9 ; B ; Bebeanced 1 a Llose

Figure 7: The GUI in Normal mode.

TOMLAB v1.0 User’s Guide

Subject

i Unecanstrained [uc) v g

Poblem

} Rosenbiocks banana = g

Alaorthm
Safe Guad LM BEGS

Flot
Contour

Starting Yalues

@::W p=1 1

Btz

1

wae [B[ees[--—-j i »—————M —-—-—-—j i
Js:igmaj 08 En,s!?fg Aaﬁnedi Infa ;

Close

Figure 8: A contour plot with the search directions and marks for the line search trials for each iteration.

Problem Exponential problem 1. 2 ineq Contour plot Problem # 3. Gisela
T T T T a5
k
B
40
25}
35
)
EE
8
2t k)
o g a5k
o =
8 5
2 S20F
150 s
. =
2 S5k
7 =
; e — . 10k
sl
o . . " o , N .
S10) -8 -7 -6 0 50 100 150 200 250 300 350 400
Variable 1 Timet

38

Figure 9: A contour plot for a constrained problem and a plot of data and model for a nonlinear least squares

problem.

TOMLAB v1.0 User’s Guide

INLPLIB
File Edit ‘Window Help

Subject

FL ‘ E Ha Dtk Line Search
- - gﬁ.nalytic «-éi[:ubic ~i

Mesh View gUnconstrained [uc) v‘
wm»mj Froblem
Starting Val s e e gﬂosenbrock$ banana ’l
g Yaies ko Frint Lewvel Uphimization Boutine Aot
I] [
Relpt gNn output ’I M
. . Bydon -
Wariables At Avis Whenn s 2 Print Level Driver Routine
- p— . . p— S P}_A:
seais | yatis | | Mo nutput ozl M
Init File Leniou =

U User Contral [Pause Each teration U Unconstiaond Norin

I Hold Previous Bun

Slarting Values

Maudter ; ‘ Epen] Epel
Sigma ; Epck ;

Figure 10: The GUI in Advanced mode.

TOMLAB v1.0 User’s Guide 40

2.6 How to Define Optimization Problems in NLPLIB TB

In NLPLIB TB there are principally three ways to define new problems. Which to choose is somewhat dependent
if a quick or a more permanent solution is desired. When additions to NLPLIB TB are made, the best is to
define a new directory and make additions to copies of already existing files. This new directory must be put
before NLPLIB TB in the Matlab search path, or alternatively, the user must make his runs with this directory
being the current directory. Making a special update directory makes it easy to update with new releases of
NLPLIB TB without destroying any updates. In the following of this section, we assume that this new directory
is called NLPNEW. All the problem definition files which we refer to in this section are found in the directory
...\tomlab\nlpnew. In these example files, you can find all the modifications we describe.

The three alternative ways to define new problems in NLPLIB TB are:

1. Solving problems of a certain type, one can copy the basic files for this type of problem and edit these.
For example, solving nonlinear least squares problems, copy the files Is_prob.m, Is_f.m, ls_g.m, etc. (note
the underscore) to NLPNEW and either replace one of the existing problems, or add new ones. Section
2.6.1 - 2.6.6 describe how to modify these files for unconstrained, constrained, nonlinear least squares and
constrained nonlinear least squares problems.

2. If many problems of a certain type are to be solved, we recommend you to make your own problem definition
files for the function, gradient, constraints etc. Just copy the files that solve problems of the same or more
general type. A general choice would be to copy the con_*.m files and change their names and edit these in
the proper ways. Follow the instructions for alternative 1 and see Section 2.6.9 were we will make clear what
extra modifications are needed.

3. To add one or more single problems, the easiest way is to copy the files usr_*.m to NLPNEW for modification.
All different problem types are possible to define in these user problem definition files. At the end of each
Section 2.6.1 - 2.6.6, we will describe how to modify these files.

Throughout this section (except for Section 2.6.7 and 2.6.8) we will show how to define the famous test problem
Rosenbrock’s banana,

min f(z) =100 (z2 — x%)2 +(1—2)’

. (6)
s/t —10<z; <2,j=1,2,

as an unconstrained, constrained, nonlinear least squares and constrained nonlinear least squares problem. We

have added simple bounds on the variables, and for the constrained problem types, we will also add constraints in

illustrative purpose. We will call this problem RB BANANA in the following descriptions to avoid mixing it up

with problems already defined in the problem definition files.

2.6.1 Defining Unconstrained Problems

To define (6) as an unconstrained problem follow the stepwise instructions below (for all instructions we assume
that you edit the copied files in a text editor):

1. Copy the files uc_prob.m, uc_f.m, uc_g.m and uc_H.m to your directory NLPNEW.

2. Add the problem name to the menu choice in uc_prob.m:

,’Fletcher Q.2.6°...
,’Fletcher Q.3.37...
,’RB BANANA’...
); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;

TOMLAB v1.0 User’s Guide

end

41

3. Add the following in uc_prob.m after the last already existing problem (the optional parameters are not
necessary to define):

elseif P
Name
x_0
x_L
x_U

x_opt =

f_opt
f_min
X_max

= 18

=’RB BANANA’;
[-1.2 1]°; % Starting values for the optimization.
[-10;-10]; % Lower bounds for x.
[2;2]; % Upper bounds for x.
[1 1]; % Known optimal point (optional).
0; % Known optimal function value (optional).
0; % Lower bound on function (optional).

[1.3 1.3]; % Plot region parameters.

x_min

% CHANGE:
% CHANGE:

[-1.1 -0.2]; 7 Plot region parameters.
elseif P == 18
Add an elseif entry and the other variable definitions needed

4. Make the following addition in uc_f.m:

elseif P

f =0.

elseif P

5

= 17 % Fletcher Q.3.3
*(x(1)"2+x(2) "2) *exp (x(1) "2-x(2)"2) ;
= 18 7 RB BANANA

f = 100%(x(2)-x(1)72)"2 + (1-x(1))"2;

end

5. Make the following addition in uc_g.m:

éiéeif P == 17 % Fletcher Q.3.3
%t = 0.5%(x(1)"2+x(2) "2) *exp(x(1)"2-x(2)"2);

e

g

exp(x(1)"2-x(2)"2);
ex[x(1)*(1+x (1) "2+x(2) "2) ; x(2)*(1-x(1)"2-x(2)"2)]1;

elseif P == 18 7 RB BANANA
g = [-400%x (1) *(x(2)-x(1)72)-2%(1-x(1)); 200*(x(2)-x(1)"2) 1;

end

6. Make the following addition in wc_H.m:

elseif P == 17 Y, Fletcher Q.3.3

%
he

0.5*%(x(1)"2+x(2) "2) *exp(x(1)"2-x(2)"2) ;
ex [x(1)*(1+x(1) "2+x(2)"2); x(2)*(1-x(1)"2-x(2)"2)1;

TOMLAB v1.0 User’s Guide 42

e = exp(x(1)"2-x(2)"2);
[1+5%x (1) "2+2*xx (1) "2*x (2) "2+x(2) "2+2*x (1) "4, ...
-2kx (1) *x(2)*(x (1) "2+x(2)"2) ;
0, 1-x(1)"2+2*x(1) "2*x(2) "2-5*x(2) "2+2*x(2) "4];
H(2,1)=H(1,2);
H = exH;
elseif P == 18 % RB BANANA
H = [1200*x(1)"2-400*x(2)+2 , -400*x(1);
-400*x (1) , 200 1;

==}
1]

end

7. Save all the files properly.

If you prefer alternative 3 you should instead copy the files usr_prob.m, usr_f.m, usr_g.m and usr_H.m in step 1.
In these files, replace the problem Own UC problem 1 with RB BANANA in the same way as described above (do
not forget the menu choice line in usr_prob.m).

2.6.2 Defining Box-bounded Global Optimization Problems

Box-bounded global optimization problems are defined in the same way as unconstrained optimization problems.
Since no derivative information is used, glb_prob and g¢lb_f are the only problem definition files that need to be
modified.

To define (6) as a box-bounded global optimization problem follow the stepwise instructions below (for all instruc-
tions we assume that you edit the copied files in a text editor). Note that we in this example change the lower
variable bounds to z;, = (—=2,—2)7. The reason for that is just to speed up the global search for the reader who
wants to run this example.

1. Copy the files glb_prob.m and glb_f.m to your directory NLPNEW.

2. Add the problem name to the menu choice in glb_prob.m:

,’HGO 468:27...
,’Spiral’...
,’RB BANANA’ ...
); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;
end

3. Add the following in g¢lb_prob.m after the last already existing problem (the optional parameters are not
necessary to define):

elseif P == 29
Name=’RB BANANA’;

x_L = [-2;-2]; % Lower bounds for x.
x.U=1[2; 2]; % Upper bounds for x.
x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).

TOMLAB v1.0 User’s Guide 43

n_global = 1; % Number of global minima (optional).
n_local = 1; % Number of local minima (optional).
K= [1; % Lipschitz constant, not used.
x_max = [2 2]; % Plot region parameters.

x_min = [-2 -2]; % Plot region parameters.

% CHANGE: elseif P == 30
% CHANGE: Add an elseif entry and the other variable definitions needed

4. Make the following addition in glb_f.m:

elseif P == 29 Y% RB BANANA
f = 100x(x(2)-x(1)"2)"2 + (1-x(1))"2;
end

5. Save all the files properly.

2.6.3 Defining Nonlinear Least Squares Problems

To define (6) as a nonlinear least squares problem follow the stepwise instructions below (for all instructions we
assume that you edit the copied files in a text editor):

1. Copy the files Is_prob.m, Is_r.m and Is_J.m to your directory NLPNEW.

2. Add the problem name to the menu choice in Is_prob.m:

,’Plasmid Stability n=3 (subst.)’...
,’Plasmid Stability n=3 (probability)’...
,’RB BANANA’ ...
); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;
end

3. Add the following in Is_prob.m after the last already existing problem (the optional parameters are not
necessary to define):

elseif P==10

Name=’RB BANANA’;

Yt=[0;0]; % r(x) = residual = model psi(t,x) - data Yt(t)
x_0=[-1.2 1]7; % Starting values for the optimization.
x_L=[-10;-10]; % Lower bounds for x.

x_U=[2;2]; % Upper bounds for x.

x_opt=[1 1]; % Known optimal point (optional).

f_opt=0; % Known optimal function value (optional).

TOMLAB v1.0 User’s Guide 44

f_min=0; % Lower bound on function (optional).
x_max=[1.3 1.3]; 7 Plot region parameters.
x_min=[-1.1 -0.2]; % Plot region parameters.
else
disp(’1ls_prob: Illegal problem number’)
pause
Name=[];
end

4. Make the following addition in Is_r.m:

yMod=r;
elseif P==10

% RB BANANA

r = [10*x(x(2)-x(1)"2);1-x(17T;
end

if Prob.NLLS.UseYt & m==length(r), r=r-Yt; end

5. Make the following addition in Is_J.m:

elseif P==10
% RB BANANA
J = [-20*x(1) 10
-1 01;
end

6. Save all the files properly.

If you prefer alternative 3 you should instead copy the files usr_prob.m, usr_r.m and usr_J.m in step 1. In these
files, replace the problem Own LS problem 1 with RB BANANA in the same way as described above (do not forget
the menu choice line in usr_prob.m).

2.6.4 Defining Constrained Problems
To illustrate how to define a constrained problem, we add the constraints

T —22 < 1 (7)
and

—2f -z < 1 (8)

to (6). Constraint (7) is of linear type and will thereby be defined separated from the nonlinear constraint (8).

The problem will be defined by following the stepwise instructions below (for all instructions we assume that you
edit the copied files in a text editor):

TOMLAB v1.0 User’s Guide

45

1. Copy the files con_prob.m, con_f.m, con_g.m, con_H.m, con_c.m, con_dc.m and con_d2c.m to your directory
NLPNEW.

2. Modify the files con_prob.m, con_f.m, con_g.m and con_H.m in the same way as described for for the uncon-

strained case in Section 2.6.1.

3. Extend the problem definition in

elseif P
Name="’
x_0 =

x_L =

15
RB BANANA’;
[-1.2 1173
[-10;-101;

= [2;2];

= [1 1];
= 0;
0;
=[1.3 1.3];
[-1.1 -0.2];
[1 -11;
-inf;

con_prob.m with the constraint parameters:

Starting values for the optimization.
Lower bounds for x.

Upper bounds for x.

Known optimal point (optional).

Known optimal function value (optional).
Lower bound on function (optional).

Plot region parameters.

Plot region parameters.

Linear constraints matrix.

Lower bounds
Upper bounds
Lower bounds
Upper bounds

4. Make the following addition in con_c.m:

elseif P == 15 ¥ RB BANANA

cx =
end

-x(1)°"2 - x(2);

5. Make the following addition in con_dc.m:

elseif P == 15 ¥ RB BANANA
if init==

dc = [-2%x(1);-1];

else
dc
end
end

= ones(2,1);

6. Make the following addition in con_d2c.m:

on
on
on
on

linear constraints.
linear constraints.
nonlinear constraints.
nonlinear constraints.

TOMLAB v1.0 User’s Guide 46

elseif P == 15 ¥ RB BANANA

if init==
d2c = [-2 0;0 O]*lam;
else
d2c = [1 0; 0 0]
end
end

7. Save all the files properly.

If you prefer alternative 3 you should instead copy the files usr_prob.m, usr_f.m, usr_g.m, usr_H.m, usr_c.m, usr_dc.m
and usr_d2c.m in step 1. In these files, replace the problem Own C problem 1 with RB BANANA in the same way
as described above (do not forget the menu choice line in usr_prob.m).

2.6.5 Defining Global Mixed-Integer Nonlinear Programming Problems

To illustrate how to define a global mixed-integer nonlinear programming problem, we add the constraints (7), (8)
and

x1 integer 9)

to (6). Constraint (7) is of linear type and will thereby be defined separated from the nonlinear constraint (8).

To define (6) with the constraints (7), (8) and (9) as a global mixed-integer nonlinear programming problem follow
the stepwise instructions below (for all instructions we assume that you edit the copied files in a text editor). Note
that we in this example change the lower variable bounds to z;, = (=2, —2)?. The reason for that is just to speed
up the global search for the reader who wants to run this example.

1. Copy the files glc_prob.m, glc_f.m and glc_c.m to your directory NLPNEW.

2. Modify the files glc_prob.m and glc_f.m in the same way as described for for the box-bounded case in Section
2.6.2.

3. Extend the problem definition in glc_prob.m with the constraint parameters:

elseif P == 24
Name=’RB BANANA’;

x_ L = [-2;-2]; % Lower bounds for x.

x.U=1[2; 2]; % Upper bounds for x.

x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).
A = [1 -1]; % Linear constraints matrix.

b_L = -inf; % Lower bounds on linear constraints.
b_U = 1; % Upper bounds on linear constraints.
c_L = -inf; % Lower bounds on nonlinear constraints.
c_U=1; % Upper bounds on nonlinear constraints.
Integers = [1]; % Integer constraint.

n_global = 1; % Number of global minima (optional).
n_local = 1; % Number of local minima (optional).

K= []; % Lipschitz constant, not used.

x_max = [2 2]; % Plot region parameters.

x_min = [-2 -2]; % Plot region parameters.

end

TOMLAB v1.0 User’s Guide 47

4. Make the following addition in glc_c.m:

elseif P == 24 % RB BANANA
cx = -x(1)"2 - x(2);
end

5. Save all the files properly.

2.6.6 Defining Constrained Nonlinear Least Squares Problems

To illustrate how to define a linear constrained nonlinear least squares problem we add the constraint (7) to (6).

The problem will be defined by following the stepwise instructions below (for all instructions we assume that you
edit the copied files in a text editor):

1. Copy the files cls_prob.m, cls_.r.m and cls_J.m to your directory NLPNEW.

2. Modify the files cls_prob.m, cls_.r.m and cls_J.m in the same way as described for for the unconstrained case
in Section 2.6.3.

3. Extend the problem definition in cls_prob.m with the constraint parameters:

elseif P==28

Name=’RB BANANA’;

Yt=[0;0]; % r(x) = residual = model psi(t,x) - data Yt(t)
x_0=[-1.2 1]’; % Starting values for the optimization.
x_L=[-10;-10]; % Lower bounds for x.

x_U=[2;2]; % Upper bounds for x.

x_opt=[1 1]; % Known optimal point (optional).

f_opt=0; % Known optimal function value (optional).
f_min=0; % Lower bound on function (optional).

x_max=[1.3 1.3]; % Plot region parameters.

x_min=[-1.1 -0.2]; % Plot region parameters.

A =11 -1]; % Linear constraints matrix.

b_L = -inf; % Lower bounds on linear constraints.

b_U = 1; % Upper bounds on linear constraints.
else

disp(’cls_prob: Illegal problem number’)

pause

Name=[];
end

4. Save all the files properly.

If you prefer alternative 3 you should instead copy the files usr_prob.m, usr_r.m and usr_J.m in step 1. In these
files, replace the problem Own Constrained LS problem 1 with RB BANANA in the same way as described above
(do not forget the menu choice line in usr_prob.m).

TOMLAB v1.0 User’s Guide

2.6.7 Defining Quadratic Problems

48

Quadratic programming problems are defined in only one problem definition file, ¢gp_prob.m. The problem

min f(z) = 422 + x129 + 423 + 321 — 429
x

s/t

T +a2 <5
.'171—.'172:0
1'120
I’QZO,

named QP EXAMPLE, will be used to help us illustrate how to define a quadratic programming problem.

To define (10) as a quadratic programming problem follow the stepwise instructions below (for all instructions we
assume that you edit the copied file in a text editor):

1. Copy the file gp_prob.m to your directory NLPNEW.

2. Add the problem name to the menu choice in gp_prob.m:

,’Bazaara IQP 9.29b pg 405. F singular’...

,’Bunch and Kaufman Indefinite QP’...

,’QP EXAMPLE’...

); % MAKE COPIES OF THE PREVIQUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;
end

3. Add the following in gp_prob.m after the last already existing problem:

elseif P==15

Name=’QP EXAMPLE’;
F=1[8 2

2 81;
c=[3 -417];
A=1T1 1

1 -1171;
b_L=[-inf 0 17
b_U=[5 0]’,
xL=[0 0 1
x_U = [inf inf]°’;
x0=[0 1 1
x_min=[-1 -1];
x_max=[6 6];

else

h

YA

h
h
h
h
h
h
h

disp(’qp_prob: Illegal

pause
Name=[];
end

4. Save the file properly.

Hessian

Constraint matrix

Lower bounds
Upper bounds
Lower bounds
Upper bounds

on
on
on
on

Starting point
Plot region parameters
Plot region parameters

problem number’)

the
the
the
the

constraints
constraints
variables
variables

TOMLAB v1.0 User’s Guide 49

If you prefer alternative 3 you should instead copy the file usr_prob.m in step 1. In this file, replace the problem
Own QP problem 1 with QP EXAMPLE in the same way as described above (do not forget the menu choice line
in usr_prob.m).

2.6.8 Defining Exponential Sum Fitting Problems

Exponential sum fitting problems are defined in only one problem definition file, exp_prob.m. Assume that we
want to fit a sum of exponential terms to the data series

30 18299
50 15428
70 13347
90 11466
110 10077
130 8729
150 7382
170 6708
—3| 190 4 9932
t=10 210 ,Y(t) =10 5352 | (11)
230 4734
250 4271
270 3744
290 3485
310 3111
330 2950
350 2686
370 2476

here named SW.

To define (11) as a exponential sum fitting problem follow the stepwise instructions below (for all instructions we
assume that you edit the copied file in a text editor):

1. Copy the file exp_prob.m to your directory NLPNEW.

2. Add the problem name to the menu choice in exp_prob.m:

,’Atcexp nr2 ’...

,’Atcexp nr2\~ ...

,SW 2. ..

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;
end

3. Add the following in ezp_prob.m after the last already existing problem:

elseif P==44
Name="SW’ ;
t=[30:20:370]’; % Time in ms

TOMLAB v1.0 User’s Guide a0

Yt=[18299 15428 13347 11466 10077 8729 7382 6708 5932 5352 4734 4271 ...
3744 3485 3111 2950 2686 2476]°;

t=t/1000; % Scale to seconds. Gives lambda*1000, of order 1
Yt=Yt/10000; 7% Scale function values. Avoid large alpha
else

disp(’exp_prob: Illegal problem number’)

4. Save the file properly.

If you prefer alternative 3 you should instead copy the file usr_prob.m in step 1. In this file, replace the problem
Own EF problem 1 with SWin the same way as described above (do not forget the menu choice line in usr_prob.m).

There are four different types of exponential terms available in NLPLIB TB. The type of exponential terms is
determined by the parameter Prob.ExzpFit.eType which is set by defining the parameter eType in the problem
definition file:

elseif P==44
Name=’SW’ ;
t=[30:20:370]’; % Time in ms
Yt=[18299 15428 13347 11466 10077 8729 7382 6708 5932 5352 4734 4271 ...
3744 3485 3111 2950 2686 2476]7;

t=t/1000; % Scale to seconds. Gives lambda*1000, of order 1
Yt=Yt/10000; % Scale function values. Avoid large alpha
eType = 1;

else

disp(’exp_prob: Illegal problem number’)

The above definition of e Type is not necessary and was made just in illustrative purpose since 1 is the default value
of eType.

The four different types of exponential terms available in NLPLIB TB are given in Table 29.

Table 29: The different types of exponential terms.

ft) = iaie_ﬁit, a; >0, 0< B <By<...<B,, elype=1.
ft) = f:ai(l — e Pity, a; >0, 0< B <By<...<B,, eType=2.
ft) = f:taie_ﬁit, a; >0, 0<pB <fBy<..<pB, eType=3.
f(t) = Xp:(tai — e Pt @,y >0, 0< 8, <By,<..<f,, eType=4.

2.6.9 Defining Problems in Own Problem Definition Files

Assume you have a collection of e.g. nonlinear least squares problems which you want to define in your own problem
definition files. Also assume you have defined your problems in Is_prob, Is_r and Is_J as described in Section 2.6.3.
Of course, you can remove the already existing problems and define your first problem as number one. The extra
modifications needed are:

TOMLAB v1.0 User’s Guide

1. Rename the files to for example own_prob, own_r and own_J.

2. Make the following modification in the beginning of own_prob:

if ask==-1 & “isempty(Prob)
if isstruct(Prob)
if “isempty(Prob.P)
if P==Prob.P & strcmp(Prob.probFile,’own_prob’), return; end
end
end
end

3. Make the following modifications at the end of own_prob:

Prob=mFiles(Prob,’1ls_f’,’1s_g’,’1s_H’,[1,[]1,[]1,’0own_r’,’own_J’,’1ls_d2r’);

4. Modify the file nameprob.m as described in the file. It should now look like:

elseif solvType==
% Nonlinear Least Squares
F=str2mat (’1ls_prob’, ’mgh_prob’,’exp_prob’,’usr_prob’...
,’usr_prob’...
,’nts_prob’...
,’own_prob’...

);

% USER: Duplicate the row above and insert your own file name
yA inside the quotes

% USER: Uncomment next row if your latest file should be the default one.
% D=size(F,1);

N=str2mat (...

’ls Nonlinear Least Squares’...

, 'mgh More, Garbow, Hillstrom’...

,’exp Exponential Fitting’...

,’usr Nonlinear Least Squares’...

,’usr Exponential Fitting’...

,’nts Nonlinear Time Series Fitting’...
,’own My own least squares’...

)

% USER: Duplicate the row above and insert your own file name

% and description inside the quotes. Add the probType number to
% the vector probTypV below.

probTypV=[4 4 5 4 5 7 4];

51

TOMLAB v1.0 User’s Guide 92

5. Do not forget the uncomment procedure if your file should be the default one.

6. Save all the files properly.

2.6.10 Special Notes

User Supplied Problem Parameters

The best way to describe this will be by giving some examples. Assume you have a problem with variable dimension.
If you want to interactively give the dimension of the problem during the problem setup, the routine askparam
will help you. Let us take problem 27 in cls_prob as an example.

elseif P==27
Name=’RELN’; J Test for releasing more than one bound with variable dimension
uP=checkuP (Name,Prob) ;
% n variable, 1 <= n , default n=10
n = askparam(ask, ’Give problem dimension ’, 1, [], 10, uP);
uP(1)=n;
Yt=zeros(n,1);
x_0 = zeros(n,1);
%x_0 = 1E-5%ones(n,1);
x_opt = 3.5%ones(n,1);

The parameter P which is a field in the problem structure Prob is aimed for this kind of problems and we can
see above that uP(1) is set to the dimension supplied by the user. Type help askparam for information about the
parameters sent to askparam. When user supplied parameters are to be handled the routine checkuP should be
called in the same way as above (directly after the definition of the name of the problem). checkuP checks that
the user parameters set in uP (or Prob.uP) are the ones that is set for the actual problem in the first place. If
they are set outside the system checkuP will let them keep those values.

In the other problem definition files, cls_r and cls_J in this example, the parameter(s) are "unpacked” and can be
used e.g. in the definition of the Jacobian.

elseif P==27
% ’RELN’
n = Prob.uP(1);

If you want questions to be asked during the problem setup you must set the ask flag true in the call to probInit.
See the example below:

ask=1;
Prob = probInit(’cls_prob’,27,ask);

The system will now ask you to give the problem dimension, and let us assume that you choose the dimension to
be 20:

Current value = 10
Give problem dimension 20

Now we call clsSolve to solve the problem,

TOMLAB v1.0 User’s Guide 93

Result=clsSolve(Prob);

which gives the printing output

Iteration no: 0 Func 80.00000000000000000000 Cond 1

Iteration no: 1 Func 1.25000000000000000000 Cond 1
***x Convergence 2, Projected gradient small x*x*x*

As a second example let us assume that the user will solve the problem above for all dimensions between 10 and
30. Then the following code snippet will help us.

for dim=10:30
Prob = [];
Prob.uP(1)
Prilev = 0O;

= dim;

Result = clsRun([],Prob,[],Prilev,’cls_prob’,27);
end

User Given Stationary Point

Known stationary points could be defined in the problem definition files. It is also possible for the user to define
the type of stationary point (minimum, saddle or maximum). When we have defined the problem RB BANANA
(6) in the previous sections we have defined z_opt to (1,1) in the problem definition files. Since we now that this
point is a minimum point we could extend the definition of z_opt to

x_opt = [1 1 StatPntType]; % Known optimal point (optional).

where StatPntType equals 0, 1, or 2 depending on the type of the stationary point (minimum, saddle or maximum).
In our case we will set StatPntType to 0 since (1,1) is a minimum point and the extension becomes

x_opt = [1 1 0]; % Known optimal point (optional).
If there is more than one known stationary point, the points are defined as rows in a matrix with the values of
StatPntType as the last column. Assume that (—1,—1) is a saddle point, (1, —2) is a minimum point and (-3, 5)
is a maximum point for a certain problem. The definition of z_opt could then look like
xopt=[-1-1 1
1-2 0
-3 5 217;

Note that it is not necessary to define z_opt, and if z_opt is defined it is not necessary to define StatPntType.

TOMLAB v1.0 User’s Guide o4

2.7 How to Solve Optimization Problems Using NLPLIB TB

In general, solving a problem in NLPLIB TB demands that you have defined the problem in the problem definition
files as described in Section 2.6. There are one exception, quadratic programming problems could be solved by first
defining the problem parameters in the Matlab Command Window and then call the appropriate solver. When
you have defined your problem in the problem definition files, there are several possible ways to solve it. You can
use the Graphical User Interface routine nlplib, the menu systems ucOpt, conOpt etc. or the driver routines ucRun,
conRun, etc. You could also solve your problem by a direct call to the optimization routine. Which approach to
choose depends on your purpose.

The interactive environments in the menu systems and the Graphical User Interface (GUI) are the most straight-
forward approaches. These choices give you easy access to all available utilities. How to use the menu systems and
the GUI are described in Section 2.4 and Section 2.5, respectively.

When several problems are to be solved, e.g. in an algorithmic development environment, it is inefficient to use an
interactive system. In this case, we recommend you to solve your problems by directly call the driver routines. In
the reminder of this section we will illustrate how these driver routines are called, how you directly call an general
optimization routine and how you can solve a quadratic program by a direct call to the actual solver.

To run the examples in this section the reader could either define the particular problem as described in the
previous section or he could use the problem definition files in the directory ...tomlab\nlpnew. Note that the
nlpnew directory must be put before the nlplib directory in the Matlab path or chosen as the current working
directory.

2.7.1 Using the Driver Routines

As a first example, we will solve the problem RB BANANA (6) defined as an unconstrained problem. Default
values will be used for all parameters not explicitly changed. The following calls will solve our problem:

probFile = ’uc_prob’; % Problem definition file.
P = 18; % Problem number.
Prob = probInit(probFile, P); 7 Setup Prob structure.

Result = ucRun([], Prob, [], [], probFile, P);
To display the result of your run you just call the print routine PrintResult with your Result structure,
PrintResult (Result);

which gives the following printing output:

=== % % * * kK
Problem 18: RB BANANA f k 0.000000000000000001
User given f(x_*) 0.000000000000000000

£(x_0) 24.199999999999996000

Solver: ucSolve. EXIT=0. INFORM=2.
Safeguarded BFGS

FuncEv 48 GradEv 40
NLPLIB Global Variable Counters give:
FuncEv 48 GradEv 41 Iter 36
Starting vector x:
x_0: -1.200000 1.000000
Optimal vector x:
x_k: 1.000000 1.000000
Diff x-x0:
2.200000e+000 -2.312176e-009

TOMLAB v1.0 User’s Guide 35

Gradient g_k:
g_k: -4.162202e-009 9.227064e-010
NLPLIB found no active constraints.

=== * % % * X X

If you want to solve the problem by using the Matlab routine fminu you just add the definition of Solver and then
call the driver routine ucRun:

probFile = ’uc_prob’; % Problem definition file.
P = 18; % Problem number.

Prob = probInit(probFile, P); 7 Setup Prob structure.
Solver = ’fminu’; % Solver routine.

Result = ucRun(Solver, Prob, []1, [], probFile, P);

Our second example is of a more "testing and developing” characteristic. We want to illustrate how the driver
routines could be used in an efficient way. By use of a simple for loop we will solve all the least squares problems
defined in the files own_prob, own_r and own_J, see Section 2.6.9. We have chosen to explicitly set the values of
several parameters, just in illustrative purpose. This procedure is not necessary since you could use the default
values. The function drv_test below runs IsRun for all problems defined in own_prob, and then displays the number
of iterations performed. Instead of just printing the number of iterations, you can store some of the results for
later use in e.g. statistical analysis.

function drv_test();

probFile = ’own_prob’; % Solve problems defined in own_prob.m
probNames = feval(probFile); 7% Get a list of all available problems.
ask = 0; % Do not ask questions in problem definition.

PrilLev = 0; 7% No printing output.

usr = 0; % Do not solve problem defined in usr_prob.m.

Solver = ’1lsSolve’;

optParam = lsDef; % Set default values.

optParam.PriLev = 0; % No printing output.

optParam.eps_x = 1E-7; % Termination tolerance for X (Default=1E-8).

optParam.eps_f = 1E-9; % Termination tolerance on F.(Default=1E-10). Dir.derivative
optParam.eps_c = 1E-5; % Termination criterion on constraint violation (Default=1E-6)
optParam.method =1; % Optimization solver sub-method technique.

optParam.MaxIter = 200; % Maximum number of iterations. (Default 100*no. of variables)
optParam.eps_g = 1E-5; % Termination tolerance on gradient.(Default=1E-6).
optParam.eps_Rank = 1E-11; % Rank test tolerance. Used in subspace minimization.
optParam.wait = 0; % If true, pause after iteration printout.

optParam.eps_absf 1E-35; % Absolute convergence tolerance in function f.
optParam.LineSearch.sigma = 0.5; J Line search accuracy sigma. (Default=0.9)

for P = 1:size(probNames,1)
probNumber = P;

Prob = probInit(probFile, P, ask, [], usr);
Prob.optParam = optParam;

TOMLAB v1.0 User’s Guide 96

fprintf (’\n Problem number %d:’,P);
fprintf (’ %s’ ,Prob.Name) ;

Result = 1lsRun(Solver, Prob, ask, Prilev, probFile, probNumber) ;
fprintf (’\n Number of iterations: %d’,Result.Iter);

end
As a third example, the exponential sum fitting problem (11) are solved by:

probFile = ’exp_prob’; % Problem definition file.
P = 44; % Problem number.
Prob = probInit(probFile, P); Y Setup Prob structure.

Result = clsRun([], Prob, [], [], probFile, P);

2.7.2 Direct Call to an Optimization Routine

When you want to solve your problem by a direct call to an Optimization routine there are two possible ways of
doing it. The difference is in the way the problem dependent parameters are defined. The most natural way is
to use a o_prob routine (e.g. uc_prob if the problem is of the type unconstrained) to define those parameters. The
other way is to define those parameters by first calling the routines ProbAssign and mFiles. In this subsection, we
will give examples of the two different approaches.

First, we will solve the problem RB BANANA (6) as an unconstrained problem. In this case, we will have to define
the problem in the files uc_prob, uc_f, uc_g and uc_H as described in Section 2.6.1. Using the problem definition
files in the directory NLPNEW we solve the problem and print the result by the following calls.

probFile = ’uc_prob’; % Problem definition file.
P = 18; % Problem number.
Prob = probInit(probFile, P); % Setup Prob structure.

Result = ucSolve(Prob);

PrintResult (Result) ;

Now, we will solve the same problem as in the example above but we will define the parameters z_0, x_L and z_L
by calling the routine ProbAssign. Note that in this case we will not use the file uc_prob, only the uc_f, uc_g and
uc_H files will be needed. The call to the routine mFiles is to declare in which files our problem is defined.

optType = ’uc’; % Problem type.

x_0 = [-1.2;1]; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

Prob = probAssign(optType, x_0, [1, x_L, x_U); % Setup Prob structure.
Prob = mFiles(Prob,’uc_£f’,’uc_g’); % Problem definition files.
Prob.P = 18; % Problem number.

Result = ucSolve(Prob);

PrintResult (Result) ;

2.7.3 A Direct Approach to a QP Solution

We end up this section with an example of how to solve the quadratic programming problem (10) by a direct
call to the routine gpSolve. Using this approach will eliminate the need of defining the problem in the problem
definition files. The following definitions and call will illustrate the procedure:

TOMLAB v1.0 User’s Guide a7

Prob = ProbDef;

Prob.QP.F = [8 2 % Hessian.

2 81;
Prob.QP.c = [3 -4]’; Y% Constant vector.
Prob.x_.L = 1[0 0]1’; % Lower bounds on the variables
Prob.x_U = [inf inf]’; % Upper bounds on the variables
Prob.x .0 =[0 11]’; 9% Starting point
Prob.A =[1 1 % Constraint matrix

1 -11;
Prob.b_ L. = [-inf 0]’; % Lower bounds on the constraints
Prob.b_.U = [5 0]’; % Upper bounds on the constraints

Result = gpSolve(Prob);

2.8 Printing Utilities and Print Levels

The amount of printing is determined by setting a print level for each routine. This parameter most often has the
name PriLev.

The main driver or menu routine called may have a PriLev parameter among its input parameters. This parameter
determines the level of printing output of the result of the optimization.

The optimization routines normally sets the PriLev parameter to Prob.optParam.PriLev. The structure optParam
which itself is a field in the structure Prob is set to default values by a call to optParamdef. The user may then
change any values before calling the main routine, see Table 30. The fields in optParam is described in Table 6.

Table 30: PriLev in the optimization routines

Value Description
<0 Totally silent.
Error messages and warnings.
Final results including convergence test results and minor warnings.
Each iteration, short output.
Each iteration, more output.
Line search or QP information.
Hessian output, final output in solver.

T W NN+~ O

There is a wait flag field in optParam, optParam.wait. If this flag is set true, the routines uses the pause statement
to avoid the output just flushing by.

Three global variables, MAX_¢, MAX z and MAX_r, are used as upper bounds for the number of constraints,
variables and residuals to be printed. Those variables, useful for large problems, are set to default values by calling
niplibInit.

The NLPLIB TB routines print large amounts of output if high values for the PriLev parameter is set. To make
the output look better and save space, several printing utilities have been developed, see Table 41 page 95. There
is also a routine PrintResult which prints the results of an optimization given the Result structure.

For matrices there are two routines, mPrint and printmat. The routine printmat prints a matrix with row and
column labels. The default is to print the row and column number. The standard row label is eight characters
long. The supplied matrix name is printed on the first row, the column label row, if the length of the name is at
most eight characters. Otherwise the name is printed on a separate row.

The standard column label is seven characters long, which is the minimum space an element will occupy in the
print out. On a 80 column screen, then it is possible to print a maximum of ten elements per row. Independent
on the number of rows in the matrix, printmat will first display A(:,1: 10), then A(:, 11 : 20) and so on.

TOMLAB v1.0 User’s Guide 98

The routine printmat tries to be intelligent and avoid decimals when the matrix elements are integers. It determines
the maximal positive and minimal negative number to find out if more than the default space is needed. If any
element has an absolute value below 107° (avoiding exact zeros) or if the maximal elements are too big, a switch
is made to exponential format. The exponential format uses ten characters, displaying two decimals and therefore
seven matrix elements are possible to display on each row.

For large matrices, especially integer matrices, the user might prefer the routine mPrint. With this routine a more
dense output is possible. All elements in a matrix row is displayed (over several output rows) before next matrix
row is printed. A row label with the name of the matrix and the row number is displayed to the left using the
Matlab style of syntax.

The default in mPrint is to eight characters per element, with two decimals. However, it is easy to change the
format and the number of elements displayed. For a binary matrix it is possible to display 36 matrix columns in
one 80 column row.

2.9 Notes about Special Features

The aim of this section is to give short descriptions of some special features available in NLPLIB TB. The list
(in form of subsections) does not claim to be complete so the reader should consult Section 2.1 to get a complete
picture of the system.

2.9.1 Approximation of Derivatives

Both numerical differentiation and automatic differentiation are available. For numerical differentiation there are
four different approaches.

First there is the classical approach with forward or backward differences together with an automatic step selection
procedure. This is handled by the routines fdng which is a direct implementation of the FD algorithm [28, page

343].

If the Spline Toolbox is installed, gradient, Jacobian, constraint gradient and Hessian approximations could be
computed in three different ways depending of which of the three routines csapi, csaps or spaps the user choose to
use.

Numerical differentiation is automatically used for gradient, Jacobian, constraint gradient and Hessian if the user
routine is nonpresent.

Automatic differentiation is performed by use of the ADMAT TB, for information of how to get a copy of ADMAT
TB see http://simon.cs.cornell.edu/home/verma/AD/. Below, we give a short instruction of how to install it.

1. Install the ADMAT TB at e.g. d:\Admat\...

2. Change the path commands in ...\tomlab\nlplib\admatInit.m and execute the file. (If you choose d:\Admat
in 1. it should be:)

path(path,’d:\admat’) ;
path(path,’d:\admat\reverse’);
path(path,’d:\admat\reverseS’);
path(path,’d:\admat\PROBS’) ;
path(path, ’d:\admat\ADMIT\ADMIT-1’);

3. If not done before, setup location of installed c-compiler by "mex -setup”.

4. In directory d:\Admat\ADMIT\ADMIT-1, execute "mex id.c” to form id.dlL

ADMAT TB should be initialized by calling admatinit before running NLPLIB TB with automatic differentiation.
Note that if NLPLIB TB should be fully compatible with the ADMAT TB then your functions must be defined

TOMLAB v1.0 User’s Guide 99

according to the ADMAT TB requirements. Some of the predefined test problems in NLPLIB TB do not fulfill
those requirements.

In the Graphical User Interface, differentiation strategy selection is made from the Diff menu reachable in ad-
vanced mode. When running the menu routines you should push the How to compute derivatives button in the
Optimization Parameter Menu. To choose differentiation strategy when running the driver routines or directly
calling the actual solver you just set Prob.AutoDiff equal to 1 for automatic differentiation or Prob. NumDiff to
1, 2, 3 or 4 for numerical differentiation, before calling drivers or solvers. Note that Prob.NumDiff = 1 will
run the fdng routine and Prob.NumDiff = 2,3,4 will run the Spline Toolbox routines csapi, csaps and spaps
correspondingly. The csaps demands that a smoothness parameter is set and the spaps routine demands that a
tolerance parameter is set. Those parameters are asked for when the corresponding routine is chosen but could
also be explicitly set by the user via the splineSmooth and splineTol fields in the optimization parameter struc-
ture optParam, see Table 6. The user should be aware of that there is no guarantee that the default values of
splineSmooth and splineTol are appropriately chosen.

Here follows some examples of the use of approximative derivatives when running the driver routines ucRun and
clsRun.

Automatic Differentiation example

probFile = ’uc_prob’;

P =1;

Prob = probInit(probFile, P);

Solver = ’ucSolve’;

Prob.Solver.Alg = 1;

Prob.AutoDiff = 1; % Use Automatic Differentiation.
Result = ucRun(Solver, Prob, [], [], probFile, P);
FD example

probFile = ’uc_prob’;

P =1;

Prob = probInit(probFile, P);

Solver = ’ucSolve’;

rob.Solver.Alg = 1;
Prob.NumDiff 1; 7 Use the fdng routine.
Result = ucRun(Solver, Prob, [], [], probFile, P);

Spline example

probFile = ’1s_prob’;

P = 1;

Prob = probInit(probFile, P);

Solver = ’1sSolve’;

Prob.Solver.Alg = 0;

Prob.NumDiff = 2; Y% Use the Spline Toolbox routine csapi.
Result = 1sRun(Solver, Prob, [], [], probFile, P);

2.9.2 Partially Separable Functions

The routine sTrustR implements a structured trust region algorithm for partially separable functions (psf). We
will here give the definition of a psf and illustrate how such a function is defined.

M
f is partially separable if f(z) = >_ fi(z), where, for each i € {1, ..., M } there exists a subspace N; # 0 such that,

for all w € N; and for all € X, it holds that f;(z + w) = fi(z). X is the closed convex subset of R” defined by
the constraints.

TOMLAB v1.0 User’s Guide 60

Consider the problem DAS 2:

s/t Az >b -
z >0
where

T2 —
V2 -1 -2 -1 -1 -5
) 0.5

_ V0-0775i’i:m A= -3 -1 =2 1 |, b= —4
3\/7 0 1 4 0 1.5

%5561 + 0.6z3
0.75x3 + %m

The objective function in (12) is partially separable according to the definition above and the constraints are linear
and therefore they define a convex set. DAS 2 is defined as constrained problem 14 in con_prob, con_f, con_g etc.
to be an illustrative example of how to define a problem with a partially separable objective function. Note the
definition of pSepFunc in con_prob.

Solving (12) with sTrustR is done by the following definitions and call:

probFile = ’con_prob’;

P = 14,

Prob = probInit(probFile,P);

Solver = ’sTrustR’;

Result = conRun(Solver,Prob,[],[],probFile,P);

2.9.3 Recursive solver calls

For solving some kinds of problems it could be suitable or even necessary to apply algorithms which is based on a
recursive approach. Here, we by a recursive approach also include those cases where you in each iteration solves an
optimization problem as a subproblem. For example, the EGO algorithm (implemented in the routine ego) solves
an unconstrained (uc) and a box-bounded global optimization problem (glb) in each iteration. As we mentioned
in Section 2.1.1 NLPLIB TB uses a number of global variables. To avoid that those variables are not reinitialized
or given new values by the underlying procedure NLPLIB TB saves the global variables in the workspace before
the underlying procedure is called. Directly after the call to the underlying procedure the global variables are
restored.

The method described above to handle the problem of global variables in recursive algorithms are treated by the
two routines globalSave and globalGet. The globalSave routine saves all global variables in a structure glbSave(depth)
and then initialize all of of them as empty. By using the depth variable, an arbitrarily number of recursions are
possible. The other routine globalGet retrieves all global variables in the structure glbSave(depth,).

To illustrate the idea, we have pasted the parts of the ego code where the routines globalSave and globalGet are
called.

globalSave(1);
EGOResult = glbSolve(EGOProb);
globalGet (1) ;

globalSave(1);
[DACEResult] = ucSolve(DACEProb);

TOMLAB v1.0 User’s Guide

globalGet (1) ;

2.10 Driver Routines in NLPLIB TB

In the following subsections the driver routines in NLPLIB TB will be described.

2.10.1 clsRun

Purpose

Driver routine for constrained nonlinear least squares solvers.

Calling Syntax

Result = clsRun(Solver, Prob, ask, PriLev, probFile, probNumber)

Description of
Solver

Prob
ask

PriLev

probFile
probNumber

Description of
Result

Description

Inputs
The name of the solver that should be used to optimize the problem. Default
clsSolve. If the solver may run several different optimization algorithms,
then the values of Prob.optParam.alg and Prob.optParam.subalg determines
which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.

ask <0 Use values in Prob.uP if defined or defaults.

ask =0 Use defaults.

ask >1 Ask questions in probFile.

ask =[] If ProbuP =[], ask = —1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.

PriLev =0 No output.

PriLev =1 Final result, shorter version.

PriLev =2 Final result.

PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default cls_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Outputs
Structure with result from optimization, see Table 15.

61

The driver routine clsRun is called by the menu routine ¢lsOpt or the graphical user interface routine niplib to solve
constrained nonlinear least squares problems defined in your problem definition files. It is also possible for the user
to call clsRun directly from the Matlab command prompt, see Section 2.7. Via clsRun you can run the TOMLAB
internal solvers clsSolve and conSolve and the Matlab Optimization Toolbox solver constr. You can also, by use

of a MEX-file interface run the commercial optimization solvers NLSSOL, MINOS, NPSOL and NPOPT.

M-files Used

rxxRun.m, xxzRun2.m, npopt.m, inibuild.m, clsDef.m, probInit.m, mkbound.m, clsSolve.m, conSolve.m, solrun.m,
nlssol.m, minos.m, npsol.m, PrintResult.m, iniSolve.m, endSolve.m

2.10.2 conRun

Purpose

Driver routine for constrained optimization solvers.

Calling Syntax

Result = conRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of
Solver

Prob
ask

PriLev

probFile
probNumber

Description of
Result

Description

Inputs
The name of the solver that should be used to optimize the problem. Default
conSolve. If the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default con_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Outputs
Structure with result from optimization, see Table 15.

62

The driver routine conRun is called by the menu routine conOpt or the graphical user interface routine nlplib to

solve constrained optimization problems defined in your problem definition files. Tt is also possible for the user to
call conRun directly from the Matlab command prompt, see Section 2.7. Via conRun you can run the TOMLAB
internal solvers conSolve, sTrustR and nipSolve and the Matlab Optimization Toolbox solver constr. You can also,

by use of a MEX-file interface run the commercial optimization solvers MINOS, NPSOL and NPOPT.

M-files Used

zrxzRun.m, xzxzRun2.m, PrintResult.m, inibuild.m, conDef.m, probInit.m, mkbound.m, conSolve.m, nipSolve.m,
solrun.m, minos.m, npsol.m, npopt.m

2.10.3 glbRun

Purpose

Driver routine for box-bounded global optimization.

Calling Syntax
Result = glbRun

(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of Inputs

Solver

Prob
ask

PriLev

probFile
probNumber

The name of the solver that should be used to optimize the problem. Default
glbSolve. If the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask <0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default glb_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Description of Outputs

Result

Description

Structure with result from optimization, see Table 15.

63

The driver routine glbRun is called by the menu routine glbOpt or the graphical user interface routine niplib to solve

global optimization problems defined in your problem definition files. It is also possible for the user to call glbRun
directly from the Matlab command prompt, see Section 2.7. Via glbRun you can run the TOMLAB internal solver

glbSolve.

M-files Used
zxzRun.m, xxxRun2.m, PrintResult.m, inibuild.m, ucDef.m, probInit.m, mkbound.m, glbSolve.m, iniSolve.m,

endSolve.m

2.10.4 glcRun

Purpose

Driver routine for global mixed-integer nonlinear programming.

Calling Syntax

Result = glcRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of Inputs

Solver

Prob
ask

PriLev

probFile
probNumber

The name of the solver that should be used to optimize the problem. Default
glcSolve. If the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask <0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default glc_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Description of Outputs

Result

Description

Structure with result from optimization, see Table 15.

64

The driver routine glcRun is called by the menu routine glcOpt or the graphical user interface routine niplib to solve

constrained global optimization problems defined in your problem definition files. It is also possible for the user
to call glcRun directly from the Matlab command prompt, see Section 2.7. Via glcRun you can run the TOMLAB
internal solver glcSolve.

M-files Used
zxzRun.m, xxxRun2.m, PrintResult.m, inibuild.m, conDef.m, probInit.m, mkbound.m, glcSolve.m, iniSolve.m,

endSolve.m

2.10.5 1sRun

Purpose

Driver routine for nonlinear least squares solvers.

Calling Syntax

Result = IsRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of
Solver

Prob
ask

PriLev

probFile
probNumber

Description of
Result

Description

Inputs
The name of the solver that should be used to optimize the problem. Default
IsSolve. Tf the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default Is_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Outputs
Structure with result from optimization, see Table 15.

65

The driver routine lsRun is called by the menu routine IsOpt or the graphical user interface routine niplib to solve

nonlinear least squares problems defined in your problem definition files. It is also possible for the user to call
IsRun directly from the Matlab command prompt, see Section 2.7. Via IsRun you can run the TOMLAB internal
solvers IsSolve and ucSolve and the MatlabOptimization Toolbox solver leastsq. You can also, by use of a MEX-file

interface run the
M-files Used

commercial optimization solver NLSSOL.

zxzRun.m, xxxRun2.m, PrintResult.m, inibuild.m, IsDef.m, probInit.m, mkbound.m, lsSolve.m, ucSolve.m, solrun.m,
nlssol.m, iniSolve.m, endSolve.m

2.10.6 qgpRun

Purpose

Driver routine for quadratic programming solvers.

Calling Syntax

Result = gpRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of
Solver

Prob
ask

PriLev

probFile
probNumber

Description of
Result

Description

Inputs
The name of the solver that should be used to optimize the problem. Default
gpSolve. If the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default gp_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Outputs
Structure with result from optimization, see Table 15.

66

The driver routine gpRun is called by the menu routine gpOpt or the graphical user interface routine nilplib to

solve quadratic programming problems defined in your problem definition files. Tt is also possible for the user to
call gpRun directly from the Matlab command prompt, see Section 2.7. Via ¢gpRun you can run the TOMLAB
internal solvers gpe, qpim, gpiOld and gpiSolve (not fully developed) and the Matlab Optimization Toolbox solver
gp. Currently NLPLIB TB also includes a not fully developed routine ¢pBiggs for negative definite quadratic

problems.
M-files Used

zxzRun.m, zxxRun2.m, PrintResult.m, inibuild.m, conDef.m, probInit.m, mkbound.m, gpe.m, gplm.m, gpSolve.m,
qgpBiggs.m, iniSolve.m, endSolve.m

2.10.7 ucRun

Purpose

Driver routine for unconstrained optimization solvers.

Calling Syntax

Result = ucRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide

Description of
Solver

Inputs
The name of the solver that should be used to optimize the problem. Default
ucSolve. If the solver may run several different optimization algorithms,

then the values of Prob.optParam.alg and Prob.optParam.subalg determines

Prob
ask

PriLev

probFile
probNumber

Description of
Result

Description

which algorithm.
Problem description structure, see Table 5.
Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
User problem init file, default uc_prob.m.
Problem number in probFile. probNumber = 0 gives a menu in probFile.

Outputs
Structure with result from optimization, see Table 15.

67

The driver routine ucRun is called by the menu routine uwcOpt or the graphical user interface routine nilplib to

solve unconstrained optimization problems defined in your problem definition files. Tt is also possible for the user
to call ucRun directly from the Matlab command prompt, see Section 2.7. Via ucRun you can run the TOMLAB
internal solver ucSolve and the Matlab Optimization Toolbox solvers fmins and fminu. You can also, by use of a
MEX-file interface run the commercial optimization solver MINOS.

M-files Used

zxzRun.m, zxxRun2.m, xxxRund.m, inibuild.m, ucDef.m, probInit.m, mkbound.m, ucSolve.m, minos.m, iniSolve.m,

endSolve.m

2.11 Optimization Routines in NLPLIB TB

In the following subsections the optimization routines in NLPLIB TB will be described.

2.11.1 clsSolve

Purpose

Solve nonlinear least squares optimization problems with linear inequality and equality constraints and simple
bounds on the variables.

clsSolve solves problems of the form

min f(z) = ir(z)'r(z)
s/t oz < T < ay
by < Az < by

where ,xr, 7y € R, r(z) € RV, A € R™*" and by, by € R™.

Calling Syntax

Result = clsSolve(Prob, varargin)

TOMLAB v1.0 User’s Guide

Description of Inputs

68

Prob Problem description structure. The following fields are used:
Solver.Alg Solver algorithm to be run:

0: Gauss-Newton (default).

1: Fletcher - Xu hybrid method; Gauss-Newton / BFGS.

2: Al-Baali - Fletcher hybrid method; Gauss-Newton/BFGS.
3: Huschens method.

optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: PreSolve, NOT_release_all, eps_f, eps_g, eps_c, eps_x, eps_Rank,
eps_absf, Mazlter, wait, size_x, size_f, f-Low, LineSearch, LineAlg, bTol, cTol, xTol,
Lowlts, method, PriLev and QN_InitMatriz.

NLLS Structure with special fields for nonlinear least squares, see Table 9.

A Constraint matrix for linear constraints.

b_L Lower bounds on the linear constraints.

b_U Upper bounds on the linear constraints.

z_L Lower bounds on the variables.

.U Upper bounds on the variables.

z-0 Starting point.

p-H Name of m-file computing the Hessian matrix H(x).

p-r Name of m-file computing the residual vector r(z).

p-J Name of m-file computing the Jacobian matrix J(x).

f-Low Lower bound on function value.

varargin Other parameters directly sent to low level routines.
Description of OQutputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.

FExitFlag Flag giving exit status.

Inform Binary code telling type of convergence:

1: Tteration points are close.

2: Projected gradient small.

4: Function value close to 0.

8: Relative function value reduction low for Lowlts iterations.
32: Local minimum with all variables on bounds.

101: Maximum number of iterations reached.

102: Function value below given estimate.

104: z_k not feasible, constraint violated.

f0 Function value at start.

fk Function value at optimum.

g9-k Gradient value at optimum.

HE Hessian value at optimum.

B_k Quasi-Newton approximation of the Hessian at optimum.

z-0 Starting point.

z_k Optimal point.

vk Lagrange multipliers.

rk Residual at optimum.

Jk Jacobian matrix at optimum.

zState State of each variable, described in Table 16 .

bState State of each linear constraint, described in Table 17.

Solver Solver used.

SolverAlgorithm Solver algorithm used.

Prob

Description

Problem structure used.

The prototype routine clsSolve includes four optimization methods for nonlinear least squares problems: the
Gauss-Newton method, the Al-Baali-Fletcher [5] and the Fletcher-Xu [21] hybrid method, and the Hushens TSSM
method [36]. If rank problem occur, the prototype algorithm is using subspace minimization. The line search
is performed using the routine LineSearch which is a modified version of an algorithm by Fletcher [22]. Bound

TOMLAB v1.0 User’s Guide 69

constraints are partly treated as described in Gill, Murray and Wright [28]. clsSolve treats linear equality and
inequality constraints using an active set strategy and a null space method.

Algorithm
See Appendix A.1.

M-files Used
clsDef.-m, ResultDef.m, preSolve.m, qpSolve.m, qpoptSOL.m, LineSearch.m, secUpdat.m, iniSolve.m, endSolve.m

ee Also
IsSolve, conSolve, nlpSolve, sTrustR

Warnings
Since no second order derivative information is used, clsSolve may not be able to determine the type of stationary
point converged to.

2.11.2 conSolve

Purpose
Solve general constrained nonlinear optimization problems.

conSolve solves problems of the form

min f(z)

s/t xp, < =z < wmy
br, < Ar < by
cg < clx) < e

where z,zp, 2y € R?, ¢(z),cp,cy € R™ | A € R™*" and by, by € R™2.
Calling Syntax

Result = conSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Solver algorithm to be run:
0: Schittkowski SQP.
1: Han-Powell SQP.

optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: eps_f, eps_g, eps_c, eps_z, eps_Rank, eps_absf, MaxlIter, wait,
size_z, size_f, size_c, f-Low, LineSearch, LineAlg, xTol, Lowlts, PriLev, method
and QN_InitMatriz.

A Constraint matrix for linear constraints.

b_L Lower bounds on the linear constraints.

b_U Upper bounds on the linear constraints.

cL Lower bounds on the general constraints.

c.U Upper bounds on the general constraints.

x_L Lower bounds on the variables.

.U Upper bounds on the variables.

z_0 Starting point.

p-f Name of m-file computing the objective function f(z).

p-g Name of m-file computing the gradient vector g(x).

p-H Name of m-file computing the Hessian matrix H(x).

p-c Name of m-file computing the vector of constraint functions ¢(z).
p-dc Name of m-file computing the matrix of constraint normals dc(x)/dz.
f-Low Lower bound on function value.

varargin Other parameters directly sent to low level routines.

TOMLAB v1.0 User’s Guide 70

Description of Outputs

Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
EzitFlag Flag giving exit status.
Inform Binary code telling type of convergence:

1: Iteration points are close.

2: Small search direction.

4: Merit function gradient small.

8: Small p and constraints satisfied.

101: Maximum number of iterations reached.

102: Function value below given estimate.

103: Close iterations, but constraints not fulfilled. Too large penalty weights
to be able to continue. Problem is maybe infeasible?.

104: Search direction is zero and infeasible constraints. The problem is very
likely infeasible.

f-0 Function value at start.

fk Function value at optimum.

9-k Gradient value at optimum.

HE Hessian value at optimum.

z_0 Starting point.

zk Optimal point.

v_k Lagrange multipliers.

ck Value of constraints at optimum.

cJac Constraint Jacobian at optimum.

zState State of each variable, described in Table 16 .
bState State of each linear constraint, described in Table 17.
cState State of each general constraint.

Solver Solver used.

SolverAlgorithm Solver algorithm used.

Prob Problem structure used.

Description

The routine conSolve implements two SQP algorithms for general constrained minimization problems. One imple-
mentation, opt Param.alg = 0, is based on the SQP algorithm by Schittkowski with Augmented Lagrangian merit
function described in [50]. The other, optParam.alg = 1, is an implementation of the HanPowell SQP method.

M-files Used
conDef.m, ResultDef.m, qpSolve.m, qpoptSOL.m, LineSearch.m, iniSolve.m, endSolve.m

See Also
nipSolve, sTrustR

2.11.3 gblSolve

Purpose
Solve box-bounded global optimization problems. gblSolve is a stand-alone version of glbSolve and runs indepen-
dently of NLPLIB TB.

gblSolve solves problems of the form

min f(z)

s/t oz, < x < ay

where f € R and z, 21,2y € R”.

Calling Syntax
Result = gblSolve(fun, x_L, x_U, GLOBAL, PriLev)

TOMLAB v1.0 User’s Guide 71

Description of Inputs

fun Name of m-file computing the function value, given as a string.
z_L Lower bounds for z, must be given to restrict the search space.
z U Upper bounds for z, must be given to restrict the search space.

GLOBAL Structure field containing:
iterations Number of iterations, default 50.
epsilon Global/local weight parameter, default 10~4.
If restart is wanted, the following fields in GLOBAL should be defined and
equal the corresponding fields in the Result. GLOBAL structure from the
previous run:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d-min Row vector of minimum function value for each distance.
PriLev Printing level.
Description of Qutputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
FuncEv Number function evaluations.
z_k Matrix with all points giving the function value f_k.
fk Function value at optimum.
GLOBAL Special structure field containing:
c Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d_min Row vector of minimum function value for each distance.

Description

The global optimization routine gblSolve is an implementation of the DIRECT algorithm presented in [38]. DIRECT
is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant.
Since no such constant is used, there is no natural way of defining convergence (except when the optimal function
value is known). Therefore gblSolve runs a predefined number of iterations and considers the best function value
found as the optimal one. It is possible for the user to restart gblSolve with the final status of all parameters from
the previous run. Let’s say that you have run gblSolve on a certain problem for 50 iterations. Then you could run
e.g. 40 iterations more and get the same result as if you had chosen to run 90 iterations in the first place. To
restart gblSolve you must give the result of the first run as input to your next run. The m-file gblsolve also includes
the subfunction conhull which is an implementation of the algorithm GRAHAMHULL in [48, page 108] with the
modifications proposed on page 109. conhull is used to identify all points lying on the convex hull defined by a set
of points in the plane.

Since gblSolve is a stand-alone version of glbSolve it runs independently of NLPLIB TB.

Algorithm
See Appendix A.2.

2.11.4 gclSolve

Purpose
Solve global mixed-integer nonlinear programming problems. gclSolve is a stand-alone version of gleSolve and runs
independently of NLPLIB TB.

TOMLAB v1.0 User’s Guide 72

gclSolve solves problems of the form

min f(x)
X
s/t oz < T < ay
by < Ax < by
c, < () < w
x; integer 1 €1

where z,zp, 2y € R?, ¢(x),cp,cy € R™ | A € R™2*™ and by, by € R™=.

Calling Syntax

Result = gelSolve(pf, p_c, x L, x.U, A, b_.L, b_.U, c.L, c_U, I, GLOBAL, PriLev)

Description of Inputs

p-f

Name of m-file computing the function value, given as a string.

p_c

z_L

.U

A

b_L

b_.U

c_L

c.U

I
GLOBAL

PriLev

Name of m-file computing the function value, given as a string.
Lower bounds for z, must be given to restrict the search space.
Upper bounds for z, must be given to restrict the search space.
Constraint matrix for linear constraints.
Lower bounds on the linear constraints.
Upper bounds on the linear constraints.
Lower bounds on the general constraints.
Upper bounds on the general constraints.
Set of integer variables (a vector).
Structure field containing:
MazFval Number of function evaluations, default 200.
epsilon Global/local weight parameter, default 10~
If restart is wanted, the following fields in GLOBAL should be defined and
equal the corresponding fields in the Result. GLOBAL structure from the
previous run:
c Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T'(i) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection procedure.
IL I1_L(i,j) is the lower bound for rectangle j in integer dimension I (7).
.U I1.U(i,j) is the upper bound for rectangle j in integer dimension (7).
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
s-0 5.0 is used as s(0).
s s(7) is the sum of observed rates of change for constraint j.
t t(4) is the total number of splits along dimension 1.
Printing level.

TOMLAB v1.0 User’s Guide 73

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.

FuncFEv Number function evaluations.

z_k Matrix with all points giving the function value f_k.

fk Function value at optimum.

ck Nonlinear constraints values at z_k.

GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension ¢ of rectangle j.
T T'(¢) is the number of times rectangle ¢ has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection procedure.
IL I_L(i,j) is the lower bound for rectangle j in integer dimension I(7).
LU I.U(4,7) is the upper bound for rectangle j in integer dimension (7).
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
s_0 5.0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Description

The routine gelSolve implements an extended version of DIRECT, see [39], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore gclSolve is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart gclSolve with the final
status of all parameters from the previous run. Let’s say that you have run gclSolve on a certain problem for 500
function evaluations. Then you could run e.g. for 200 function evaluations more and let gclSolve search for a point
that gives a lower function value. To restart gclSolve you must give the result of the first run as input to your next
run.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

Since gclSolve is a stand-alone version of gleSolve it runs independently of NLPLIB TB.

2.11.5 glbSolve

Purpose
Solve box-bounded global optimization problems.

glbSolve solves problems of the form
min f(z)
s/t xp, < x < ay

where f € R and z, 2,2y € R™.

Calling Syntax
Result = glbSolve(Prob,varargin)

TOMLAB v1.0 User’s Guide 74

Description of Inputs
Prob Problem description structure. The following fields are used:
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: PriLev.

z_L Lower bounds for z, must be given to restrict the search space.
z U Upper bounds for z, must be given to restrict the search space.
pf Name of m-file computing the objective function f(z).

GLOBAL Special structure field containing;:
iterations Number of iterations, default 50.
epsilon Global/local weight parameter, default 10~%.
K The Lipschitz constant. Not used.
tolerance Error tolerance parameter. Not used.
If restart is chosen in the menu system, the following fields in
GLOBAL are also used and contains information from the previous run:

c Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d_min Row vector of minimum function value for each distance.
varargin Other parameters directly sent to low level routines.
Description of Outputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
FuncEv Number function evaluations.
z_k Matrix with all points giving the function value f_k.
fk Function value at optimum.
GLOBAL Special structure field containing;:
c Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d_min Row vector of minimum function value for each distance.
Solver Solver used.

SolverAlgorithm Solver algorithm used.

Description

The global optimization routine glbSolve is an implementation of the DIRECT algorithm presented in [38]. DIRECT
is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant.
Since no such constant is used, there is no natural way of defining convergence (except when the optimal function
value is known). Therefore glbSolve runs a predefined number of iterations and considers the best function value
found as the optimal one. It is possible for the user to restart glbSolve with the final status of all parameters from
the previous run. Let’s say that you have run glbSolve on a certain problem for 50 iterations. Then you could run
e.g. 40 iterations more and get the same result as if you had chosen to run 90 iterations in the first place. To
restart glbSolve you must give the result of the first run as input to your next run. The m-file glbsolve also includes
the subfunction conhull which is an implementation of the algorithm GRAHAMHULL in [48, page 108] with the
modifications proposed on page 109. conhull is used to identify all points lying on the convex hull defined by a set
of points in the plane.

Algorithm
See Appendix A.2.

M-files Used
iniSolve.m, endSolve.m

TOMLAB v1.0 User’s Guide

2.11.6 glcSolve

Purpose

75

Solve global mixed-integer nonlinear programming problems.

glcSolve solves problems of the form

min f(z)
s/t oz < T < ay
b, < Az < by
c, < () < w
x; integer 1 €1
where z,zp, 2y € R?, ¢(x),cp,cy € R™, A € R™2*™ and by, by € R™=.
Calling Syntax
Result = glcSolve(Prob,varargin)
Description of Inputs
Prob Problem description structure. The following fields are used:
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: PriLev, cTol.
z_L Lower bounds for z, must be given to restrict the search space.
z U Upper bounds for z, must be given to restrict the search space.
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
c.L Lower bounds on the general constraints.
c.U Upper bounds on the general constraints.
p-f Name of m-file computing the objective function f(z).
p-c Name of m-file computing the vector of constraint functions ¢(z).
GLOBAL Special structure field containing:
MazFval Number of function evaluations, default 200.
Integers Set of integer variables.
epsilon Global/local weight parameter, default 10~%.
K The Lipschitz constant. Not used.
tolerance Error tolerance parameter. Not used.
If restart is chosen in the menu system, the following fields in
GLOBAL are also used and contains information from the previous run:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension ¢ of rectangle j.
T T'(7) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection procedure.
IL I_L(i,j) is the lower bound for rectangle j in integer dimension I(i).
.U I.U(i,7) is the upper bound for rectangle j in integer dimension I(3).
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
s_0 5.0 is used as s(0).
s s(7) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

varargin Other parameters directly sent to low level routines.

TOMLAB v1.0 User’s Guide 76

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.

FuncFEv Number function evaluations.

z_k Matrix with all points giving the function value f_k.

fk Function value at optimum.

ck Nonlinear constraints values at z_k.

GLOBAL Special structure field containing;:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension ¢ of rectangle j.
T T'(¢) is the number of times rectangle ¢ has been trisected.
G Matrix with constraint values for each point.
ignoreidz Rectangles to be ignored in the rectangle selection procedure.
IL I_L(i,j) is the lower bound for rectangle j in integer dimension I(7).
LU I.U(4,7) is the upper bound for rectangle j in integer dimension (7).
feasible Flag indicating if a feasible point has been found.
f-min Best function value found at a feasible point.
s_0 5.0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Solver Solver used.

SolverAlgorithm Solver algorithm used.

Description
The routine glcSolve implements an extended version of DIRECT, see [39], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcSolve is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcSolve with the final
status of all parameters from the previous run. Let’s say that you have run gleSolve on a certain problem for 500
function evaluations. Then you could run e.g. for 200 function evaluations more and let gleSolve search for a point
that gives a lower function value. To restart gleSolve you must give the result of the first run as input to your next
run.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m

2.11.7 1sSolve

Purpose
Solve nonlinear least squares optimization problems with simple bounds on the variables.

IsSolve solves problems of the form

min f(x)
€T
s/t oz < T < ay
where z,zp,xy € R”.

Calling Syntax
Result = IsSolve(Prob, varargin)

TOMLAB v1.0 User’s Guide

Description of Inputs

7

Prob Problem description structure. The following fields are used:
Solver.Alg Solver algorithm to be run:

0: Gauss-Newton (default).

1: Fletcher - Xu hybrid method; Gauss-Newton / BFGS.

2: Al-Baali - Fletcher hybrid method; Gauss-Newton/BFGS.
3: Huschens method.

optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: NOT_release_all, eps_f, eps_g, eps_c, eps_z, eps_Rank, eps_absf,
Maxlter, wait, size_z, size_f, f_-Low, LineSearch, LineAlg, xTol, Lowlts, method,
PriLev and QN_InitMatrix.
NLLS Structure with special fields for nonlinear least squares, see Table 9.
x L Lower bounds on the variables.
.U Upper bounds on the variables.
z_0 Starting point.
p-H Name of m-file computing the Hessian matrix H(x).
p-r Name of m-file computing the residual vector r(x).
p-J Name of m-file computing the Jacobian matrix J(z).
f-Low Lower bound on function value.
varargin Other parameters directly sent to low level routines.
Description of Outputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
EzitFlag 0 if convergence to local min. Otherwise errors.
Inform Binary code telling type of convergence:
1: Iteration points are close.
2: Projected gradient small.
4: Function value close to 0.
8: Relative function value reduction low for Lowlts iterations.
32: Local minimum with all variables on bounds.
101: Maximum number of iterations reached.
102: Function value below given estimate.
f0 Function value at start.
fk Function value at optimum.
g9-k Gradient value at optimum.
HE Hessian value at optimum.
B_k Quasi-Newton approximation of the Hessian at optimum.
z_0 Starting point.
zk Optimal point.
vk Lagrange multipliers.
rk Residual at optimum.
J_k Jacobian matrix at optimum.
zState State of each variable, described in Table 16 .
Solver Solver used.

SolverAlgorithm Solver algorithm used.

Prob

Description

Problem structure used.

The prototype routine IsSolve includes four optimization methods for nonlinear least squares problems: the Gauss-
Newton method, the Al-Baali-Fletcher [5] and the Fletcher-Xu [21] hybrid method, and the Hushens TSSM method
[36]. If rank problem occur, the prototype algorithm is using subspace minimization. The line search is performed
using the routine LineSearch which is a modified version of an algorithm by Fletcher [22]. Bound constraints are
treated as described in Gill, Murray and Wright [28].

Algorithm
See Appendix A.6.

TOMLAB v1.0 User’s Guide 78

M-files Used
IsDef.m, ResultDef.m, LineSearch.m, secUpdat.m, iniSolve.m, endSolve.m

See Also
clsSolve, ucSolve

Warnings
Since no second order derivative information is used, lsSolve may not be able to determine the type of stationary
point converged to.

2.11.8 nlpSolve

Purpose
Solve general constrained nonlinear optimization problems.

nlpSolve solves problems of the form

min f(z)

s/t xp, < =z < wmy
br, < Ar < by
e, < clr) <

where z,zp,zy € R?, ¢(x),cp,cy € R™, A€ R™*™ and by, by € R™2.

Calling Syntax
Result = nlpSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: eps_g, eps_c, eps_x, Maxlter, wait, size_z, PriLev, method and

QN_InitMatrizx.
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
c.L Lower bounds on the general constraints.
c.U Upper bounds on the general constraints.
z_L Lower bounds on the variables.
U Upper bounds on the variables.
z_0 Starting point.
p-f Name of m-file computing the objective function f(z).
p-g Name of m-file computing the gradient vector g(x).
p-H Name of m-file computing the Hessian matrix H(x).
p-c Name of m-file computing the vector of constraint functions ¢(z).
p-dc Name of m-file computing the matrix of constraint normals dc(x)/dz.

varargin Other parameters directly sent to low level routines.

TOMLAB v1.0 User’s Guide

Description of
Result

Description

Outputs

Structure with result from optimization. The following fields are changed:

Iter
EzitFlag
EzitFlag

Inform
f0

fk

g-k
HE
z_0

z_k

v_k

ck
cJac
zState
bState
cState
Solver
SolverAlgorithm
Prob

Number of iterations.

Flag giving exit status.

0: Convergence. Small step. Constraints fulfilled.
1: Infeasible problem?

2: Maximal number of iterations reached.
Type of convergence.

Function value at start.

Function value at optimum.

Gradient value at optimum.

Hessian value at optimum.

Starting point.

Optimal point.

Lagrange multipliers.

Value of constraints at optimum.

Constraint Jacobian at optimum.

State of each variable, described in Table 16 .
State of each linear constraint, described in Table 17.
State of each general constraint.

Solver used.

Solver algorithm used.

Problem structure used.

79

The routine nlpSolve implements the Filter SQP by Roger Fletcher and Sven Leyffer presented in the paper [23].

M-files Used

conDef.m, lpDef.m, PhaselSimplex.m, iniSolve.m, endSolve.m

See Also

conSolve, sTrustR

2.11.9 qgpe

Purpose

Solve equality constrained quadratic programming problems.

gpe solves problems of the form

min f(z) = 3(z) Fz + '
s/t Az =b

where z,c € R?, F € R"™", A € R" " and b € R™.

Calling Syntax

[x, lambda, QZ, RZ] = qpe(F, c, A, b)

Description of
F
c
A
b

Description of
x
lambda
QZ
RZ

Description

Inputs

Constant matrix, the Hessain.

Constant vector.

Constraint matrix for the linear constraints.
Right hand side vector.

Outputs
Optimal point.

Lagrange multipliers.
The matrix) in the QR-decomposition of F'.
The matrix R in the QR-decomposition of F'.

The routine gpe solves a quadratic programming problem, restricted to equality constraints, using a null space

method.

TOMLAB v1.0 User’s Guide 80

See Also
qpBiggs, qpSolve, gplm

2.11.10 gpBiggs

Purpose
Solve general quadratic programming problems.

qpBiggs solves problems of the form

min f(z) = i(@)"Fz+ce
T
s/t b = al'x i=1,2,....,me
b, < alz i=me+1,....m
T, < T < Ty

where z,z;, 2y € R", F € R"*"™, c€ R", A € R™*" and b € R™.

Calling Syntax
[x, lambda, err, p_vec, alfa_vec] = qpBiggs(F, c, A, b, x_L, x_U, x0, me, PriLev, wait)

Description of Inputs

F Constant matrix, the Hessain.

c Constant vector.

A Constraint matrix for the linear constraints.

b Right hand side vector.

z L Lower bounds on the variables.

U Upper bounds on the variables.

z0 Starting point.

me Number of equality constraints, stored first in A and b.
PriLev Print level: 0 None, 1 Final result, 2 Each iteration.
wait Pause at each iteration if wait is true.

Description of Qutputs

x Optimal point.
lambda Lagrange multipliers. Constraints, lower and upper variable bounds.
err Error flag. 0 if OK; 1 — 4 different failures.
p_vec All search directions p.
alfa_vec All step lengths a.
Description

The implementation of gpBiggs is similar to gpSolve, but for negative definite quadratic problems uses the algorithm
described in M.C. Bartholomew-Biggs [6].

See Also
gpSolve, qpe, gplm

2.11.11 qgplm

Purpose
Solve equality constrained quadratic programming problems.

gplm solves problems of the form
min f(z) = 5(z)" Fz + 'z
s/t Az =b

where z,c € R?, F € R™", A € R"™ " and b € R™.

Calling Syntax
[x, lambda] = gqplm(F, ¢, A, b)

TOMLAB v1.0 User’s Guide 81

Description of Inputs

F Constant matrix, the Hessain.
¢ Constant vector.
A Constraint matrix for the linear constraints.
b Right hand side vector.
Description of OQutputs
x Optimal point.
lambda Lagrange multipliers.
Description

The routine gplm solves a quadratic programming problem, restricted to equality constraints, using the Lagrange
method.

See Also
qpBiggs, gpSolve, qpe

2.11.12 gpSolve

Purpose
Solve general quadratic programming problems.

gpSolve solves problems of the form

min f(z) = i(@@)'Fz+clz

x

s/t oz < T < ay
b, < Ax < by

where x,zp, 2y € R*, F € R**"™, ¢ € R", A € R™*" and by, by € R™.

Calling Syntax
Result = gpSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: eps_f, eps_Rank, Mazxlter, wait, bTol and PriLev.

QP.F Constant matrix, the Hessian.

QP.c Constant vector.

A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
x L Lower bounds on the variables.

.U Upper bounds on the variables.

z_0 Starting point.

TOMLAB v1.0 User’s Guide

Description of Outputs

82

Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
EzitFlag 0: OK, see Inform for type of convergence.
2: Can not find feasible starting point z_0.
3: Rank problems. Can not find any solution point.
4: Unbounded solution.
Inform If EzitFlag > 0, Inform = ExitFlag, otherwise In form show type of
convergence:
0: Unconstrained solution.
1: A>0.
2: A > 0. No second order Lagrange mult. estimate available.
3: A and 2nd order Lagr. mult. positive, problem is not negative definite.
4: Negative definite problem. 2nd order Lagr. mult. positive, but releasing
variables leads to the same working set.
f-0 Function value at start.
fk Function value at optimum.
9-k Gradient value at optimum.
HE Hessian value at optimum.
z_0 Starting point.
zk Optimal point.
v_k Lagrange multipliers.
zState State of each variable, described in Table 16 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description

Implements an active set strategy for Quadratic Programming. For negative definite problems it computes eigen-
values and is using directions of negative curvature to proceed. To find an initial feasible point the Phase 1 LP

problem is solved calling PhaselSimplex. The routine is the standard QP solver used by nlpSolve, sTrustR and

conSolve.
M-files Used

gpDef.m, ResultDef.m, IpDef.m, PhaselSimplex.m, qpPhasel.m, iniSolve.m, endSolve.m

See Also

qpBiggs, qpe, qplm, nlpSolve, sTrustR and conSolve

2.11.13 sTrustR

Purpose

Solve optimization problems constrained by a convex feasible region.

sTrustR solves problems of the form

min f(z)

s/t oz, < z < wzy
by, < Ax < bU
cg < cfz) <

where z,zp, 2y € R?, ¢(x),cp,cy € R™, A € R™2*™ and by, by € R™=.

Calling Syntax
Result = sTrustR(Prob, varargin)

TOMLAB v1.0 User’s Guide 83

Description of Inputs
Prob Problem description structure. The following fields are used:
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: eps_f, eps_g, eps_c, eps_z, eps_Rank, Mazlter, wait, size_z, size_f,
zTol, Lowlts, PriLev, method and QN_InitMatrix.
PartSep Structure with special fields for partially separable functions, see Table 11.

A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
cL Lower bounds on the general constraints.
c.U Upper bounds on the general constraints.
x L Lower bounds on the variables.
.U Upper bounds on the variables.
z_0 Starting point.
p-f Name of m-file computing the objective function f(z).
p_g Name of m-file computing the gradient vector g(x).
p-H Name of m-file computing the Hessian matrix H(x).
p-c Name of m-file computing the vector of constraint functions c(z).
p-dc Name of m-file computing the matrix of constraint normals dc(z)/dx.
varargin Other parameters directly sent to low level routines.
Description of Outputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
EzitFlag Flag giving exit status.
Inform Binary code telling type of convergence:

1: Iteration points are close.

2: Projected gradient small.

4: Relative function value reduction low for Lowlts iterations.
8: Too small trust region.

101: Maximum number of iterations reached.

102: Function value below given estimate.

103: Convergence to saddle point (eigenvalues computed).

f0 Function value at start.

fk Function value at optimum.

g9-k Gradient value at optimum.

HE Hessian value at optimum.

z-0 Starting point.

zk Optimal point.

vk Lagrange multipliers.

ck Value of constraints at optimum.
cJac Constraint Jacobian at optimum.
zState State of each variable, described in Table 16 .
Solver Solver used.

SolverAlgorithm Solver algorithm used.

Prob Problem structure used.

Description

The routine sTrustR is a solver for general constrained optimization, which uses a structural trust region algorithm
combined with an initial trust region radius algorithm (itrr). The feasible region defined by the constraints must
be convex. The code is based on the algorithms in [15] and [49]. BFGS or DFP is used for the Quasi-Newton
update, if the analytical Hessian is not used. sTrustR calls itrr.

M-files Used
itrr.m, conDef.m, qpoptSOL.m, gpSolve.m, iniSolve.m, endSolve.m

See Also
conSolve, nlpSolve, clsSolve

TOMLAB v1.0 User’s Guide 84

2.11.14 wucSolve

Purpose
Solve unconstrained nonlinear optimization problems with simple bounds on the variables.

ucSolve solves problems of the form

mzin f(x)

s/t xp, < x < ay

where z,zp, 2y € R”.

Calling Syntax
Result = ucSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:
Solver.Alg Solver algorithm to be run:
0: Newton.
: Safeguarded BFGS (default).
: Safeguarded Inverse BFGS.
: Safeguarded Inverse DFP.
: Safeguarded DFP.
: Fletcher-Reeves CG.
: Polak-Ribiere CG.
7: Fletcher conjugate descent CG-method.
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: eps_f, eps_g, eps_x, eps_Rank, Mazlter, wait, size_z, size_f, f-Low,
LineSearch, LineAlg, xTol, Lowlts, method, PriLev and QN_InitMatrix.

S UL LN

z_L Lower bounds on the variables.
.U Upper bounds on the variables.
z-0 Starting point.
p-f Name of m-file computing the objective function f(z).
p-g Name of m-file computing the gradient vector g(x).
p-H Name of m-file computing the Hessian matrix H(x).
f-Low Lower bound on function value.

varargin Other parameters directly sent to low level routines.

Description of Qutputs

Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
ExitFlag 0 if convergence to local min. Otherwise errors.
Inform Binary code telling type of convergence:

1: Tteration points are close.

2: Projected gradient small.

4: Relative function value reduction low for Lowlts iterations.
101: Maximum number of iterations reached.

102: Function value below given estimate.

104: Convergence to a saddle point.

f-0 Function value at start.

fk Function value at optimum.

9-k Gradient value at optimum.

HE Hessian value at optimum.

B_k Quasi-Newton approximation of the Hessian at optimum.
z_0 Starting point.

zk Optimal point.

vk Lagrange multipliers.

zState State of each variable, described in Table 16 .

Solver Solver used.

SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

TOMLAB v1.0 User’s Guide 85

Description

The prototype routine ucSolve includes several of the most popular search step methods for unconstrained opti-
mization. The search step methods included in ucSolve are: the Newton method, the quasi-Newton BFGS and
inverse BFGS method, the quasi-Newton DFP and inverse DFP method, the Fletcher-Reeves and Polak-Ribiere
conjugate gradient method, and the Fletcher conjugate descent method. For the Newton and the quasi-Newton
methods the code is using a subspace minimization technique to handle rank problem, see Lindstrém [41]. The
quasi-Newton codes also use safe guarding techniques to avoid rank problem in the updated matrix. The line
search is performed using the routine LineSearch which is a modified version of an algorithm by Fletcher [22].
Bound constraints are treated as described in Gill, Murray and Wright [28].

Algorithm
See Appendix A.7.

M-files Used
ucDef.m, ResultDef.m, LineSearch.m, iniSolve.m, endSolve.m

ee Also
IsSolve

2.12 Optimization Subfunction Utilities in NLPLIB TB

In the following subsections the optimization subfunction utilities in NLPLIB TB will be described.

2.12.1 intpol2

Purpose
Find the minimum of a quadratic approximation of a scalar function in a given interval.

Calling Syntax
alfa = intpol2(x0, 10, g0, x1, f1, a, b, PriLev)

Description of Inputs

z0 Interpolation point xg.

10 Function value at xzg.

g0 Derivative value at zg.

zl Interpolation point x;.

f1 Function value at ;.

a Lower interval bound.

b Upper interval bound.

PriLev Printing level, Prilev > 3 gives a lot of output.
Description of Qutputs

alfa The minimum of the interpolated second degree polynomial in the interval

[a, b].

Description

In the line search routine LineSearch the problem of choosing « in a given interval [a, b] occurs both in the bracketing
phase and in the sectioning phase. If quadratic interpolation are to be used LineSearch calls intpol2 which finds
the minimum of a second degree polynomial approximation in the given interval.

Algorithm
See Appendix A.3.

See Also
LineSearch, intpol3

2.12.2 intpol3

Purpose
Find the minimum of a cubic approximation of a scalar function in a given interval.

TOMLAB v1.0 User’s Guide 86

Calling Syntax
alfa = intpol3(x0, f0, g0, x1, f1, gl , a, b, PriLev)

Description of Inputs

z0 Interpolation point xg.

fo Function value at zg.

g0 Derivative value at zg.

xl Interpolation point .

f1 Function value at ;.

g1 Derivative value at x;.

a Lower interval bound.

b Upper interval bound.

PriLev Printing level, Prilev > 3 gives a lot of output.
Description of Qutputs

alfa The minimum of the interpolated third degree polynomial in the interval

[a, b].

Description

In the line search routine LineSearch the problem of choosing « in a given interval [a, b] occurs both in the bracketing
phase and in the sectioning phase. If cubic interpolation are to be used LineSearch calls intpol3 which finds the
minimum of a third degree polynomial approximation in the given interval.

Algorithm
See Appendix A 4.

ee Also
LineSearch, intpol2

2.12.3 itrr

Purpose
Determine the initial trust region radius.

Calling Syntax
[D.0, £0, x 0] = itrr(x-0, S, gS, HS, jMax, iMax, Prob, varargin)

Description of Inputs

z-0 Starting point.

1L Lower bounds for .

.U Upper bounds for z.

i) String with function call sequence. z_k current point.

95 String with gradient call sequence. x_k current point.

HS String with Hessian call sequence. x_k current point.

jMaz Number of outer iterations, normally 1.

iMazx Number of inner iterations, normally 5.

Prob Prob.PartSep.index is the index for the partial function to be analyzed.
varargin Extra user parameters, passed to f, g and H;

Description of Qutputs

D_0 Initial trust region radius.

f-0 Function value at the input starting point x_0.

z_0 Updated starting point, if jMax > 1.
Description

The routine itrr implements the initial trust region radius algorithm as described by Sartenaer in [49]. itrris called
by sTrustR.

See Also
sTrustR

TOMLAB v1.0 User’s Guide 87

2.12.4 LineSearch

Purpose
LineSearch solves line search problems of the form

min F(@® 4+ ap)

0<omin<a<omax

where z,p € R”.

Calling Syntax
Result = LineSearch(f, g, x, p, -0, g0, optParam, alphaMax, alpha_1, pType, PriLev, varargin)

Description of Inputs

f Name of m-file computing the objective function f(x).

g Name of m-file computing the gradient vector g(x).

z Current iterate x.

P Search direction p.

f-0 Function value at a = 0.

g-0 Gradient at a = 0, the directed derivative at the present point.

optParam Structure with special fields for optimization parameters, the following fields
are used:

LineAlg Type of line search algorithm, se Table 6.
LineSearch Structure with line search parameters, see Table 14.

alphaMaz Maximal value of step length a.
alpha_1 First step in a.
pType Type of problem:

0 Normal problem.
1 Nonlinear least squares.
2 Constrained nonlinear least squares.
3 Merit function minimization.
4 Penalty function minimization.
PriLev Printing level:
PriLev >0 Writes a lot of output in LineSearch.
PriLev >3 Writes a lot of output in intpol2 and intpol3.

varargin Other parameters directly sent to low level routines.
Description of OQutputs
Result Result structure with fields:
alpha Optimal line search step a.
f-alpha Optimal function value at line search step a.

g-alpha Optimal gradient value at line search step a.
alphaVec Vector of trial step length values.

r_k Residual vector if Least Squares problem, otherwise empty.
Jk Jacobian matrix if Least Squares problem, otherwise empty.
fk Function value at = + ap.

9-k Gradient value at z + ap.

ck Constraint value at = + ap.

de_k Constraint gradient value at = + ap.

Description

The function LineSearch together with the routines intpol2 and intpol? implements a modified version of a line
search algorithm by Fletcher [22]. The algorithm is based on the Wolfe-Powell conditions and therefore the
availability of first order derivatives is an obvious demand. It is also assumed that the user is able to supply a
lower bound f1,,, on f («). More precisely it is assumed that the user is prepared to accept any value of f () for
which f () < frow. For example in a nonlinear least squares problem fr,,, = 0 would be appropriate.
LineSearch consists of two parts, the bracketing phase and the sectioning phase. In the bracketing phase the
iterates o*) moves out in an increasingly large jumps until either f < fro. is detected or a bracket on an interval
of acceptable points is located. The sectioning phase generates a sequence of brackets [a(k), b(k)] whose lengths
tend to zero. Each iteration pick a new point a¥) in [a(*),5*)] by minimizing a quadratic or a cubic polynomial
which interpolates f (a(®), f' (a®), f (b®) and f' (b)) if it is known. The sectioning phase terminates when

TOMLAB v1.0 User’s Guide 88

a(®) is an acceptable point.

Algorithm
See Appendix A.5.

M-files Used
intpol2.m, intpol3.m

2.12.5 preSolve

Purpose
Simplify the structure of the constraints and the variable bounds in a linear constrained program.

Calling Syntax
Prob = preSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:
A Constraint matrix for linear constraints.
b_L. Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
z_L, Lower bounds on the variables.
z_U Upper bounds on the variables.

Description of OQutputs
Prob Problem description structure. The following fields are changed:
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints, set to NalNV for redundant constraints.
b_U Upper bounds on the linear constraints, set to NalN for redundant constraints.
z_L, Lower bounds on the variables.
.U Upper bounds on the variables.

Description
The routine preSolve is an implementation of those presolve analysis techniques described by Gondzio in [30],
which is applicable to general linear constrained problems. See [10] for a more detailed presentation.

preSolve consists of the two routines clean and mksp. They are called in the sequence clean, mksp, clean. The
second call to clean is skipped if the mksp routine could not remove a single nonzero entry from A.

clean consists of two routines, r_rw_sng that removes singleton rows and el_cnsts that improves variable bounds
and uses them to eliminate redundant and forcing constraints. Both r_rw_sng and el_cnsts check if empty rows
appear and eliminate them if so. That is handled by the routine emptyrow. In clean the calls to r_rw_sng and
el_cnsts are repeated (in given order) until no further reduction is obtained.

Note that rows are actually not deleted or removed, instead preSolve indicates that constraint i is redundant by
setting b_L(i) = b_.U(i) = NaN and leaves to the calling routine to decide what to do with those constraints.

2.13 User Utility Functions in NLPLIB TB

In the following subsections the user utility functions in NLPLIB TB will be described.

2.13.1 PrintResult

Purpose
Prints the result of an optimization.

Calling Syntax
PrintResult(Result, PriLev)

TOMLAB v1.0 User’s Guide

Description of
Result

Inputs
Result structure from optimization.

PriLev Printing level:

0 Silent.

1 Problem number and name. Function value at the solution and at start.
Known optimal function value (if given).

2 Optimal point z and starting point 2_0. Number of evaluations of the func-
tion, gradient etc. Lagrange multipliers, both returned and NLPLIB TB
estimate. Distance from start to solution. The residual, gradient and pro-
jected gradient. ExitFlag and Inform.

3 Jacobian, Hessian or Quasi-Newton Hessian approximation.

2.13.2 PrintSolvers

Purpose

Prints the available solvers for a certain solvType.

Calling Syntax

PrintSolvers(solvType)

Description of
solvType

Description

Inputs
Either a string ’uc’, con’ etc. or the corresponding solvType number. See
Table 1.

89

The routine PrintSolvers prints all available solvers for a given solvType, including Fortran, C and Matlab Opti-
mization Toolbox solvers. If solvType is not specified then PrintSolvers lists all available solvers for all different
solvType. The input argument could either be a string such as ’uc’, ’con’ etc. or a number corresponding to the
type of solver, see Table 1.

Examples
See Section 2.2.

M-files Used
SolverList.m

2.13.3 runtest

Purpose

Run all selected problems defined in a problem file for a given solver.

Calling Syntax

runtest(Solver, SolverAlg, probFile, probNumbs, PriLevOpt, wait, PriLev)

Description of
Solver
SolverAlg

probFile
probNumbs

PriLevOpt

wait

PriLev
M-files Used
SolverList.m

See Also
systest

Inputs

Name of solver, default conSolve.

A vector of numbers defining which of the Solver algorithms to try. For
each element in SolverAlg, all probNumbs are solved. Leave empty, or set 0
if to use the default algorithm.

Problem definition file. probFile is by default set to con_prob if Solver is
conSolve, uc_prob if Solver is ucSolve and so on.

A vector with problem numbers to run. If empty, run all problems in
probFile.

Printing level in Solver. Default 2, short information from each iteration.
Set wait to 1 if pause after each problem. Default 1.

Printing level in PrintResult. Default 5, full information.

TOMLAB v1.0 User’s Guide

2.13.4 systest

Purpose
Run big test to check for bugs in NLPLIB TB.

Calling Syntax
systest(solvTypes, PriLevOpt, PriLev, wait)

Description of Inputs

solvTypes A vector of numbers defining which solvType to test.
PriLevOpt Printing level in the solver. Default 2, short information from each iteration.
wait Set wait to 1 if pause after each problem. Default 1.
PriLev Printing level in PrintResult. Default 5, full information.
See Also

runtest

90

TOMLAB v1.0 User’s Guide 91

3 OPERA TB

OPERA TB is a Matlab toolbox for solving linear and discrete optimization problems in operations research
and mathematical programming. Included are routines for linear programming, network programming, integer
programming and dynamic programming.

3.1 Optimization Algorithms and Solvers in OPERA TB

In this section we describe OPERA TB by giving tables describing most Matlab functions with some comments.
All function files are part of the directory OPERA.

There are two menu programs for linear programming. The simplez routine is a utility to interactively solve LP
problems in canonical standard form. When the problem is defined, simplez calls the internal OPERA TB solvers
Ipsimp1 and Ipsimp2.

The menu program [pOpt is similar to the menu programs in NLPLIB TB. Tt calls the driver routine [pRun, which
may call any of the predefined solvers written in Matlab, C or FORTRAN code. The user may run IpOpt, the
driver routine lpRun, or directly call a solver routine.

Table 31: Menu programs and driver routines.

Function Description

IpOpt Menu program for LP problems.
lpRun Driver routine that solves predefined LP problems.
simplex Interactive input and solution of LP on canonical standard form.

Like the Matlab Optimization Toolbox, OPERA TB is using a vector with optimization parameters. In Optimiza-
tion Toolbox, the routine setting up the default values in a vector OPTIONS with 18 parameters is called foptions.
Our solvers need more parameters, currently 29, and therefore the routine goptions is used instead of foptions.

The OPERA TB routines IpOpt, IpRun, IpSolve, PhaselSimplex, Phase2Simplex and DualSolve are designed in
the same way as the NLPLIB TB routines i.e. they use the same input and output format. They also use the
optimization parameter structure optParam (Table 6) instead of optPar.

In OPERA TB the routine IpDef is used to define either the optPar vector or the optParam structure. IpDef is
written to handle initial parameter setting both in the old part of OPERA TB as well as the new structure based
NLPLIB TB parameter settings. If the user want IpDef to define the optParam structure the call to IlpDef should
look like

optParam = lpDef (method, [1);
or
optParam = lpDef (method, optParam);

Otherwise, IpDef will return the optPar vector for the old format.

3.1.1 Linear Programming

There are several algorithms implemented for linear programming. Those implementations are diveded into
three groups:

1. Numerically stable solvers.
2. Solvers used in teaching courses.

3. Other solvers.

TOMLAB v1.0 User’s Guide 92

Table 32: Numerically stable solvers for linear programming.

Function Description Section Page

IpSolve General solver for linear programming problems. Calls 3.5.15 119
PhaselSimplexr and Phase2Simplex.

PhaselSimplexr The Phase I simplex algorithm. Finds a basic feasible solution 3.5.20 123
(bfs) using artificial variables. Calls Phase2Simplez.

Phase2Simplex The Phase II revised simplex algorithm with three selection rules. 3.5.20 123

DualSolve The dual simplex algorithm. 3.5.7 112

Table 32 lists the solvers from the first group, Table 33 lists all the solvers classified as solvers used in teaching
courses and Table 34 lists the routines defined as other solvers.

The solvers classified as numerically stable (IpSolve, PhaselSimplex, Phase2Simplex and DualSolve), use the same
input and output format as the NLPLIB TB solvers described in Section 2.1. They use the optimization parameter
structure optParam instead of the optimization parameter vector optPar. These routines are the routines for linear
programming used by the NLPLIB TB solvers and are also available from the Graphical User Interface.

PhaselSimplex, Phase2Simplex and DualSolve are refined versions of Ipsimp1, Ipsimp2 and Ipdual respectively. The
last three are classified as solvers for linear programming to be used in teaching courses and are described below.
IpSolve calls both the routines PhaselSimplex and Phase2Simplex to solve a general linear program (Ip) defined
as

min f(z) = clx

zr S & S Ty,
s/t by < Ax < by

where ¢, z,xp, 2y € R, A € R™*" and by, by € R™.

Table 33: Solvers for linear programming used in teaching courses.

Function Description Section Page
Ipsimp1 The Phase I simplex algorithm. Finds a basic feasible solution (bfs) 3.5.13 118
using artificial variables. Calls Ipsimp?2.

Ipsimp2 The Phase II revised simplex algorithm with three selection rules. 3.5.14 118
karmark Karmakar’s algorithm. Kanonical form. 3.5.8 114
Ipkarma Solves LP on equality form, by converting and calling karmark. 3.5.12 117

Table 34: Other solvers for linear programming.

Function Description Section Page
Ipdual The dual simplex algorithm. 3.5.11 116
akarmark Affine scaling variant of Karmarkar’s algorithm. 3.5.1 108

The implementation of Ipsimp2 is based on the standard revised simplex algorithm as formulated in Goldfarb and
Todd [29, page 91] for solving a Phase II LP problem. Ipsimp! implements a Phase I simplex strategy which
formulates a LP problem with artificial variables. This routine is using Ipsimp2 to solve the Phase I problem.
The dual simplex method [29, pages 105-106], usable when a dual feasible solution is available instead of a primal
feasible, is also implemented (Ipdual).

Two polynomial algorithms for linear programming are implemented. Karmakar’s projective algorithm (karmark)
is developed from the description in Bazaraa et. al. [7, page 386]. There is a choice of update, either according
to Bazaraa or the rule by Goldfarb and Todd [29, chap. 9]. The affine scaling variant of Karmakar’s method

TOMLAB v1.0 User’s Guide 93

(akarmark) is an implementation of the algorithm in Bazaraa [29, pages 411-413]. As the purification algorithm a
modification of the algorithm on page 385 in Bazaraa is used.

The internal linear programming solvers Ipsimp2 and Ipdual both have three rules for variable selection implemented.
Bland’s cycling prevention rule is the choice if fear of cycling exists. There are two variants of minimum reduced
cost variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each
step (the default choice). The same selection rules are used in Phase2Simplex and DualSolve.

3.1.2 Transportation Programming

Transportation problems are solved using an implementation of the transportation simplex method as described
in Luenberger [42, chap 5.4] (TPsimplz). Three simple algorithms to find a starting basic feasible solution for the
transportation problem are included; the northwest corner method (TPnw), the minimum cost method (TPmc)
and Vogel’s approximation method (TPvogel). The implementation of these algorithms follows the algorithm
descriptions in Winston [52, chap. 7.2]. The functions are described in Table 35.

Table 35: Routines for transportation programming.

Function Description Section Page
TPnw Find initial bfs to TP using the northwest corner method. 3.6.6 131
TPmc Find initial bfs to TP using the minimum cost method. 3.6.5 131
TPuvogel Find initial bfs to TP using Vogel’s approximation method. 3.6.7 132
TPsimpler Implementation of the transportation simplex algorithm. 3.5.23 126

3.1.3 Network Programming

The implementation of the network programming algorithms are based on the forward and reverse star repre-
sentation technique described in Ahuja et al. [3, pages 35-36]. The following algorithms are currently implemented:

e Search for all reachable nodes in a network using a stack approach (gsearch). The implementation is a
variation of the Algorithm SEARCH in [2, pages 231-233].

e Search for all reachable nodes in a network using a queue approach (gsearchq). The implementation is a
variation of the Algorithm SEARCH in [2, pages 231-232].

e Find the minimal spanning tree of an undirected graph (mintree) with Kruskal’s algorithm described in
Ahuja et. al. [3, page 520-521].

e Solve the shortest path problem using Dijkstra’s algorithm (dijkstra). A direct implementation of the Algo-
rithm DIJKSTRA in [2, pages 250-251].

e Solve the shortest path problem using a label correcting method (labelcor). The implementation is based on
Algorithm LABEL CORRECTING in [2, page 260].

e Solve the shortest path problem using a modified label correcting method (modlabel). The implementation is
based on Algorithm MODIFIED LABEL CORRECTING in [2, page 262], including the heuristic rule discussed
to improve running time in practice.

e Solve the maximum flow problem using the Ford-Fulkerson augmenting path method (mazflow). The imple-
mentation is based on the algorithm description in Luenberger [42, pages 144-145].

e Solve the minimum cost network flow problem (MCNFP) using a network simplex algorithm (NWsimplz).
The implementation is based on Algorithm network simplex in Ahuja et. al. [3, page 415].

e Solve the symmetric traveling salesman problem using Lagrangian relaxation and the subgradient method
with the Polyak rule II (salesman), an algorithm by Held and Karp [31].

The network programming routines are listed in Table 36.

TOMLAB v1.0 User’s Guide 94

Table 36: Routines for network programs.

Function Description Section Page
gsearch Searching all reachable nodes in a network. Stack approach. 3.6.2 129
gsearchq Searching all reachable nodes in a network. Queue approach. 3.6.3 130
mintree Finds the minimum spanning tree of an undirected graph. 3.6.4 130
digkstra Shortest path using Dijkstra’s algorithm. 3.5.4 110
labelcor Shortest path using a label correcting algorithm. 3.5.10 116
modlabel Shortest path using a modified label correcting algorithm. 3.5.18 122
mazxflow Solving maximum flow problems using the Ford-Fulkerson augmenting 3.5.16 120
path method.
salesman Symmetric traveling salesman problem (TSP) solver using Lagrangian ~ 3.5.22 126
relaxation and the subgradient method with the Polyak rule II.
travelng Solve TSP problems with branch and bound. Calls salesman. 3.5.24 127

NWsimplz Solving minimum cost network flow problems (MCNFP) with a net- 3.5.19 123
work simplex algorithm.

3.1.4 Integer Programming

To solve mixed linear inequality integer programs two algorithms are implemented. The first implementation
(mipSolve) is a branch-and-bound algorithm from Nemhauser and Wolsey [45, chap. 8]. The second implementation
(cutplane) is a cutting-plane algorithm using Gomory cuts. Both routines are using the linear programming routines
in the toolbox OPERA TB 1.0 (PhaselSimplex, Phase2Simplex, DualSolve), to solve relaxed subproblems. Balas
method for binary integer programs restricted to integer coefficients is implemented in the routine balas [32]. The
routines for integer programming are described in Table 37.

Table 37: Routines for integer programming.

Function Description Section Page

cutplane Cutting plane method using Gomory cuts for mixed-integer programs 3.5.3 110
(MIP).

mipSolve Branch and bound algorithm for mixed-integer programs (MIP). 3.5.17 121

balas Branch and bound algorithm for binary IP using Balas method. 3.5.2 109

3.1.5 Dynamic Programming
Two simple examples of dynamic programming are included. Both examples are from Winston [52, chap. 20].

Forward recursion is used to solve an inventory problem (dpinvent) and a knapsack problem (dpknap), see Table
38.

Table 38: Routines for dynamic programming.

Function Description Section Page
dpinvent Forward recursion DP algorithm for the inventory problem. 3.5.5 111
dpknap Forward recursion DP algorithm for the knapsack problem. 3.5.6 112

3.1.6 Lagrangian Relaxation

The usage of Lagrangian relaxation techniques is exemplified by the routine ksrelaz, which solves integer linear
programs with linear inequality constraints and upper and lower bounds on the variables. The problem is solved

TOMLAB v1.0 User’s Guide 95

by relaxing all but one constraint and hence solving simple knapsack problems as subproblems in each iteration.
The algorithm is based on the presentation in Fischer [20], using subgradient iterations and a simple line search
rule. Lagrangian relaxation is also used by the symmetric travelling salesman solver salesman. Also a routine to
draw a plot of the relaxed function is included. The Lagrangian relaxation routines are listed in Table 39.

Table 39: Routines for Lagrangian relaxation.

Function Description Section Page
ksrelax Lagrangian relaxation with knapsack subproblems. 3.5.9 115
urelaz Lagrangian relaxation with knapsack subproblems, plot result. 3.5.25 128

3.1.7 Utility Routines

Table 40 describes the low level test functions and the corresponding setup routines needed for the predefined linear
programming test problems. The driver routine lpRun may also call nonlinear solvers to solve the LP problem,
therefore some extra low level routines are needed.

Table 40: Predefined LP test problems.

Function Description

Ip_prob Initialization of 1p test problems.

Ip_f Define the objective function for LP, ¢T'z (for NLP solvers).

Ip_g Define the gradient function for LP, the vector ¢ (for NLP solvers).
Ip_.H Define the Hessian matrix for LP, A zero matrix (for NLP solvers).

Table 41 lists the utility routines used in OPERA TB. Some of them are also used by NLPLIB TB.

Table 41: Utility routines.

Function Description

a2frstar Convert node-arc A matrix to Forward-Reverse Star Representation.

22frstar Convert matrix of arcs (and costs) to Forward-Reverse Star.

cp Transf Transform general convex programs to other forms.

IpDef Define optimization parameters. Handles both the Optimization Toolbox format (optPar)

and the NLPLIB TB format (optParam).
mPrint Print matrix, format: NAME(3, :) a(i, 1)a(i,2)...a(i,n).
printmat Print matrix with row and column labels.

vPrint Print vector in rows, format: NAME(i; : i) vi, iy, -
zPrint Print vector x, row by row, with format.
zPrinti Print integer vector z. Calls zprint.

zPrinte Print integer vector z in exponential format. Calls zprint.

TOMLAB v1.0 User’s Guide 96

3.2 How to Solve Optimization Problems Using OPERA TB

In this section we will describe how to use OPERA TB to solve the different type of problems discussed in Section
31

3.2.1 How to Solve Linear Programming Problems

To solve a linear programming problem in OPERA TB you can define your problem in an init file and then use
the menu routine lpOpt or the driver routine IpRun. Another way of doing it is to call any of the solvers directly
from the Matlab prompt. To illustrate the approach we will solve the problem

min f(x1,22) = —Tx1 — 5o
T1,T2
s/t x 42z < 6 (14)
41 +x9 < 12
T1,Ty > 0

here named Iptest1, in some different ways.

If the problem is to be solved several times, perhaps with small changes in the coefficients or with different
solvers, we recommend you to define the problem in an init file by following the stepwise description below (for all
instructions we assume that you edit the copied files in a text editor).

1. Make a copy of Ip_prob.m and place the copy in your working directory or in any other directory placed
before the directory OPERA in the Matlab path.

2. Add the problem to the menu choice:

,’Winston Ex. 4.12 B4. Max || ||. Rewritten’...
,’lptestl’. ..
); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;
end

3. Define the constraint matrix A, the upper bounds for the constraints b_U, the cost vector ¢ as below. If the
constraints would be of equality type then you just define the lower bounds for the constraints b_L equal to
b.U.

elseif P == 13

Name = ’lptestl’;
c = [-7 -5]7;
A =[1 2

4 1 1];
bU =1[6121]";
x L =[0 01
xmin=[0 01]°;
x_max = [10 10]’;

else

disp(’1lp_prob: Illegal problem number’)
pause

Name=[];

TOMLAB v1.0 User’s Guide 97

end

4. Save the file properly.

You could also define the optional parameters B, f_min and z_0 as described in the problem definition description
in Ip_prob.m. If B is not given, as in this case, a Phase I program is run.

The problem could now be solved by using the menu routine IpOpt, the driver routine [pRun or by directly call
the solver [pSolve. If your choice is the menu routine you just type Result = IpOpt at the Matlab prompt and the
main menu in Figure 11 will be displayed.

Linear Pragramming

Chics of Prablem File and Problem

(Optimization Farameter Meru

Pause / No Pause after each iteration 1
Clutput print levels]

Dplimize]

Be-(ptinize with latest solution as starting value 1

Plot Menu

Delete ol gererated figures 1

Figure 11: The main menu in IpOpt.

Pushing the Choice of Problem File and Problem button followed by the uppermost button will make the menu in
Figure 12 to be displayed.

Push the Iptest! button to choose problem (14) and you will be back in the main menu. Now you can select
optimization solver by pushing the Choice of optimization algorithm button and choose the routine you want
to use to solve the problem. Back to the main menu you can change the default settings of the optimization
parameters, the output printing level, convergence tolerances etc. Pushing the Optimize button will run the driver
routine IpRun and the result will be displayed in the Matlab command window. Finally, choose End and the menu
will disappear.

Instead of using the menu system you can solve the problem by a direct call to IpRun from the Matlab prompt
or as a command in an m-file. This approach could be of great interest in an testing environment. The most

TOMLAB v1.0 User’s Guide 98

File Edit Window Help

Choice of test furchon

st simple LF. Dperation: Fesearch 5o course
| yerbemet 262
Evample LF-2 04 5p

Luenberger 2 6-3 1

Luenberger 255

|
MarchallSulrballe eucling example I

First LP in Dpetations Besearch Bp [Ineguality furm] 1

Kubn eycling example |

Beale cycling example.]

Winston Chap B Beview 17, Solve using dual LF 1

Fletcher B.21.3 8. Redundancy in constraints l

Winston Ex. 412 B4 Max ||| Fewritten 1
Iptest]]

Figure 12: The problem choice menu in IpOpt.

straightforward way of doing it (when the problem is defined in lp_prob.m) is to give the following call from the
Matlab prompt:

probNumber = 13;
Result = 1lpRun([], [1, (I, [0, [1, probNumber);

The arguments not given to IpRun is set to default values, see the [pRun routine description Section 3.4.1 page
107. Let us also show how you can give a call by specifying some of the other arguments. Assume that you want
to solve the problem with the following requirements:

e Start in the point (1,1).
e No printing output neither in the driver routine nor in the solver.

e Use Matlab Optimization Toolbox solver Ip.

Then the call to IpRun should be:

Solver = ’l1p’;
Prob = probInit(’lp_prob’,13);
Prilev = 0;

TOMLAB v1.0 User’s Guide 99

Prob.x_0 = [1;1];
Prob.optParam.Prilev = O;

Result = lpRun(Solver, Prob, [], Prilev);

To have the result of the optimization displayed call the routine PrintResult:

PrintResult (Result);

For a more advanced user it could be of interest to define the problems in an ”own” problem definition file. This
is of course possible in OPERA TB and we will now illustrate how to do (for all instructions we assume that you
edit the copied files in a text editor).

1. Make a copy of Ip_prob.m and place the copy in your working directory or in any other directory placed
before the directory OPERA in the Matlab path.

2. Rename the file Ip_prob.m to for example ownlp_prob.m.

3. Delete the already existing problems from the menu choice and add Iptest! as the first problem:

probList=str2mat(...
’lptestl’...
); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)
return;
end

4. Make the following modification in MFILownlp_prob:

if ask==-1 & “isempty(Prob)
if isstruct(Prob)
if “isempty(Prob.P)
if P==Prob.P & strcmp(Prob.probFile,’ownlp_prob’), return; end
end
end
end

6. Define the constraint matrix A, the upper bounds for the constraints b_U, the cost vector ¢ as below. If the
constraints would be of equality type then you just define the lower bounds for the constraints b_L equal to

b.U.
elseif P ==
Name = ’lptestl’;
c = [-7 -B]7;
A =[1 2
4 11];
bU =1[6121]";

TOMLAB v1.0 User’s Guide 100

7.

8.

Now,

-

x L =
x_min
X_max
else
disp(’ownlp_prob: Illegal problem number’)
pause
Name=[];
end

-

[}
Lol B
O O O
O O O
[

Modify the file nameprob.m in the NLPLIB directory as described in the file. It should now look like:

elseif solvType==
% Linear programming
F=str2mat (’1lp_prob’...
,’ownlp_prob’...
,’usr_prob’...

);

% USER: Duplicate the row above and insert your own file name
h inside the quotes

% USER: Uncomment next row if your latest file should be the default one.
% D=size(F,1);

N=str2mat (...
’lp Linear Programming’...
,’ownlp My Own Linear Programming Problems’...
,’usr Linear Programming’...

)

% USER: Duplicate the row above and insert your own file name

% and description inside the quotes. Add the probType number to
% the vector probTypV below.

probTypV=[8 8 8];

Save both the renamed file ownlp_prob and nameprob.m properly.

when you push the Choice of Problem File and Problem button in the main menu of lpOpt, Figure 11, the

menu in Figure 13 should be displayed. Choose ownlp My Own Linear Programming Problems and proceed as
described above.

We will now show how to give a direct call to IlpRun in the case when the problem is defined in another init file

than

Solver

Ip_prob.m. Assume the same requirements as itemized above.

71p7;

probFile = ’ownlp_prob’;

Prob = probInit(probFile,1);
PrilLev = 0;

Prob.x_0 = [1;1];
Prob.optParam.Prilev = O;

Result = 1lpRun(Solver, Prob, [], Prilev, probFile);

TOMLAB v1.0 User’s Guide

File Edit Window Help
Choice of problern data fle [sex prob]

In Linear Frogramming

aviln Mu i Linear Frogianming Froblems]
ust Linear Programming 1

Figure 13: The problem file choice menu in IpOpt.

Finally, we will show how you can solve (14) by direct use of the optimization routines Ipsimp1 and Ipsimp?2.

A=[1 2
4 11;
b=[612 1]
c = [-7 -5];
meq = 0;

’
optPar = 1pDef;

optPar(13) = megq;
[x_0, B_O, optPar, y] = lpsimpl(A, b, optPar);
[x, B, optPar, y] = lpsimp2(A, b, c, optPar, x_0, B_0);

For further illustrations of how to solve linear programming problems see the example files listed in Table 42 and

Table 43.
Table 42: Test examples for linear programming.

Function Description

erinled.m First simple LP example from a course in Operations Research.

excycle Menu with cycling examples.

excyclel The Marshall-Suurballe cycling example. Run both the Bland’s cycle preventing rule and
the default minimum reduced cost rule and compare results.

excycle2 The Kuhn cycling example.

excycled The Beale cycling example.

exKlee M The Klee-Minty example. Shows that the simplex algorithm with Dantzig’s rule visits all
vertices.

exfli821 Run exercise 8.21 from Fletcher, Practical methods of Optimization. Illustrates redun-
dancy in constraints.

ex412b4s Wayne Winston example 4.12 B4, using lpsimpI and Ipsimp?2.

expertur Perturbed both right hand side and objective function for Luenberger 3.12-10,11.

exbrevl7 Wayne Winston chapter 6 Review 17. Simple example of calling the dual simplex solver
Ipdual.

ex6l1a?2 Wayne Winston example 6.11 A2. A simple problem solved with the dual simplex solver

Ipdual.

TOMLAB v1.0 User’s Guide 102

Table 43: Test examples for linear programming running interior point methods.

Function Description
exwwd 97 Test of karmark and Ipsimp2 on Winston example page 597 and Winston 10.6 Problem

Al.
exstrang Test of karmark and Ipsimp2 on Strangs’ nutshell example.
exkarma Test of akarmark.

exKleeM?2 Klee-Minty example solved with Ipkarma and karmark.

3.2.2 How to Solve Transportation Programming Problems

We will as an example solve the transportation problem

5 18 6 2 -1 0
s=| 2 |.d=| 5 [.c=|42 2 3] (15)
25 5 31 2 1

where s is the supply vector, d is the demand vector and C' is the cost matrix. See TPsimplz Section 3.5.23.
Solving (15) by use of the routine T'Psimplz is done by:

s =[525251]";
d = [10 10 20 15 1°;
c=06 2-1 0
4 2 2 3
31 2 117;

[X, B, optPar, y, C] = TPsimplx(s, d, C)

When neither starting base nor starting point is given as input argument TPsimplz calls TPuvogel (using Vogel’s
approximation method) to find an initial basic feasible solution (bfs). If you want to use another method to find
an initial bfs, e.g. the northwest corner method, you explicitly call the corresponding routine (7TPnw) before the
call to TPsimplx:

s =1[525251]";
d = [10 10 20 15 1°;
c=[6 2-1 0
4 2 2 3
31 2 11;

[X_0, B_0] = TPnw(s, d)
[X, B, optPar, y, C] = TPsimplx(s, d, C, X_0, B_0)

For further illustrations of how to solve transportation programming problems see the example files listed in Table
44.

3.2.3 How to Solve Network Programming Problems

In OPERA TB there are several routines for network programming problems. We will here give an example of
how to solve a shortest path problem. Given the network in Figure 14, where the numbers at each arc represent
the distance of the arc, we want to find the shortest path from node 1 to all other nodes. Representing the network
with the node-arc incidence matrix A and the cost vector ¢ gives:

TOMLAB v1.0 User’s Guide 103

Table 44: Test examples for transportation programming.

Function Description

extp_bfs Test of the three routines that finds initial basic feasible solution to a TP problem, routines
TPnw, TPmc and TPuvogel.

exlull9 Luenberger TP page 119. Find initial basis with TPnw, TPmc and TPuvogel and run
TPsimplz for each.

exlul19U Test unbalanced TP on Luenberger TP page 119, slightly modified. Runs TPsimplz.

extp Runs simple TP example. Find initial basic feasible solution and solve with TPsimplz.
2
3
1 1 0 0 0 0 0 0 1
-1 0 1 -1 0 0 0 0 4
A= 0 -1 0 1 1 0 -1 0 |,e= 9 (16)
0 0 -1 0 0 1 1 -1 4
0 0 0 0 -1 -1 0 1 1
3
Representing the network with the forward and reverse star technique gives:
1 2 2 1
1 1 3 3 4 1
3 2 4 1 2 1
4 3 2 4 7 3
P = 6 L= 3 5 [¢=| 9 T = 3 ,R = 5 (17)
8 4 5 4 8 7
9 4 3 1 5 9
5 4 3 6

See a2frstar Section 3.6.1 for an explanation of the notation.

Our choice of solver for this example is modlabel, see Section 3.5.18, which uses a modified label correcting
algorithm. First we define the incidence matrix A and the cost vector ¢ and call the routine a2frstar to convert to
a forward and reverse star representation (which is used by modlabel). Then the actual problem is solved.

A=[1 1 0 0 0 0 0 O
-1 0 1-1 0 0 O O
0-1 0 1 1 0-1 0
0 0-1 0 0 1 1-1
0 0 0 0-1-1 0 11;

C [2 3 1 4 2 4 1 31];
[PZc TR x_U] = a2frstar(A, C);
[pred dist] = modlabel(1,P,Z,c);

For further illustrations of how to solve network programming problems see the example files listed in Table 45.

3.2.4 How to Solve Integer Programming Problems

The routines in OPERA TB for solving integer programming problems are cutplane, mipSolve and balas. To
illustrate how to solve an integer programming problem we will solve the problem (14) with the addition of the

TOMLAB v1.0 User’s Guide 104

N

Figure 14: A network example.

requirement of the variables to be positive integers. We have chosen to use the routine cutplane, see Section 3.5.3.

A=1011 2
4 11];
b=[6121]";
c = [-7 -5]’;
meq = 0;

optPar = 1pDef;

optPar(13) = meq;

n_I = 2;

[x, B, optPar, y] = cutplane(A, b, c, optPar, [], [1, n_I);

For further illustrations of how to solve integer programming problems see the example files listed in Table 46.

3.2.5 How to Solve Dynamic Programming Problems

We will in this subsection illustrate the simple approach to solve both a knapsack problem and an inventory
problem with help of the routines dpknap (see Section 3.5.6) and dpinvent (Section 3.5.5). The knapsack problem
(18) is an example from Kaj H. [32] and the inventory problem is an example from Winston [52, page 1013].

TOMLAB v1.0 User’s Guide 105

Table 45: Test examples for network programming.

Function Description

exgraph Testing network routines on simple example.
exflow Testing several maximum flow examples.
pathflow Pathological test example for maximum flow problems.

exflow31 Test example N31.

exmenfp Minimum Cost Network Flow Problem (MCNFP) example from Ahuja et. al.
ulyss16 Traveling salesman (TSP) example Odyssey of Ulysses. Calls salesman.
exulys16 TSP example Odyssey of Ulysses, 16 nodes. Calls travelng.

exulys22 TSP example Odyssey of Ulysses, 22 nodes. Calls travelng.

exgr96 TSP example Africa Subproblem, by Groetschel. 96 nodes. Calls travelng.

Table 46: Test examples for integer programming.

Function Description

expkorv Test of cutplane and mipSolve for example PKorv.
exIP39 Test example 139.
exbalas Test of 0/1 IP (Balas algorithm) on simple example.

max flu) =Tuy + us + 4us
s/t 2uy + 3us +2uz <4
0§u1 S].
OSU,QS].
0§U3§2
u; €N,j =1,2,3

Problem (18) will be solved by the following definitions and call:

A =[2321;
b = 4,
c =[72417];
uUPP =1[11217;
PrilLev = 0;

[u, f_opt] = dpknap(A, b, c, u_UPP, Prilev);

Description of the inventory problem:

A company knows that the demand for its product during each of the next for months will be as follows: month 1,
1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units. At the beginning of each month, the company must
determine how many units should be produced during the current month. During a month in which any units are
produced, a setup cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit produced. At the
end of each month, a holding cost of 50 cents per unit on hand is incurred. Capacity limitations allow a maximum
of 5 units to be produced during each month. The size of the company’s warehouse restricts the ending inventory
for each month to at most 4 units. The company wants to determine a production schedule that will meet all
demands on time and will minimize the sum of production and holding costs during the four months. Assume
that 0 units are on hand at the beginning of the first month.

The inventory problem described above will be solved by the following definitions and call:

d [1324]; % Demand. N = 4;
P_s = 3; % Setup cost $3 if u > 0

TOMLAB v1.0 User’s Guide

P = ones(5,1); %
I_s = 0; %
I = 0.5%ones(5,1); %
x_L = 0; %
x_U = 4; %
x_LAST = [1; YA
x_S = 0; %
u_lL = [0 0 0 0]; %
uU = [65 5 5]; %
Prilev = 1;

’

106

Production cost $1/unit in each time step
Zero setup cost for the Inventory
Inventory cost $0.5/unit in each time step
lower bound on inventory, x

upper bound on inventory, x

Find best choice of inventory at end
Empty inventory at start

Minimal amount produced in each time step
Maximal amount produced in each time step

[u, f_opt] = dpinvent(d, P_s, P, I_s, I, u L, u U, x_ L, x_ U, x_S, x_LAST, Prilev);

For further illustrations of how to solve dynamic programming problems see the example files listed in Table 47.

Table 47: Test examples for dynamic programming.

Function Description

exinvent Test of dpinvent on two inventory examples.
exknap Test of dpknap (calls mipSolve and cutplane) on five knapsack examples.

3.2.6 How to Solve Lagrangian Relaxation Problems

We end up this section with an example of how to solve an integer programming problem with the routine ksrelaz,
which uses a Lagrangian Relaxation technique. The problem to be solved, (19), is an example from Fischer [20].

max f(z) = 1621 + 10zs + 4x4

S/t 8x1 + 222 + 3 + x4 < 10
T1+22 <1 (19)
r3+ x4 <1
z; €0/1,j=1,2,3,4

A=[8 2 1 4
1 1 0 O
0O 0 1 11;
b=1[10 1 11]°;
c=1[16 10 0 4 1]7;
r =1; % Do not relax the first constraint
x UPP = [1 11 1]

[x u f_opt optPar] = ksrelax(A, b, c, r, x_UPP);

For further illustrations of how to solve Lagrangian Relaxation problems see the example files listed in Table 48.

Table 48: Test examples for Lagrangian Relaxation.

Function Description

exrelaz Test of ksrelax on LP example from Fischer -85.
exrelaz? Simple example, runs ksrelax.
exIP39rz Test example 139, relaxed. Calls urelax and plot.

TOMLAB v1.0 User’s Guide 107

3.3 Printing Utilities and Print Levels

This section is written for the part of OPERA TB which is not using the same input/output format and is not
designed in the same way as NLPLIB TB. Information about printing utilities and print levels for the other
routines could be found in Section 2.8

The amount of printing is determined by setting a print level for each routine. This parameter most often has the
name PriLev.

Normally the zero level (PriLev = 0) corresponds to silent mode with no output. The level one corresponds to
a result summary and error messages. Level two gives output every iteration and level three displays vectors and
matrices. Higher levels give even more printing of debug type. See the help in the actual routine.

The main driver or menu routine called may have a PriLev parameter among its input parameters. The routines
called from the main routine normally sets the PriLev parameter to optPar(1). The vector optPar is set to default
values by a call to goptions. The user may then change any values before calling the main routine. The elements
in optPar is described giving the command: help goptions. For linear programming there is a special initialization
routine, lpDef, which calls goptions and changes some relevant parameters.

There is a wait flag in optPar, optPar(24). If this flag is set, the routines uses the pause statement to avoid the
output just flushing by.

The OPERA TB routines print large amounts of output if high values for the PriLev parameter is set. To make
the output look better and save space, several printing utilities have been developed, see Table 41.

For matrices there are two routines, mPrint and printmat. The routine printmat prints a matrix with row and
column labels. The default is to print the row and column number. The standard row label is eight characters
long. The supplied matrix name is printed on the first row, the column label row, if the length of the name is at
most eight characters. Otherwise the name is printed on a separate row.

The standard column label is seven characters long, which is the minimum space an element will occupy in the
print out. On a 80 column screen, then it is possible to print a maximum of ten elements per row. Independent
on the number of rows in the matrix, printmat will first display A(:,1: 10), then A(:, 11 : 20) and so on.

The routine printmat tries to be intelligent and avoid decimals when the matrix elements are integers. It determines

the maximal positive and minimal negative number to find out if more than the default space is needed. If any
element has an absolute value below 107° (avoiding exact zeros) or if the maximal elements are too big, a switch
is made to exponential format. The exponential format uses ten characters, displaying two decimals and therefore
seven matrix elements are possible to display on each row.

For large matrices, especially integer matrices, the user might prefer the routine mPrint. With this routine a more
dense output is possible. All elements in a matrix row is displayed (over several output rows) before next matrix
row is printed. A row label with the name of the matrix and the row number is displayed to the left using the
Matlab style of syntax.

The default in mPrint is to eight characters per element, with two decimals. However, it is easy to change the
format and the number of elements displayed. For a binary matrix it is possible to display 36 matrix columns in
one 80 column row.

3.4 Driver Routines in OPERA TB

In the following subsections the driver routines in OPERA TB will be described.

3.4.1 IpRun

Purpose
Driver routine for linear programming solvers.

Calling Syntax
Result = IpRun(Solver, Prob, ask, PriLev, probFile, probNumber)

TOMLAB v1.0 User’s Guide 108

Description of Inputs
Solver The name of the solver that should be used to optimize the problem. Default
IpSolve. If the solver may run several different optimization algorithms,
then the values of Prob.optParam.alg and Prob.optParam.subalg determines
which algorithm.
Prob Problem description structure, see Table 5.
ask Flag if questions should be asked during problem definition.
ask < 0 Use values in uP if defined or defaults.
ask =0 Use defaults.
ask >1 Ask questions in probFile.
ask =[] I uP =[], ask=—1, else ask = 0.
PriLev Print level when displaying the result of the optimization in the routine
PrintResult. See Section 2.13.1 page 88.
PriLev =0 No output.
PriLev =1 Final result, shorter version.
PriLev =2 Final result.
PriLev =3 Full results.
The printing level in the optimization solver is controlled by setting the
parameter Prob.optParam.PriLev.
probFile User problem init file, default Ip_prob.m.
probNumber Problem number in probFile. probNumber = 0 gives a menu in probFile.

Description of Outputs
Result Structure with result from optimization, see Table 15.

Description

The driver routine IpRun is called by the menu routine IpOpt or the graphical user interface routine niplib to solve
linear programming problems defined in your problem definition files. It is also possible for the user to call lpRun
directly from the Matlab command prompt, see Section 3.2. Via IpRun you can run the TOMLAB internal solvers
IpSolve, lpsimp2 and akarmark and the Matlab Optimization Toolbox solver Ip. You can also, by use of a MEX-file
interface run the commercial optimization solvers MINOS and QPOPT.

M-files Used
zxzRun.m, xxxRun2.m, inibuild.m, PhaselSimplex, IpDef.m, probInit.m, mkbound.m, IpSolve.m, Ipsimp2.m, akarmark.m,
Ip.m, qpoptSOL.m, minos.m, PrintResult.m, iniSolve.m, endSolve.m

3.5 Optimization Routines in OPERA TB

In the following subsections the optimization routines in OPERA TBwill be described.

3.5.1 akarmark

Purpose
Solve linear programming problems of the form

min f(z) = 'z
X
s/t Ax = b
T > 0
where z,c € R*, A € R™*" and b € R™.
Calling Syntax
[x, optPar, y, x_0] = akarmark(A, b, ¢, optPar, x_0)
Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.

z_0 Starting point.

TOMLAB v1.0 User’s Guide 109

Description of Outputs

T Optimal point.
optPar Optimization parameter vector, see goptions.m.
Yy Dual parameters.
z-0 Starting point used.
Description

The routine akarmark is an implementation of the affine scaling variant of Karmarkar’s method as described in
Bazaraa [29, pages 411-413]. As the purification algorithm a modified version of the algorithm on page 385 in
Bazaraa is used.

Algorithm
See Appendix B.1.

Examples
See exakarma, exkarma, exkleem?2.

~-111es se

IpDef.m

See Also
Ipkarma, karmark

3.5.2 Dbalas

Purpose
Solve binary integer linear programming problems.

balas solves problems of the form

min f(z) = Iz
x
s/t alz = b i=1,2,..,m
alz < by i=meg+1l,..,m
xz; €0/1 i=12..,n
where c € Z", A € Z™ ™ and b € Z™.
Calling Syntax
[x, optPar] = balas(A, b, c, optPar)
Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
Description of Outputs
z Optimal point.
optPar Optimization parameter vector, see goptions.m.
Description

The routine balas is an implementation of Balas method for binary integer programs restricted to integer coeffi-
cients.

Algorithm
See the code in balas.m.

Examples
See exbalas.

M-files Used
IpDef.m

See Also
mipSolve, cutplane

TOMLAB v1.0 User’s Guide 110

3.5.3 cutplane

Purpose
Solve mixed integer linear programming problems (MIP).

cutplane solves problems of the form

mwin flz) =
s/t aTz = b i=1,2,..,me
afz < b i=me+1,..,m
T > 0
z; EN =12 ..n;
z; ER j=nr+1,..,n

where ¢ € R", A € R™*"™ and b € R™.

Calling Syntax
[x, B, optPar, y] = cutplane(A, b, ¢, optPar, x_0, B_0, n_I, PriLev)

Description of Inputs

A Constraint matrix.

b Right hand side vector.

¢ Cost vector.

optPar Optimization parameter vector, see goptions.m.

z_0 Starting point.

B0 Logical vector of length n for basic variables at start.
n_1 First n_I z-values are integer valued.

PriLev Printing level:

PriLev = 0, no output.

PriLev = 1, output of convergence results.

PriLev > 1, output of each iteration.

PriLev > 2, output of each step in the simplex algorithm.

Description of OQutputs

z Optimal point.

B Optimal basic set.

optPar Optimization parameter vector, see goptions.m.

Yy Lagrange multipliers at the solution.
Description

The routine cutplane is an implementation of a cutting plane algorithm with Gomorov cuts. cutplane uses the
linear programming routines PhaselSimplex, Phase2Simplex and DualSolve to solve relaxed subproblems.

Algorithm
See Appendix B.2.

Examples
See exip39, exknap, expkorv.

M-files Used
IpDef.m, PhaselSimplex.m, Phase2Simplex.m, DualSolve.m

See Also
mipSolve, balas, Ipsimpl, Ipsimp2, lpdual

3.5.4 dijkstra

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = dijkstra(s, P, Z, c)

TOMLAB v1.0 User’s Guide 111

Description of Inputs

s The starting node.

P Pointer vector to start of each node in the matrix Z.

Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

¢ Costs related to the arcs in the matrix Z.
Description of Outputs

pred pred(j) is the predecessor of node j.

dist dist(j) is the shortest distance from node s to node j.
Description

digkstra is a direct implementation of the algorithm DIJKSTRA in [2, pages 250-251] for solving shortest path
problems using Dijkstra’s algorithm. Dikstra’s algorithm belongs to the class of label setting methods which are
applicable only to networks with nonnegative arc lengths. For solving shortest path problems with arbitrary arc
lengths use the routine labelcor or modlabel which belongs to the class of label correcting methods.

Algorithm
See Appendix B.3.

Examples
See exgraph, exflowsl.

See Also
labelcor, modlabel

Limitations
digkstra can only solve problems with nonnegative arc lengths.

3.5.5 dpinvent

Purpose
Solve production/inventory problems of the form

min f(u) = Pit)+ Pt)Tu(t) + I(t)Tx(t)
s/t uy, < u(t) < uy
rp < (t) < Ty
0 < u(t) < z(t) +d(t)
uj €N Jj=12..n
z; €N j=12..,n

where z(t) = z(t — 1) + u(t) — d(t) and d € N".

Calling Syntax
[u, f_opt, exit] = dpinvent(d, P_s, P, I.s, I, u.L, u_U, x_L, x.U, x_S, x LAST, PriLev)

Description of Inputs

d Demand vector.

P_s Production setup cost.

P Production cost vector.

Ls Inventory setup cost.

I Inventory cost vector.

u_L Minimal amount produced in each time step.
u U Maximal amount produced in each time step.
x_L Lower bound on inventory.

z U Upper bound on inventory.

xS Inventory state at start.

x_LAST Inventory state at finish.

PriLev Printing level:

PriLev = 0, no output.
PriLev = 1, output of convergence results.
PriLev > 1, output of each iteration.

TOMLAB v1.0 User’s Guide 112

Description of Outputs

u Optimal control.
foopt Optimal function value.
exit Exit flag.

Description

dpinvent solves production/inventory problems using a forward recursion dynamic programming technique as
described in Winston [52, chap. 20].

Algorithm
See Appendix B.4.

Examples
See exinvent.

3.5.6 dpknap

Purpose
Solve knapsack problems of the form

max f(u) = clu
s/t Au < b
U < uy
u; € N j=12..,n

where Ae N*, ce R" and be N

Calling Syntax
[u, f_opt, exit] = dpknap(A, b, ¢, u_U, PriLev)

Description of Inputs

A Weigth vector.
b Knapsack capacity.
¢ Benefit, vector.
u U Upper bounds on w.
PriLev Printing level:

PriLev = 0, no output.
PriLev = 1, output of convergence results.
PriLev > 1, output of each iteration.

Description of Qutputs

U Optimal control.
f-opt Optimal function value.
exit Exit flag.

Description

dpknap solves knapsack problems using a forward recursion dynamic programming technique as described in [52,
chap. 20]. The Lagrangian relaxation routines ksrelaz and urelaz call dpknap to solve the knapsack subproblems.

Algorithm
See Appendix B.5.

Examples
See exknap.

3.5.7 DualSolve

Purpose
Solve linear programming problems when a dual feasible solution is available.

TOMLAB v1.0 User’s Guide

DualSolve solves problems of the form

min f(z) = c'=
s/t zp, < x < oy
by < Az < by
where z,zp, 2y € R*, c € R*, A € R™*" and by, by € R™.
by rewriting it into standard form as
min fp(z) = cl'x
s/t Az = b
T > 0
and solving the dual problem
max fp(y) = by
s/t ATy < c
Y urs
with z,c € R, A € R™*" and b,y € R™.
Calling Syntax
[Result] = DualSolve(Prob)
Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg

QP.B

optParam
QP.c

b_L
b_U
z L
U
z_0
y-0

Variable selection rule to be used:

0: Minimum reduced cost (default).

1: Bland’s anti-cycling rule.

2: Minimum reduced cost. Dantzig’s rule.

Active set B_0 at start:

B(i) = 1: Include variable z(7) is in basic set.

B(i) = 0: Variable x(%) is set on its lower bound.
B(i) = —1: Variable z(7) is set on its upper bound.

Structure with special fields for optimization parameters, see Table 6.

Fields used are: Mazlter, PriLev, wait, eps_f, eps_Rank and xTol.
Constant vector.

Constraint matrix for linear constraints.

Lower bounds on the linear constraints.

Upper bounds on the linear constraints.

Lower bounds on the variables.

Upper bounds on the variables.

Starting point, must be dual feasible.

Dual parameters (Lagrangian multipliers) at z_0.

113

TOMLAB v1.0 User’s Guide

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.

QP.B Optimal active set.

EzxitFlag Exit flag:
0: OK.
1: Maximal number of iterations reached. No primal feasible solution found.
2: Infeasible Dual problem.
3: No dual feasible starting point found.
4: Tllegal step length due to numerical difficulties. Should not occur.
5: Too many active variables in initial point.

fk Function value at optimum.

z-0 Starting point.

z_k Optimal primal solution z.

vk Optimal dual parameters. Lagrange multipliers for linear constraints.

¢ Constant vector in standard form formulation.

A Constraint matrix for linear constraints in standard form.

b Right hand side in standard form.

Description

114

When a dual feasible solution is available, the dual simplex method is possible to use. DualSolve implements this
method using the algorithm in [29, pages 105-106]. There are three rules available for variable selection. Bland’s
cycling prevention rule is the choice if fear of cycling exist. The other two are variants of minimum reduced cost
variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each step

(the default choice).

M-files Used
IpDef-m, cpTransf.m

See Also
IpSolve, Phase2Simplex

3.5.8 karmark

Purpose

Solve linear programming problems of Karmakar’s form

min f(z) = clx
s/t Az = 0
T; = 1
7j=1
T > 0

where x,¢ € R", A € R™*"™ and the following assumptions hold:

e The point z(¥ = (1

n'tn

1) T is feasible.

e The optimal objective value is zero.

Calling Syntax

[x, optPar] = karmark(A, c, optPar)

Description of Inputs

A Constraint matrix.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs

T Optimal point.
optPar Optimization parameter vector, see goptions.m.

TOMLAB v1.0 User’s Guide 115

Description

The routine karmark is an implementation of Karmakar’s projective algorithm which is of polynomial complexity.
The implementation uses the description in Bazaraa [7, page 386]. There is a choice of update, either according
to Bazaraa or the rule by Goldfarb and Todd [29, chap. 9]. As the purification algorithm a modified version of
the algorithm on page 385 in Bazaraa is used. karmark is called by Ipkarma which transforms linear maximization
problems on inequality form into Karmakar’s form needed for karmark.

Algorithm
See Appendix B.8.

Examples
See exstrang, exww597.

M-files Used
lpDef.m

See Also
Ipkarma, akarmark

3.5.9 ksrelax

Purpose
Solve integer linear problems of the form

max f(z) = clz
s/t Az < b
T < Ty
z; €N j=12..,n

where ¢ € R*, A € N™*" and b € N™.

Calling Syntax
[x-P, u, {_P, optPar] = ksrelax(A, b, c, r, x_U, optPar)

Description of Inputs

A Constraint matrix.

b Right hand side vector.

c Cost vector.

r Constraint not to be relaxed.

.U Upper bounds on the variables.

optPar Optimization parameter vector, see goptions.m.
Description of Outputs

z_P Primal solution.

U Lagrangian multipliers.

P Function value at z_P.

optPar Optimization parameter vector, see goptions.m.
Description

The routine ksrelax uses Lagrangian Relaxation to solve integer linear programming problems with linear inequality
constraints and simple bounds on the variables. The problem is solved by relaxing all but one constraint and then
solve a simple knapsack problem as a subproblem in each iteration. The algorithm is based on the presentation in
Fisher [20], using subgradient iterations and a simple line search rule. OPERA TB also contains a routine urelaz
which plots the result of each iteration.

Algorithm
See Appendix B.9.

Examples
See exrelaz, exrelax?.

M-files Used
IpDef.m, dpknap.m

TOMLAB v1.0 User’s Guide 116

See Also
urelax

3.5.10 labelcor

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = labelcor(s, P, Z, c)

Description of Inputs

s The starting node.

P Pointer vector to start of each node in the matrix Z.

Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

¢ Costs related to the arcs in the matrix Z.
Description of OQutputs

pred pred(j) is the predecessor of node j.

dist dist(j) is the shortest distance from node s to node j.
Description

The implementation of labelcor is based on the algorithm LABEL CORRECTING in [2, page 260] for solving shortest
path problems. The algorithm belongs to the class of label correcting methods which are applicable to networks
with arbitrary arc lengths. labelcor requires that the network does not contain any negative directed cycle, i.e. a
directed cycle whose arc lengths sum to a negative value.

Algorithm
See Appendix B.10.

Examples
See exgraph.

See Also
digkstra, modlabel

Limitations
The network must not contain any negative directed cycle.

3.5.11 Ipdual

Purpose
Solve linear programming problems when a dual feasible solution is available.

Ipdual solves problems of the form

min fp(z) = cl'x
x
s/t alz = b i=1,2,..,mg
alz < b i=me+1,..m
T > 0

by rewriting it into standard form and solving the dual problem

max fp(y) = by
s/t ATy < ¢
Yy urs

with z,c e R*, A € R™*" and b,y € R™.

Calling Syntax
[x, v, B, optPar] = Ipdual(A, b, ¢, optPar, B0, x0, y_0)

TOMLAB v1.0 User’s Guide 117

Description of Inputs

A Constraint matrix.

b Right hand side vector.

¢ Cost vector.

optPar Optimization parameter vector, see goptions.m.

B0 Logical vector of length n for basic variables at start.

z_0 Starting point, must be dual feasible.

y-0 Dual parameters (Lagrangian multipliers) at z_0.
Description of Outputs

z Optimal point.

Yy Dual parameters (Lagrangian multipliers) at the solution.

B Optimal basic set.

optPar Optimization parameter vector, see goptions.m.
Description

When a dual feasible solution is available, the dual simplex method is possible to use. Ipdual implements this
method using the algorithm in [29, pages 105-106]. There are three rules available for variable selection. Bland’s
cycling prevention rule is the choice if fear of cycling exist. The other two are variants of minimum reduced cost
variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each step
(the default choice).

Algorithm
See B.11.

Examples
See ex611a2, exbrevl?.

M-files Used
lpDef.m

See Also
Ipsimp1, Ipsimp2

3.5.12 Ipkarma

Purpose
Solve linear programming problems of the form
max f(z) = c'w
s/t Az <
T > 0
where z,c € R*, A € R™*" and b € R™.
Calling Syntax
[x, ¥, optPar] = Ipkarma(A, b, c, optPar)
Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
Description of Qutputs
x Optimal point.
y Dual solution.
optPar Optimization parameter vector, see goptions.m.
Description

Ipkarma converts a linear maximization problem on inequality form into Karmakar’s form and calls karmark to
solve the transformed problem.

Algorithm
See Appendix B.12.

TOMLAB v1.0 User’s Guide

Examples
See exstrang, exww597.

M-files Used
IpDef.-m, karmark.m

See Also
karmark, akarmark

3.5.13 lpsimpl

Purpose

Find a basic feasible solution to linear programming problems.

Ipsimp1 finds a basic feasible solution to problems of the form

min f(z) = cl'z
s/t alx = b i=1,2,...,me
alz < b di=me+1,....m
T > 0
where ,c € R", A € R™*"™ and b € R™,b > 0.
Calling Syntax
[x, B, optPar, y] = Ipsimpl(A, b, optPar)
Description of Inputs
A Constraint matrix.
b Right hand side vector.
optPar Optimization parameter vector, see goptions.m.
Description of Outputs
z Basic feasible solution.
B Basic set, at the solution .
optPar Optimization parameter vector, see goptions.m.
y Lagrange multipliers.
Description

118

The routine Ipsimp1 implements a Phase I Simplex strategy which formulates a LP problem with artificial variables.
Slack variables are added to the inequality constraints and artificial variables are added to the equality constraints.

The routine uses lpsimp2 to solve the Phase I problem.

Algorithm
See Appendix B.13.

Examples

See exinled, excycle, excycle?, exKleeM, exfil821, ex]12b/s.

M-files Used
IpDef.m, Ipsimp2.m

See Also
Ipsimp2

3.5.14 lpsimp2

Purpose
Solve linear programming problems.

Ipsimp2 solves problems of the form

min f(z) = clx
€&
s/t alz = W
alz < b
T > 0

i=1,2,...,me,
T =M +1,...,m

TOMLAB v1.0 User’s Guide 119

where z,c € R*, A € R™*"™ and b € R™.

Calling Syntax
[x, B, optPar, y] = Ipsimp2(A, b, ¢, optPar, x_0, B_0)

Description of Inputs

A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
z-0 Starting point, must be a basic feasible solution.
B0 Logical vector of length n for basic variables at start.
Description of Qutputs
x Optimal point.
B Optimal basic set.
optPar Optimization parameter vector, see goptions.m.
y Lagrange multipliers.
Description

The routine lpsimp2 implements the Phase II standard revised Simplex algorithm as formulated in Goldfarb and
Todd [29, page 91]. There are three rules available for variable selection. Bland’s cycling prevention rule is the
choice if fear of cycling exist. The other two are variants of minimum reduced cost variable selection, the original
Dantzig’s rule and one which sorts the variables in increasing order in each step (the default choice).

Algorithm
See Appendix B.14.

Examples
See exinled, excycle, excyclel, excycle2, excyclel, exKleeM, exfi821, ex412b4s, expertur.

M-files Used
IpDef.m

See Also
Ipsimp1, Ipdual

Warnings
No check is done whether the given starting point is feasible or not.

3.5.15 1pSolve

Purpose
Solve general linear programming problems.

IpSolve solves problems of the form

min f(z) = clx

€&

s/t oz, < x < oy
by < Az < by

where z,zp, 2y € R*, c € R*, A € R™*" and by, by € R™.

Calling Syntax
Result = IpSolve(Prob)

TOMLAB v1.0 User’s Guide

Description of Inputs

Prob Problem description structure. The following fields are used:

Solver.Alg

Variable selection rule to be used:

0: Minimum reduced cost.

1: Bland’s rule (default).

2: Minimum reduced cost. Dantzig’s rule.

QP.B Active set B_0 at start:
B(i) = 1: Include variable z(7) is in basic set.
B(i) = 0: Variable x(%) is set on its lower bound.
B(i) = —1: Variable z(7) is set on its upper bound.
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: Mazlter, PriLev, wait, eps_f, eps_Rank, xTol and bTol.
QP.c Constant vector.
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
x_L Lower bounds on the variables.
.U Upper bounds on the variables.
z-0 Starting point.
Description of Outputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
EzitFlag 0: OK.
1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: Tllegal x_0 found in Phase2Simplex.
5: No feasible point z_0 found in PhaselSimplex.
Inform If ExitFlag > 0, Inform = ExitFlag.
QP.B Optimal active set. See input variable QP.B.
f0 Function value at start.
fk Function value at optimum.
gk Gradient value at optimum, c.
z_0 Starting point.
xz_k Optimal point.
vk Lagrange multipliers.
zState State of each variable, described in Table 16 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description

120

The routine IpSolve implements an active set strategi (Simplex method) for Linear Programming. If the given
starting point is not feasible then PhaselSimplex is called. The routine Phase2Simplez is called to solve the Phase

II program.
M-files Used

IpDef.m, ResultDef.m, PhaselSimplex.m, Phase2Simplex.m

See Also
gpSolve

3.5.16 maxflow

Purpose

Solve the maximum flow problem.

TOMLAB v1.0 User’s Guide 121

Calling Syntax
[max_flow, x| = maxflow(s, t, x_U, P, Z, T, R, PriLev)

Description of Inputs

s The starting node, the source.
t The end node, the sink.
P Pointer vector to start of each node in the matrix Z.
.U The capacity on each arc.
Z Arcs outgoing from the nodes in increasing order.
Z(:,1) Tail. Z(:,2) Head.
T Trace vector, points to Z with sorting order Head.
R Pointer vector in T' vector for each node.
PriLev Printing Level: 0 Silent, 1 Print result (default).
Description of Qutputs
maz_flow Maximal flow between node s and node ¢.
z The flow on each arc.
Description

mazxflow finds the maximum flow between two nodes in a capacitated network using the Ford-Fulkerson augmented
path method. The implementation is based on the algorithm description in Luenberger [42, page 144-145].

Algorithm
See Appendix B.15.

Examples
See exflow, exflow31, pathflow.

3.5.17 mipSolve

Purpose
Solve mixed integer linear programming problems (MIP).

mipSolve solves problems of the form

min f(x) = c'zx
x
s/t alx = b i=1,2,..,me
alz < b i=me+1,...,m
z > 0
z; €N =12 ..ng
xJ‘E]R j=nr+1,..,n

where ¢ € R", A € R™*"™ and b € R™.

Calling Syntax
[x, B, optPar, y] = mipSolve(A, b, ¢, optPar, x 0, B_.0, n_I, PriLev)

Description of Inputs

A Constraint matrix.

b Right hand side vector.

¢ Cost vector.

optPar Optimization parameter vector, see goptions.m.

z_0 Starting point.

B0 Logical vector of length n for basic variables at start.
n_l First n_I z-values are integer valued.

PriLev Printing level:

PriLev = 0, no output.

PriLev = 1, output of convergence results.

PriLev > 1, output of each iteration.

PriLev > 2, output of each step in the simplex algorithm.

TOMLAB v1.0 User’s Guide 122

Description of Outputs

z Optimal point.

B Optimal basic set.

optPar Optimization parameter vector, see goptions.m.

Y Lagrange multipliers at the solution.
Description

The routine mipSolve is an implementation of a branch and bound algorithm from Nemhauser and Wolsey [45,
chap. 8.2]. mipSolve uses the linear programming routines PhaselSimplex, Phase2Simplex and DualSolve to solve
relaxed subproblems.

Algorithm
See [45, chap. 8.2] and the code in mipSolve.m. PhaselSimplex to get the solution & and

Examples
See exip39, exknap, expkorv.

M-files Used
IpDef.m, PhaselSimplex.m, Phase2Simplex.m, DualSolve.m

See Also
cutplane, balas, Ipsimp1, Ipsimp2, Ipdual

3.5.18 modlabel

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = modlabel(s, P, Z, c)

Description of Inputs

s The starting node.

P Pointer vector to start of each node in the matrix Z.

Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

¢ Costs related to the arcs in the matrix Z.
Description of Qutputs

pred pred(j) is the predecessor of node j.

dist dist(j) is the shortest distance from node s to node j.
Description

The implementation of modlabel is based on the algorithm MODIFIED LABEL CORRECTING in [2, page 262] with
the addition of the heuristic rule discussed to improve running time in practice. The rule says: Add node to the
beginning of LIST if node has been in LIST before, otherwise add node at the end of LIST. The algorithm
belongs to the class of label correcting methods which are applicable to networks with arbitrary arc lengths.
modlabel requires that the network does not contain any negative directed cycle, i.e. a directed cycle whose arc
lengths sum to a negative value.

Algorithm
See Appendix B.16.

Examples
See exgraph.

See Also
digkstra, labelcor

Limitations
The network must not contain any negative directed cycle.

TOMLAB v1.0 User’s Guide

3.5.19 NWsimplx

Purpose

Solve the minimum cost network flow problem.

Calling Syntax

[Z, X, xmax, C, S, my, optPar] = NWsimplx(A, b, c, u, optPar)

Description of Inputs

A
b
c
u
optPar

Node-arc incidence matrix. A is m X n.

Supply /demand vector of length m.

Cost vector of length n.

Arc capacity vector of length n.

Optimization parameter vector, see goptions.m.

Description of Qutputs

my
optPar

Description

Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

Optimal flow.

Upper bound on the flow.

Costs related to the arcs in the matrix Z.

Arc status at the solution:

S; =1, arc i is in the optimal spanning tree.

S; =2, arc i is in L (variable at lower bound).
S; =3, arc i is in U (variable at upper bound).
Lagrangian multipliers at the solution.
Optimization parameter vector, see goptions.m.

123

The implementation of the network simplex algorithm in N Wsimplz is based on the algorithm NETWORK SIMPLEX
in Ahuja et al. [3, page 415]. NWsimplx uses the forward and reverse star representation technique of the network,
described in [3, pages 35-36].

Algorithm

See [3, page 415] and the code in NWsimplx.m.

Examples
See exmenfp.

M-files Used

lpDef.m, a2frstar.m

3.5.20 PhaselSimplex

Purpose

Find a basic feasible solution, i.e. a feasible point, to a constrained set for a general problem

min f(x)
s/t zp < zx <
by < Az <

where z, 2,2y € R*, A € R™*"™ and by, by € R™.

To obtain this feasible point PhaselSimplex solves the following Phase 1 linear programming problem,

min flri,m) = efry +elry

x,71,72,51,82

s/t xy, x

IN

TU
by

Ax+<r1 >
51

—Az +

T1,72,81,82

T2
S9

)

IN

Ty

by

—by,

TOMLAB v1.0 User’s Guide

where z, 27,2y € R*, A € R™*" and by,by € R™.

ey € R™2 are vectors of ones. It holds that m; + ms = m and ms + my = m.

Calling Syntax
Result = PhaselSimplex(Prob)

Description of Inputs

Prob

optParam

QP.c
A
b_L
.U
x L
.U

Description of Outputs
Structure with result from optimization. The following fields are changed:

Result

Description

QP.B

EzitFlag

Inform

z_0

z_k

vk

Prob
Prob.z_k

Problem description structure. The following fields are used:
Solver.Alg

Variable selection rule used in PhaselSimplex:

0: Minimum reduced cost (default).

1: Bland’s anti-cycling rule.

2: Minimum reduced cost. Dantzig’s rule.

Structure with special fields for optimization parameters, see Table 6.
Fields used are: PriLev.

Phase1Simplex is also using Maxlter, wait, eps_f, eps_Rank and zTol.
Constant vector.

Constraint matrix for linear constraints.

Lower bounds on the linear constraints.

Upper bounds on the linear constraints.

Lower bounds on the variables.

Upper bounds on the variables.

The n first elements in the optimal active set.

B(i) = 1: Include variable (%) is in basic set.

B(i) = 0: Variable (i) is set on its lower bound.
B(i) = —1: Variable (i) is set on its upper bound.
Exit flag from PhaselSimplexz:

0: OK.

1: Feasible region is empty. Some nonzero artificial variables left in the base.

Exit flag from Phase2Simplez.

0: OK.

1: Maximal number of iterations reached. No basic feasible solution found.
2: Unbounded feasible region.

3: Rank problems.

4: Tllegal z_0.

Inform = Inform + 100 if any artificial variable still in base but on zero.
The full starting point.

The first n variables in the solution z.

The full set of Lagrange multipliers for the linear constraints.

Problem structure for the Phasel problem solved.

The full solution vector z for the Phase 1 problem.

Prob.QQP.B The full optimal active set for the Phase 1 problem.

124

ry € R, ry € R™2, 51 € R™, 59 € R™, and ¢; € R™,

The routine PhaselSimplex solves a Phase I linear programming problem to find a feasible point to a general set of
simple bounds and linear constraints. It formulates an expanded LP problem on generalized standard form with
slack variables, artificial variables and the original variables. Only the artificial variables have nonzero coefficients
in the objective function. Slack variables are added to the inequality constraints with positive upper bound right
hand sides and artificial variables are added to the rest of the inequality constraints and all equality constraints.
The mathematical problem definition above is somewhat simplified. All linear equations with bounds on infinity
are deleted, as well as the corresponding slack or artificial variable. Equalities are only included once. The actual
problem to solve is hence reduced in size.

The simplex algorithm in the routine Phase2Simplez is used to solve the problem.

M-files Used

lpDef.m, Phase2Simplex.m

TOMLAB v1.0 User’s Guide

3.5.21 Phase2Simplex

Purpose

Solve a linear Phase II program (LP).

Phase2Simplex solves problems of the form

min f(z) = c'=
s/t zp, < x < oy
by < Az < by
where z,zp, 2y € R*, c € R*, A € R™*" and by, by € R™.
Calling Syntax
Result = Phase2Simplex(Prob)
Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg

QP.B Active set B_0 at start:
B(i) = 1: Include variable z(7) is in basic set.
B(i) = 0: Variable z(7) is set on its lower bound.
B(i) = —1: Variable z(7) is set on its upper bound.
optParam Structure with special fields for optimization parameters, see Table 6.
Fields used are: Mazlter, PriLev, wait, eps_f, eps_Rank and zTol.
QP.c Constant vector.
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
z_L Lower bounds on the variables.
.U Upper bounds on the variables.
z-0 Starting point.
Description of OQutputs
Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
QP.B Optimal set. B(i) = 1, include variable z(i) in basic set.
ExitFlag Exit flag from Phase2Simplex:
0: OK.
1: Maximal number of iterations reached. No basic feasible solution found.
2: Unbounded feasible region.
3: Rank problems.
4: Nlegal z_0.
fk Function value at optimum.
z_0 Starting point.
z_k Solution z.
v_k Lagrange multipliers.

Description

Variable selection rule to be used:

0: Minimum reduced cost (default).

1: Bland’s rule.

2: Minimum reduced cost. Dantzig’s rule.

125

The Phase2Simplex implements the Phase II standard revised Simplex algorithm. The implementation is based
on the description in Goldfarb and Todd [29, page 91] generalized to bounded problems. Phase2Simplex uses QR
factorization and numerical safeguarding.

There are three rules available for variable selection. Bland’s cycling prevention rule is the choice if fear of cycling
exist. The other two are variants of minimum reduced cost variable selection, the original Dantzig’s rule and one
which sorts the variables in increasing order in each step.

M-files Used
lpDef.m

TOMLAB v1.0 User’s Guide

3.5.22 salesman

Purpose

Solve the symmetric travelling salesman problem.

Calling Syntax

[Tour, f_tour, OneTree, f_tree, w_max, my_max, optPar] =
salesman(C, Zin, Zout, my, f_BestTour, optPar)

Description of Inputs

C

Zin

Zout

my
f-BestTour
optPar

Cost matrix of dimension n x n where C;; = Cj; is the cost of arc (4,). If
there are no arc between node ¢ and node j then set C;; = Cj; = oco. It
must hold that C;; = NaN.

List of arcs forced in.

List of arcs forced out.

Lagrange multipliers.

Cost (total distance) of a known tour.

Optimization parameter vector, see goptions.m.

Description of Qutputs

Tour
f-tour
OneTree
f-tree
wW_max
my_mazx
optPar

Description

Arc list of the best tour found.

Cost (total distance) of the best tour found.
Arc list of the best 1-tree found.

Cost of the best 1-tree found.

Best dual objective.

Lagrange multipliers at w_maz.

Optimization parameter vector, see goptions.m.

126

The routine salesman is an implementation of an algorithm by Held and Karp [31] which solves the symmetric
travelling salesman problem using Lagrangian Relaxation. The dual problem is solved using a subgradient method

with the step length given by the Polyak rule II. The primal problem is to find a I-tree. Here the routine mintree

is called to get a minimum spanning tree. With this method there is no guarantee that an optimal tour is found,
i.e. a zero duality gap can not be guaranteed. To ensure convergence, salesman could be used as a subroutine in
a Branch and Bound algorithm, see travelng which calls salesman.

Algorithm

See [31] and the code in salesman.m.

Examples
See ulyss16.

M-files Used

IpDef.m, mintree.m

See Also
travelng

3.5.23 TPsimplx

Purpose

Solve transportation programming problems.

TPsimplz solves problems of the form

. m o n
min - f(z) = 3 ciwi
(3
n
sft > wmiy = S i=1,2,...,m
J

inj = dj] = 1,2,...,n
T > 0

TOMLAB v1.0 User’s Guide

where z,c € R™*" s € R™ and d € R".

Calling Syntax

[X, B, optPar, y, C] = TPsimplx(s, d, C, X, B, optPar, Penalty)

Description of Inputs

SRR

optPar
Penalty

Supply vector.

Demand vector.

The cost matrix of linear objective function coefficients.
Basic Feasible Solution matrix.

Index (i,) of basis found.

Optimization parameter vector, see goptions.m.

If the problem is unbalanced with) s; < > d;, a dummy supply point

i j
is added with cost vector Penalty. If the length of Penalty < n then the
value of the first element in Penalty is used for the whole added cost vector.
Default: Computed as 10 max(Cj;).

Description of Qutputs

X Solution matrix.

B Optimal set. Index (i,) of the optimal basis found.

optPar Optimization parameter vector, see goptions.m.

y Lagrange multipliers.

c The cost matrix, changed if the problem is unbalanced.
Description

127

The routine TPsimplz is an implementation of the Transportation Simplex method described in Luenberger [42,
chap 5.4]. In OPERA TB, three routines to find a starting basic feasible solution for the transportation problem are
included; the Northwest Corner method (7'Pnw), the Minimum Cost method (TPmc) and Vogel’s approximation
method (TPuvogel). If calling TPsimple without giving a starting point then Vogel’s method is used to find a
starting basic feasible solution.

Algorithm

See Appendix B.20.

Examples

See extp_bfs, exlull9, exlul19U, extp.

M-files Used
TPuvogel.m

See Also

TPme, TPnw, TPuvogel

Warnings

No check is done whether the given starting point is feasible or not.

3.5.24 travelng

Purpose

Solve the symmetric travelling salesman problem.

Calling Syntax
[BestTour, f_BestTour] = travelng(Z, c, optPar)

Description of Inputs

Z Arcs outgoing from the nodes in increasing order.
Z(:,1) Tail. Z(:,2) Head.

c Costs related to the arcs in the matrix Z.

optPar Optimization parameter vector, see goptions.m.

Description of Qutputs

BestTour
f-Besttour

Arc list of the best tour found.
Cost (total distance) of the best tour found.

TOMLAB v1.0 User’s Guide 128

Description

The routine travelng is a main routine for the solution of the symmetric traveling salesman problem. This type of
problem could be solved by salesman but it can’t guarantee that an optimal tour is found, i.e. a zero duality gap
can not be guaranteed. To ensure convergence, travelng uses a Branch and Bound algorithm and calls salesman
as a subroutine.

Algorithm
See the code in travelng.m.

Examples
See exgrb, exulys16, exulys22.

M-files Used
salesman.m

See Also
salesman

3.5.25 urelax

Purpose
Solve integer linear problems of the form

max f(z) = clz
xT
s/t Az < b
T < Ty
z; €N Jj=12..n

where c € R", A € N™*" and b € N™.
Calling Syntax
[x-P, u, {_P] = urelax(u_max, A, b, c, r, x_U, optPar)
Description of Inputs

U_Max Upper bounds on wu.

A Constraint matrix.

b Right hand side vector.

c Cost vector.

r Constraint not to be relaxed.

.U Upper bounds on the variables.

optPar Optimization parameter vector, see goptions.m.
Description of Outputs

z_P Primal solution.

U Lagrangian multipliers.

P Function value at z_P.
Description

The routine wurelax is a simple example of the use of Lagrangian Relaxation to solve integer linear programming
problems. The problem is solved by relaxing all but one constraint and then solve a simple knapsack problem
as a subproblem in each iteration. wurelaz plots the result of each iteration. OPERA TB also contains a more
sophisticated routine, ksrelaz, for solving problems of this type.

Algorithm
See Appendix B.22.

Examples
See exip39rx.

M-files Used
dpknap.m

See Also
ksrelax

TOMLAB v1.0 User’s Guide 129

3.6 Optimization Subfunction Utilities in OPERA TB

In the following subsections the optimization subfunction utilities in OPERA TB will be described.

3.6.1 a2frstar

Purpose
Convert a node-arc incidence matrix representation of a network to the forward and reverse star data storage
representation.

Calling Syntax
[P, Z, c, T, R, u] = a2frstar(A, C, U)

Description of Inputs

A The node-arc incidence matrix. A is m x n, where m is the number of arcs
and n is the number of nodes.
c Cost for each arc, n-vector.
U Upper bounds on flow (optional).
Description of Outputs
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

c Costs related to the arcs in the matrix Z.

T Trace vector, points to Z with sorting order Head.

R Rewerse pointer vector in T for each node.

U Upper bounds on flow if U is given as input, else infinity.
Description

The routine a2frstar converts a node-arc incidence matrix representation of a network to the forward and reverse
star data storage representation as described in Ahuja et.al. [3, pages 35-36].

Examples
See exflow, exflow3d1, exgraph, pathflow.

3.6.2 gsearch

Purpose
Find all nodes in a network which is reachable from a given source node.

Calling Syntax
[pred, mark] = gsearch(s, P, Z, c)

Description of Inputs

s The starting node.

P Pointer vector to start of each node in the matrix Z.

Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

¢ Costs related to the arcs in the matrix Z.
Description of Qutputs

pred pred(j) = Predecessor of node j.

mark If mark(j) = 1 the node is reachable from node s.
Description

gsearch is searching for all nodes in a network which is reachable from the given source node s. The implementation
is a variation of the Algorithm SEARCH in [2, pages 231-233]. The algorithm uses a depth-first search which means
that it creates a path as long as possible and backs up one node to initiate a new probe when it can mark no new
nodes from the tip of the path. A stack approach is used where nodes are selected from the front and added to
the front.

Algorithm
See Appendix B.6.

TOMLAB v1.0 User’s Guide 130

Examples
See exgraph.

See Also
gsearchq

3.6.3 gsearchq

Purpose
Find all nodes in a network which is reachable from a given source node.

Calling Syntax
[pred, mark] = gsearchq(s, P, Z, ¢)

Description of Inputs

s The starting node.

P Pointer vector to start of each node in the matrix Z.

Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

c Costs related to the arcs in the matrix Z.
Description of Outputs

pred pred(j) = Predecessor of node j.

mark If mark(j) = 1 the node is reachable from node s.
Description

gsearchq is searching for all nodes in a network which is reachable from the given source node s. The implementation
is a variation of the Algorithm SEARCH in [2, pages 231-233]. The algorithm uses a breadth-first search which
means that it visits the nodes in order of increasing distance from s. The distance being the minimum number of
arcs in a directed path from s. A queue approach is used where nodes are selected from the front and added to
the rear.

Algorithm
See Appendix B.7.

Examples
See exgraph.

See Also
gsearch

3.6.4 mintree

Purpose
Find the minimum spanning tree of an undirected graph.

Calling Syntax
[Z_tree, cost] = mintree(C, Zin, Zout)

Description of Inputs
C Cost matrix of dimension n x n where C;; = C}; is the cost of arc (4, 7). If
there are no arc between node 7 and node j then set C;; = Cj; = oco. It
must hold that C;; = NaN.
Zin List of arcs which should be forced to be included in Z _tree.
Zout List of arcs which should not be allowed to be included in Z_tree (could
also be given as NaN in C).

Description of Qutputs

Z_tree List of arcs in the minimum spanning tree.
cost The total cost.
Description

mintree is an implementation of Kruskal’s algorithm for finding a minimal spanning tree of an undirected graph.
The implementation follows the algorithm description in [3, page 520-521]. It is possible to give as input, a list

TOMLAB v1.0 User’s Guide 131

of those arcs which should be forced to be included in the tree as well as a list of those arcs which should not be
allowed to be included in the tree. mintree is called by salesman.

Algorithm
See Appendix B.17.

3.6.5 TPmc

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X,B] = TPmc(s, d, C)

Description of Inputs

s Supply vector of length m.

d Demand vector of length n.

c The cost matrix of linear objective function coefficients.
Description of Qutputs

X Basic feasible solution matrix.

B Index (i, j) of the basis found.
Description

TPmec is an implementation of the Minimum Cost method for finding a basic feasible solution to the transportation
problem. The implementation of this algorithm follows the algorithm description in Winston [52, chap. 7.2].

Algorithm
See Appendix B.18.

Examples
See extp_bfs, exlull9, exlul19U, extp.

See Also
TPnw, TPvogel, TPsimplx

3.6.6 TPnw

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X, B] = TPnw(s, d)

Description of Inputs

s Supply vector of length m.

d Demand vector of length n.
Description of Outputs

X Basic feasible solution matrix.

B Index (i, j) of the basis found.
Description

TPnw is an implementation of the Northwest Corner method for finding a basic feasible solution to the trans-
portation problem. The implementation of this algorithm follows the algorithm description in Winston [52, chap.
7.2].

Algorithm
See Appendix B.19.

Examples
See extp_bfs, exlul19, exlul19U, extp.

See Also
TPme, TPvogel, TPsimplz

TOMLAB v1.0 User’s Guide 132

3.6.7 TPvogel

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X, B] = TPvogel(s, d, C, PriLev)

Description of Inputs

s Supply vector of length m.

d Demand vector of length n.

c The cost matrix of linear objective function coefficients.
PriLev If PriLev > 0, the matrix X is displayed in each iteration.

If PriLev > 1, pause in each iteration.
Default: PriLev = 0.

Description of Qutputs

X Basic feasible solution matrix.
B Index (i,) of the basis found.
Description

TPuogel is an implementation of Vogel’s method for finding a basic feasible solution to the transportation problem.
The implementation of this algorithm follows the algorithm description in Winston [52, chap. 7.2].

Algorithm
See Appendix B.21.

Examples
See extp_bfs, exlul19, exlul19U, extp.

See Also
TPmc, TPnw, TPsimplx

3.6.8 z2frstar

Purpose
Convert a table of arcs and corresponding costs in a network to the forward and reverse star data storage repre-
sentation.

Calling Syntax
[P, Z, c, T, R, u] = z2frstar(Z, C, U)

Description of Inputs

Z A table with arcs (i,7). Z is n x 2, where n is the number of arcs. The
number of nodes m is set equal to the greatest element in Z.
c Cost for each arc, n-vector.
U Upper bounds on flow (optional).
Description of Qutputs
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:,1) Tail. Z(:,2) Head.

c Costs related to the arcs in the matrix Z.

T Trace vector, points to Z with sorting order Head.

R Rewerse pointer vector in T for each node.

U Upper bounds on flow if U is given as input, else infinity.
Description

The routine z2frstar converts a table of arcs and corresponding costs in a network to the forward and reverse star
data storage representation as described in Ahuja et.al. [3, pages 35-36].

TOMLAB v1.0 User’s Guide 133

3.7 User Utility Functions in OPERA TB

In the following subsections the user utility functions in OPERA TB will be described.

3.7.1 cpTransf

Purpose
Transform general convex programs on the form

min f(z)
s/t oz, < x < ay
by < Az < by

where z,zp,xy € R*, A € R™*"™ and b, by € R™, to other forms.

Calling Syntax
[AA, bb, meq] = cpTransf(Prob, TransfType, makeEQ, LowInf)

Description of Inputs

Prob Problem description structure. The following fields are used:
QP.c Constant vector c in ¢’ x.
A Constraint matrix for linear constraints.
b_L Lower bounds on the linear constraints.
b_U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
.U Upper bounds on the variables.
TransfType Type of transformation, see the description below.
MakeE(Q Flag, if set true, make standard form (all equalities).
LowlInf Variables equal to —Inf or variables < LowInf are set to LowInf before

transforming the problem. Default —10=%. [LowInf| are limit if upper
bound variables are to be used.

Description of OQutputs

AA The expanded linear constraint matrix.
bb The expanded upper bounds for the linear constraints.
meq The first meq equations are equalities.

Description

If TransType = 1 the program is transformed into the form

mzin flx —xp)
s/t AA(x —xp)
r — Xy

bb

<
> 0

where the first meq constraints are equalities. Translate back with (fixed variables do not change their values):

x("x_L==x_U) = (x-x_L) + x_L("x_L==x_U)

If TransType = 2 the program is transformed into the form

min f(z)
s/t AA(z) < bb
x, < x < wu
where the first megq constraints are equalities.
If TransType = 3 the program is transformed into the form
min f(x)
s/t AAx < bb
T > T

where the first meq constraints are equalities.

TOMLAB v1.0 User’s Guide 134

4 Interfaces

4.1 The MEX-file Interface

TOMLAB is an open system with possibilities to interact with other program packages. An optimization solver
implemented in Fortran or C is called from TOMLAB using a MEX-file interface. MEX-file interfaces for both
Fortran and C are easy to develop for Unix machines. Interfaces to many solvers are available on Unix. On PC
machines, there has been problems to make Fortran MEX-file interfaces that work properly. We have made general
MEX-file interfaces in C and converted solvers written in Fortran to C using the Fortran to C converter f2¢ [19].
This solution is well-working and it should be easy to expand the list of available solvers to TOMLAB.

Presently, MEX-file interfaces has been developed for six general-purpose solvers available from the Systems
Optimization Laboratory, Department of Operations Research, Stanford University, Carlifornia; NPSOL 5.02 [27],
NPOPT 1.0-10 (updated version of NPSOL), NLSSOL 5.0-2, QPOPT 1.0-10, LSSOL 1.05 and LPOPT 1.0-10.
Furthermore, an interface to MINOS 5.5 [44] has been developed. MEX-file interfaces are available for both Unix
and PC systems.

4.2 The Matlab Optimization Toolbox Interface

Included in TOMLAB is an interface the a number of the solvers in the Matlab Optimization Toolbox (OPTIM)
[13]. The solvers that are possible to use are listed in Table 49, assuming the user has a valid license. The
TOMLAB optimization driver routine checks if the routine is in the path and then calls the Matlab function feval
to run it. Two low-level interface routines have been written. The constr solver needs both the objective function
and the vector of constraint functions in the same call, which nip_fc supplies. Also the gradient vector and the
matrix of constraint normals should be supplied in one call. These parameters are returned by the routine nlp_gdc.

OPTIM is using a parameter vector OPTIONS of length 18, that the routine foptions is setting up the default values
for. TOMLAB is using a similar parameter vector of larger size, optPar, with the first 18 elements reserved to have
the same interpretation as the OPTIONS vector. This makes the use of OPTIM routines trivial in TOMLAB.

Table 49: Matlab Optimization toolbox routines with a TOMLAB interface.

Function Type of problem solved

constr Constrained minimization.

leastsq Nonlinear least squares.

fmins Unconstrained minimization using Nelder-Mead type simplex search method.
fminu Unconstrained minimization using gradient search.

Ip Linear programming.

qp Quadratic programming.

nnls Nonnegative linear least squares (no license needed).

conls Constrained linear least squares.

4.3 The CUTE Interface

The Constrained and Unconstrained Testing Environment (CUTE) [11, 12] is a well-known software environment
for nonlinear programming. The distribution of CUTE includes a test problem data base of nearly 1000 optimiza-
tion problems, both academic and real-life applications. This data base is often used as a benchmark test in the
development of general optimization software.

CUTE stores the problems in the standard input format (SIF) in files with extension sif. There are tools to select
appropriate problems from the data base. Running CUTE, a SIF decoder creates up to five Fortran files; elfuns,
extern, groups, ranges, and settyp, and one ASCII data file; outsdif.dat or outsdif.d. The Fortran files are compiled
and linked together with the CUTE library and a solver routine. Running the binary executable, the problem is
solved using the current solver. During the solution procedure, the ASCII data file outsdif.dat or outsdif.d is read.

TOMLAB v1.0 User’s Guide 135

With the CUTE distribution follows a Matlab interface. There are one gateway routine, ctools.f, for constrained
CUTE problems, and one gateway routine, utools.f, for unconstrained problems. These routines are using the
Matlab MEX-file interface for communication between Matlab and the compiled Fortran (or C) code. The gateway
routine is compiled and linked together with the Fortran files, generated by the SIF decoder, and the Matlab MEX
library to make a DLL (Dynamic Link Library) file. At run-time, Matlab calls the DLL, which will read the CUTE
ASCII data file for the problem specific information. Also included in the CUTE distribution is a set of Matlab
m-files that calls the gateway routine.

For the TOMLAB CUTE interface we assume that the DLLs are already built and stored in any of four predefined
directories; cutedll for constrained problems, cutebig for large constrained problems, cuteudll for unconstrained
problems, cuteubig for large unconstrained problems. The name of the dll is the problem name used by CUTE,
e.g. rosenbr.dll for the Rosenbrock banana function. The ASCII data file also has a unique name, e.g. rosenbr.dat.
The CUTE Matlab interface assumes the DLLs to be named ctools.dll and utools.dll (and the data file to be called
outsdif.dat on PC). TOMLAB calls the Matlab files in the CUTE distribution, but to solve the name problem,
using the m-files ctools.m and wutools.m to make a call to the correct DLL file. The ASCII data file is also copied
to a temporary file, with the necessary filename outsdif.dat, before executing the DLL.

When using the TOMLAB interface, the user either gets a menu of all DLLs in the CUTE directory chosen, or
directly makes a choice of which problem to solve. Precompiled DLL files for the CUTE data set will be made
available, or the necessary files for the user to build his own DLLs. It is thus possible to run the huge set of CUTE
test problems in NLPLIB TB, using any solver callable from the toolbox.

4.4 The AMPL Interface

Using interfaces between a modeling language and TOMLAB could be of great benefit and improve the possibilities
for analysis on a given problem. As a first attempt, a TOMLAB interface to the modeling language AMPL [24]
was built. The reason to choose AMPL was that it has a rudimentary Matlab interface written in C [26] that
could easily be used.

AMPL is using ASCII files to define a problem. The naming convention is to use the problem name and vari-
ous extensions, e.g. rosenbr.mod and rosenbr.dat for the Rosenbrock banana function. These files are normally
converted to binary files with the extension nl, called nlfiles. This gives a file rosenbr.nl for our example. Then
AMPL invokes a solver with two arguments, the problem name, e.g. rosenbr, and a string -AMPL. The second
argument is a flag telling AMPL is the caller. After solving the problem, the solver creates a file with extension
sol, e.g. rosenbr.sol, containing a termination message and the solution it has found.

The current TOMLAB AMPL interface is an interface to the problems defined in the AMPL nl-format. TOMLAB
assumes the nlfiles to be stored in directory /tomlab/ampl or /tomlab/amplsp (for sparse problems). When using
the TOMLAB interface, the user either gets a menu of the nlfiles found or directly makes a choice of which
problem to solve. The initialization routine in TOMLAB for AMPL problems, amp_prob, either calls amplfunc or
spamfunc, the two MEX-file interface routines written by Gay [26]. The low level routines amp_f, amp_g , etc. calls
the same MEX-file interface routines, and dependent on the parameters in the call, the appropriate information is
returned.

Note that the design of the AMPL solver interface makes it easy to run the NLPLIB TB solvers from AMPL using
the Matlab Engine interface routines, a possible extension in the future. But indeed, any solver callable from
NLPLIB TB may now solve problems formulated in the AMPL language.

TOMLAB v1.0 User’s Guide

A Description of Algorithms in NLPLIB TB

A.1 clsSolve

Transform the problem to the following form

min f(z) = 3r7 (z)r(z)
xr
s/t alx=0b, i€FE
alz >0, iel
xp <z <y

where F is the set of linear equalities and I the set of linear inequalities.
Set k = 0, stop = 0 and the number of consequtive zero steps, ag = 0.
Set GNflag =1land Ay =1.
Set (-1 = 00, f(-1) = 00, a = 1 and @ymqes = 102°.
Set &; = max(xgo)
if pSolve then
Call the presolve analysis routine preSolve.
if any constraint was deleted in the presolve analysis routine then
Update F and I.
end if
end if
if 2(©) is not feasible (with respect to the constraints) then
Solve the QP:

0 . .
,xr,) and xg) = min(Z;, zy,), i = 1,2,...,n.

min f(%) = 337 Bi — zOTBg
xr
s/t ali=b;, i€ E
als >b;, iel
Ty, _Z xr _Z Ty

where B = diag (W

minimizes the absolute deviation.
Set 2 = 7.
end if
while not convergence do
if k=0or I =(then
if azgk) is beyond or very close to lower or upper bound, ¢ = 1,2, ...,n then

Move :L'Ek) to bound.
end if
Set up working sets for variables active on lower and upper bounds respectively.
Vi ={i: xgk) =z}, Vo ={i: xgk) =y, }
Set nr,e; equal to the number of active variables.
end if
if any variable has been moved to bound or k£ = 0 then
Compute r*), J&) = (k) and gk,
end if
if £k =0 then
Compute H*®) = J®)T g(k)
end if
if I = () then
Set the constraint working set W = E.
Compute first order Lagrange multiplier estimate A.
Ni=—giifi € Vy, \;j =g¢;if 1 € Vi, and A\; = 0 else.
if nrye: > 0 and ap < 3 then
if nryeee < n then
Release all variables z;, not activated in the previous iteration, where zr, # xy, and A; < —br,.

136

> will minimize the relative deviation between # and z(® and B = I

TOMLAB v1.0 User’s Guide 137

if « =0 then
Release all variables z;, inactive in the previous iteration, where z, # zy, and
Ai < =bpor.
end if
else
Release all variables x; where z1,, # zy, and A; < —bryy.
end if
end if
else
if £ =0 then
Set up the initial constraint working set W = EU {i:i € I Aa]z = b;}.
The number of active variables and constraints must not exceed n.
end if
if £ > 0 and the release of more than one variable in the previous iteration resulted in a zero step then
Activate the released variables.
Do not, allow more than one variable to be released in this iteration.
end if
if there are any active variable or constraint then
Compute first order Lagrange multiplier estimate A by solving the overdetermined system

T
AW(k)
e, ieV? | A=g®
—e;, i€V

where e; is the ith unit row vector.
Set Apin = min(\)
if A\pnin < —1078 then
if only one variable is allowed to be released then
if A,,sn corresponds to a constraint then
Release the constraint if it was not activated in the previous iteration.
else
Release the corresponding variable x;, if it was not activated in the previous iteration and if
rr,; 75 Ty, -
end if
else
if A,,in corresponds to a constraint then
Release the constraint if it was not activated in the previous iteration.
end if
Release all variables x;, not activated in the previous iteration, where zy, # zy, and \; < —1078,
end if
end if
end if
end if
if variables or constraints was released then
Update the corresponding working sets and nrqc;.
end if
if there has been any changes in the working sets or k£ = 0 then
Compute Z, null space basis for Ay = Ay i eWAjE VLUV
end if
if no variable or no constraint was released then
if all Lagrange multipliers corresponding to the active inequality constraints are > —10~8 and for all active
variables i there either holds that A\; > —1072 or z1, = zy, then
Check convergence criterias, see A.1.1.

end if
if any convergence criteria are fulfilled or nr,.; = n then
Set stop = 1.

end if

TOMLAB v1.0 User’s Guide 138

end if
Check stop criterias, see A.1.2.
if any stop criteria are fullfilled then
Set stop = 1.
end if
if stop then
END ALGORITHM
end if
Compute search direction p with chosen method, see A.1.3.
Set Prull; = Di if 4 ¢ Vi UV else set Dpui; = 0.
Compute aq, step length estimate sent to line search routine.
if k=0 or ||p|| =0 then

Set d] =1.
else
(k=1) _ p(k)
Set &; = min | 1, —Qmax(f ng:fO 7106”)), where g; = ¢; 19 ¢ Vo U V.

if &1 < 0 then
Change sign on &1, pry and p.
end if
end if
Set @1 = max (0.5, &y).
if ||p|]| = 0 then
Set p(k+1) = gk) pht1) — (k) g(ht1) — g(k) p (k1) — p (k) gpq g+ = J(k)
else
Compute onqy, the maximum step o such that x + apyru is feasible with respect to the variable bounds
and the nonactive inequality constraints.
if amae < 10714 then

Set a = 0.
else
Solve the line search problem min f(z + appun).
0<a<amaz
end if

if a = ayq, then
if a4, 18 restricted by a variable bound then
Activate the corresponding variable.
else
Activate the corresponding constraint.
end if
end if
if & < 1074 then
Set ag = g + 1.
else
Set Qo = 0.
end if
Set D) = (k) 4 appy.
fAD - gkt1) (k41 and J+1) was computed in the line search.
if & > 1074 then
Depending on the chosen method, update the approximation of the Hessian, see A.1.4.
end if
end if
Set k=k+1.

end while

A.1.1 Convergence criterias

(k) _ gy (k=1)

i i

B

@
® max
% max(

) < €, and qpqy > 107

,812€,

TOMLAB v1.0 User’s Guide 139

e max <|ZT§(’“)| max(max
iQVLUVU

xgk)‘ ,sizew>) < € max (abs(f(k)), sizey)

o fB) < eupspsizes

e Relative function value reduction low for Lowlts iterations.

A.1.2 Stop criterias
o k> MaxlIter

d f(k) S fLow

A.1.3 Computation of Search Direction
Gauss-Newton or hybrid method if GNyj,y =1

Solve the overdetermined system JZp = —r with rank estimation and a subspace minimization technique either
using Singular Value Decomposition or using QR-Decomposition with or without pivoting.
Ji]’ = Jij 1 ¢ Vi UVy.

Fletcher-Xu, Al-Baali-Fletcher and Huschens TSSM if GNy;,y =0

Solve ZTHZp = —Z™ § using Singular Value Decomposition with rank estimation and a subspace minimization
technique.
Hij ZHij 11,] §é Vi uVp.

A.1.4 Update Procedure

Fletcher-Xu
Set z = Qap full-
if fB) — 41D > 027k or |z|| <e, then
Set GNflag =1.
Set Hk+D) — J(k+1)TJ (k+1)
else

Set GNflag =0.
Set y = JUHDT Jlk+1) 5 4 (J<k+1>T JOT)),

if 2Ty < 0.0127 (g+1) — g(¥)) then
Set w = gkt — g(k),
else
Set w = y.
end if
if 27w <1071 or 2TH® 2 < 107! then
Set GNflag =1.
Qet Hk+1) — jk+1)T g(kt1)

else -
k+1) _ k T H® 5 THE
Set. HUUH) = HUY 4 5 — it
end i
end if

Al-Baali-Fletcher

Set z = apful-
if fO0) — fl k+1) >0.2f®% or |z|]| < e, then

Set GNflag =1.
Set HF+D) — jER+DT g(k+1)
else

Set GNgiag9 = 0.

TOMLAB v1.0 User’s Guide 140

Set y = JO+DT lkt1), 4 (J(k+1)T _ J(k)T) Fk+1)
if 27y < 0.2:TH® z then

_ _0.8:TH® 0.82TH® » (k)

else
Set w =y.

end if

if 27w < 10710 or 2TH® 2z < 10710 then
Set GNflag =1.
Set g+ — JR+DT g(k+1)

else .
k+1) _ k T H® TH®
Set HUEHD = HU) + 8 — B
end i
end if

Huschens TSSM

Set:
GNflag =0,
Z = Pfull, -
— (k1 k (k1)
Z/ﬂ—(J(Jr)_J()) ﬁr(k>||’

y = JE+DT Jlkt1) 5 4 |1 || y# and
By = JkHDT g1 ||t || 4T
if 2"B,z > 0 and yTz > 0 then

Set v =y + ;Q%Bsz.
else

Set v = y.

end if () ()T ()T
i (k) T # (k) i (k) T
(k+1) _ 4(k) Yy —Ayz vt du(yf—AY 2 y =AM) 2w
Set AH o AH + vTz - (vT s)?

Set H+D = Fk) 4 ||p0+0) | ALY,

A.2 glbSolve

Set the global/local search weight parameter e.
Set Cjy = and Lyy = 1,i=1,2,3,...,n.
Set Iy = f(x), where z; =z, + Ci1 (v, — xr1,), 1 =1,2,3,...,n.

n
Set D1 = Z L%
k=1

Set finin = F1 and iy, = 1.
fort=1,2,3,...,7 do

Set §={j: D; > Di,,, AF; =min{F;: D; = D;}}.

2
Define a and 3 by letting the line y = az’ 4+ 8 pass through the points (D

(max(Dy), i (73 D1 = ())).

Let S be the set of all rectangles j € S fullfilling Fj < aD; + 8 + 102,
Let S be the set of all rectangles in S which lies on the convex hull defined by the points (D;, F}), j € S.
while S # 0 do

Select j as the first element in S.

Set S=S5\{j}.
Let I be the set of dimensions with maximum rectangle side length, i.e. I = {z :Dy; = ml?x(ij)}.

tmin

F;,,.) and

Tmin?

Let 6 equal two-thirds of this maximum side length, i.e. § = %m,?x(ij).
for alli € I do

TOMLAB v1.0 User’s Guide 141

Set ¢, = Cy;, k=1,2,3,...,n.
Set ¢ = ¢ + de; and ¢ = ¢ — de;, where e; is the ith unit vector.
Compute f = f(&) and f = f(&) where &y = 21, + ¢ (2, —2r,) and T = o1, + & (T, — 2r,)-
Set w; = min(f, -
SetC=(C ¢ ¢)andF=(F f f).

end for

while I # () do
Select the dimension ¢ € I with the lowest value of w; and set I =T\ {i}.
Set Lij = %6
Let 7 and j be the indices that corresponds to the points ¢ and ¢ above.
Set Lk}' = Lj; and ij =Ly, k=1,2,3,..,n.

n
k=1

Set Dj = Dj and D} = Dj.
end while
end while
Set frmin = min(Fj).
J

Set imin = argmin(%), where E = max (€| fnin], 1078).

end for

A.2.1 conhull

The points (z;,y;), 1 = 1,2,3,...,m are given with z1 < zo < ... < zpp,.
Set h=(1,2,...,m).
if m > 3 then
Set START =1,v=START, w =m and flag = 0.
while next(v) # START or flag=0 do
if next(v) = w then

Set flag = 0.
end if
Set a = v, b = next(v) and ¢ = next(next(v)).
Ta Yo 1
Set A= Ty Yy 1
Te Ye 1

if det(A) > 0 then
Set leftturn = 0.
else
Set leftturn = 1.
end if
if leftturn then
Set v = next(v).
else
Set j = next(v).
Set x = (1171,1172, vy Lj—1, Tj+1, ...,.'I?m), Y= (y13y27 o Yi—1,Y5+1, 7ym) and
h=(hi,has s hj1, hjyas s hin).
Set m=m—1,w=w—1and v = pred(v).
end if
end while

end if

A.2.2 next

if v = m then
Set i =1.
else

TOMLAB v1.0 User’s Guide

Set i = v+ 1.
end if
A.2.3 pred
if v =1 then
Set i = m.
else
Seti=v—1.
end if

A.3 intpol2

Transform go to [0, 1] by setting go = go (x1 — o).

Set ¢ = f1 — fo — Go-

if ¢ =0 then
Set @ = min (a, b).
else

— go
Set Zmin — 9

if ¢ (zimin) < q(a) and zpin € [4, B] then
if ¢ (zmm) < Q(b) then
Set a = g + Zmin (1 — o).

else
Set o = b.
end if

else if ¢ (@) < q(b) then

Set a = a.
else
Set a = b.
end if
end if

A.4 intpol3

Transform go and g; to [0, 1] by setting go = go (1 — x0) and §1 = g1 (1 — o).
Set r = 3 (f1 — fo) — 2go — G1-
Set s =go + g1 — 2(f1 — fo)-

if |s| < 1072 |r| then

Call quadratic ineterpolation routine intpol2.

else

Transform a and b to [0, 1] by setting a =
Define ¢(z) = fo + goz + rz% + s2°.

—r—4/1r2—3s§o

—r44/r2—3s§o

Set 21 = o

if 2, € [a,b] then
if 2, € [a,b] then

if ¢(z1) < ¢(z2) then

Set Zmin — %1
else
Set zmin = 22.
end if
end if

else

Transform a and b to [0, 1] by setting a = ;=% and b=

Define ¢ (z) = fo + goz + cz°.

and b = =20

and z9 =
if 2, € [a,b] or z € [a, b] then

142

TOMLAB v1.0 User’s Guide

Set zmin = 2.
end if
if c(zmin) < c¢(a) then
if ¢(2min) < ¢(b) then
Set a = o + Zmin(T1

else
Set a = b.
end if
else if ¢(a) < ¢(b) then
Set a = a.
else
Set a = b.
end if
else
if ¢(a) < ¢(b) then
Set a = a.
else
Set a =10
end if
end if
end if

A.5 LineSearch

A.5.1 Bracketing Phase

Set a® = 0.

if f'(0) =0 then
Set © = amaq-

else

fLow_f(O)

Set p = min (amw, 27T0)
end if
if p <0 then
Set u = amag-
end if
Set oV = min (1, y, o).
if oY <1074 then
Set oY) = 0.
Terminate Line Search.
end if
for k=1,2,3,... do
if f (a(k)) < frLow then
Terminate Line Search.
end if

—.To).

).

if £ (a®) > f(a® V) or f(a®) > f(0) +a®pf(0) then
if f(a®) = f(a*~Y) and ||p|| < 107® then

Terminate Line Search.
end if

Set a®) = o*=1) and p*) = o),

Set k = k.
Go to Sectioning Phase.
end if

if |f’ (a(k))| < —of'(0) then

Set a®) = 0.
Terminate Line Search.
end if

143

TOMLAB v1.0 User’s Guide 144

if f' (a®) >0 then
Set a®) = a®) and bk = (k=1),

Set k = k.
Go to Sectioning Phase.
end if
if u < 2a® — aqk=1) then
Set k1) = 4.
else

Choose a**1) € [2a®) — a®)=D min (g, a® + 71 (a® — aH=))] using quadratic or cubic interpola-
tion. See 2.12.1 and 2.12.2 respectively.

end if
if £ > 30 then
Set a(®) = 0.
Terminate Line Search.
end if
end for

A.5.2 Sectioning Phase
for k=Fkk+1,..do
if |a(k) — b(k)| < €1 then
i £ (M) < £ (60) or £ (a®) = £ (3®) Aa® > b} then
Set a®) = q(k),

else
Set ak) = pk),
end if
Terminate Line Search.
end if

Choose a®) € [a®) + 15 (b®) — a®)) p*) — 75 (bF) — a(M)] using quadratic or cubic interpolation. See
2.12.1 and 2.12.2 respectively.
if (a(k) — a(k)) I (a(k)) < €z then
Set ab) = q(k),
Terminate Line Search.
end if
if f(a®) > £(0) + pa® f'(0) or f (a'®) > f(a®) then
Set ak*t1) = ¥) and b+ = o(k),
else
if |f' (a®)| < —of'(0) then
Terminate Line Search.
end if
Set alkt1) = (k)
if (6% —a®) f' (a®) >0 then
Set bkt = (k)
else
Set (1) = pk),
end if
end if
end for

A.6 1sSolve

Set k = 0, stop = 0 and the number of consequtive zero steps, ag = 0.
Set GNyqg =1 and Ag = 1.

Set (-1 = 00, f(-1) = 00 and a = 1.

Set &; = max(mgo),mLi) and mgo) = min(&;, zy,), i = 1,2, ...,n.

while not convergence do

TOMLAB v1.0 User’s Guide 145

if xgk) is beyond or very close to lower or upper bound, ¢ = 1,2,...,n then

Move xgk) to bound.
end if
Set up working sets for variables active on lower and upper bounds respectively.
Vi = {’L : xgk) = :L'Ll.}, Vv = {Z : xgk) = in}
Set nrye; equal to the number of active variables.
if any variable has been moved to bound or k£ = 0 then
Compute r*) J&) (k) and gk,
end if
if £k =0 then
Compute H® = jB)" jk)
end 1
Compute first order Lagrange multiplier estimate A.
N=—giifieVy, \;=g;if i € Vi, and A\; = 0 else.
if nree; > 0 and ap < 3 then
if nr,. < n then
Release all variables z;, not activated in the previous iteration, where zy, # zy, and \; < —bypyy.
if a = 0 then
Release all variables z;, inactive in the previous iteration, where z1, # zy, and
Ai < —bror.
end if
else
Release all variables z; where zp, # zy, and \; < —bp,;.
end if
end if
if variables was released then
Update Vi, Viy and nrae.
else
if for all active variables i there either holds that \; > —1078 or 21, = zy, then
Check convergence criterias, see A.6.1.

end if
if any convergence criteria are fulfilled or nr,.; = n then
Set stop = 1.
end if
end if

Check stop criterias, see A.6.2.
if any stop criteria are fullfilled then
Set, stop = 1.
end if
if stop then
END ALGORITHM
end if
if a = 0 and variables was released in the current iteration based on first order Lagrange multiplier estimate
then
Search in the negative gradient direction for the released variables.
Set pruu; = —gi if variable ¢ was released, else set pryu;, = 0.
else
Compute search direction p with chosen method, see A.6.3.
Set prun; = pi if i ¢ Vi U Vy else set pruy; = 0.
end if
Compute aq, step length estimate sent to line search routine.
if £ =0 then
Set 641 =1.
else - .
Set &; = min <17 _2max(f(gT)p_:J;(,106;.;)

),Wheregi:gi:i¢VLUVU.

TOMLAB v1.0 User’s Guide 146

if @ < 0 then
Change sign on &1, pgy and p.
end if
end if
Set @1 = max (0.5, ay).
Compute aynqz, the maximum step a such that x + apy.u is feasible with respect to the variable bounds.
if oz < 107 then

Set a = 0.
else
Solve the line search problem min f(z 4+ appuu)-
0<a<amaz
end if

if @ < 1074 then
Set ag = ag + 1.
else
Set ag = 0.
end if
Set 2* 1) = 2(8) 4 ap .
FOEHD gD B+ and J*+D was computed in the line search.
Depending on the chosen method, update the approximation of the Hessian, see A.6.4.
Set k=k+1.
end while

A.6.1 Convergence criterias

[] max (
l¢ ViUV

gz(k) ‘ max (

] size)) < egma (|50 e

i
o fB) < eupspsizes

e Relative function value reduction low for Lowlts iterations.

A.6.2 Stop criterias
o k> MaxlIter

d f(k) < fLow

A.6.3 Computation of Search Direction
Gauss-Newton or hybrid method if GNyjqy =1

Solve the overdetermined system Jp = —r with rank estimation and a subspace minimization technique either
using Singular Value Decomposition or using QR-Decomposition with or without pivoting.
Ji]’ = Jij 1 ¢ Vi UVy.

Fletcher-Xu, Al-Baali-Fletcher and Huschens TSSM if GNy;, =0

Solve Hp = —§ using Singular Value Decomposition with rank estimation and a subspace minimization tech-
nique.
Hij ZHij 11,7 §é Vi UVy.

A.6.4 Update Procedure

Fletcher-Xu
Set z = Qap full-

TOMLAB v1.0 User’s Guide

if f0) — 4D > 0.2f*) or ||z|| < €, then
Set GNyjpg = 1.
Set Hk+D — JE+DT g(k+1)

else

Set GNflag =0.
Set y = JRADT Jlht1), | (J(k+1)T J(k)T) (k+1)

if 27y < 0.01z7 (g*+1) — g(®)) then
Set w = gkt — g(k),

else
Set w =y.

end if

if 2Tw <1073 or 2TH® 2z < 10713 then
Set GNflag =1.
Set g+ — JE+DT g(k+1)

else .
k+1) — z7(k ww? _ H® 2 TH®
Sift-fH(F=H® + 2w 2TH®) 2
end i
end if

Al-Baali-Fletcher

Set z = Qap full-
if fB) —) > 0.2f®) or |z|| <e, then
Set GNyq9 = 1.
Set Hk+D) — JE+DT g(k+1)
else
Set GNflag =0.
Set y = JHADT Jlkt1) 4 (J(k+1)T J(k)T) (k+1)

if 27y < 0.2:TH® z then

Set w = 0827 H®M v+ (1 _0.8:THWM,)H(k)z_

2THK) z— 2Ty 2TH®) z— 2Ty
else
Set w =y.
end if
if 27w < 1071% or 2TH® 7 < 10710 then
Set GNflag =1.
Set H(k+1) — k+1 J(k+1)

else i
T (k) . T gy(k)
Set) = HO 42— Moo

end i

end if

Huschens TSSM

Set:

GNfla!] = 03

Z = Pfull, .
_ k1 k (k+1)

yﬂ - (J(- J()) ﬁr(k)||7

y = JEFDT JUHD o ||k +D)|| 4o and
By = Jk+DT jlkt1) ||t || A%
if 2"B,z >0 and y’z > 0 then
Set v =y + zTBszBSz'
else
Set v = y.
end if

147

TOMLAB v1.0 User’s Guide 148

§_ AR), T g4 T f_ A N T
(k+1) _ 4 (k) <y —Ay z)v +v<y —Ay z) (y —Ay z> Zvv
Set AH = AH + T2 - (UTS)2

Set H*+1) = gk 4 ||rk+1) | Agﬂ)-

A.7 ucSolve

Set k = 0, stop = 0 and the number of consequtive zero steps, ag = 0.
Set B =0, cgstep = 1 and cgrestart = 1 if restart teqnique shall be used else set cgrestart = 0.
Set (-0 =00, fD =00, B® =T and a = 1.
Set &; = max(xgo),xLi) and x§°) = min(Z;, zy,), 1 = 1,2, ...,n.
while not convergence do
if mgk) is beyond or very close to lower or upper bound, ¢ = 1,2, ...,n then

Move mgk) to bound.
end if
Set up working sets for variables active on lower and upper bounds respectively.
Vi ={i: :ng) =z}, Vu={i: :ng) =2y, }
Set nrqe; equal to the number of active variables.
if any variable has been moved to bound or k£ = 0 then

Compute f*) and g(*).
end if
Compute H®)
if nree; > 0 and ap < 3 then

Compute first order Lagrange multiplier estimate A.

Ni=—giifi € Vy, \;j =g¢;if 1 € Vi, and A\; = 0 else.

if nr,. < n then

Release all variables z;, not activated in the previous iteration, where zr,, # zy, and A; < —brg.

if a =0 then
Release all variables z;, inactive in the previous iteration, where z1, # zy, and
i < =bpo.
end if
else
Release all variables z; where zp, # zy, and A\; < —brg.
end if
end if

if variables was released then
Update Vi, Viy and nrqe.
else

Check convergence criterias, see A.7.1.

if any convergence criteria are fulfilled then
Set stop = 1.

end if

if stop and nr,. € (0,n) and ap < 3 then
Compute the search direction, p, for the free variables by solving Hp = —3,
where H;; = Hij :i,5 ¢ Vi UVy and §; = g; 24 ¢ Vi U V.
Compute tpqz, the maximum step a such that 4+ apyy is feasible with respect to the variable bounds,
where pryu; = p; if i ¢ Vi, UV else prgu, = 0.
Compute second order Lagrange multiplier estimate, 7, for the active variables.
n=2A 't Hoamaep, .
where A=A :i eV UVyand H=H;; :i € VpUVy,j ¢ Vi U V.
if n, < —bry and 2z, # xy, then

Release the corresponding variable x;, set stop = 0 and update Vi, Viy and nrge.

end if

end if

if stop and nr,.; < n then
Check if z is a saddle or a minimum point.
Compute the eigenvalues of H and let ¢ be the smallest eigenvalue.

TOMLAB v1.0 User’s Guide 149

if £ < —107'2 and no eigenvector search direction was used in previous iteration then
Set stop = 0 and set p equal to the eigenvector corresponding to &.
Check if p is a descent direction i.e. if §7p < 0.
If p is not a descent direction change sign on p.
end if
end if
end if
Check stop criterias, see A.7.2.
if any stop criteria are fullfilled then
Set stop = 1.
end if
if stop then
END ALGORITHM
end if
if a = 0 and variables was released in the current iteration based on first order Lagrange multiplier estimate
then
Search in the negative gradient direction for the released variables.
Set pruu; = —gi if variable ¢ was released, else set pf,u, = 0.
else
repeat
Compute search direction p with chosen method if not computed before in this iteration, see A.7.3.
if nr,e; > 0 then
Compute second order Lagrange multiplier estimate 1.
if n; < —bro and zp,, # zy, then
Release the corresponding variable z; and update Vi, Vi and nrae.
end if
end if
until no variable is released.
Set prun; = pi if i ¢ Vi U Vy else set pruy; = 0.
end if
Compute aq, step length estimate sent to line search routine.
if k> 0and §7p #0 then

max(f(k_l) —f(k)JOEw)
§Tp=0)

Set &; = min <1, -2

else
Set d] =1.

end if

Set @1 = max (0.5, ay).

if p is a descent direction then
Compute qpmqq
if Qmar < 107 then

Set a = 0.
else
Solve the line search problem min f(2 + apfuu)-
0<a<aman
end if
else

Compute the eigenvalues and their corresponding eigenvectors of H.
Let P be the set of search directions containing all eigenvectors corresponding to negative eigenvalues, and
the negative search direction —p.
for all p € P and in order of most descent do

Set Prull; = Di if 4 ¢ Vi UV else set Dpui; = 0.

Compute apaz.

if aynee > 1077 then

Set o = 1.

Solve the line search problem o min f(z+ apru).
<a<aman

else

TOMLAB v1.0 User’s Guide 150

Set a = 0.
end if
if a > 1076 then
Accept the search direction py,y and the step length o.
break for
end if
end for
end if
if @ < 1074 then
Set ag = ag + 1.
else
Set ag = 0.
end if
Set 21D = () 4 appy.
F*+D and ¢g*+1 was computed in the line search.
Depending on the chosen method, update the approximation of the Hessian, the approximation of the inverse
Hessian or 3, see A.7.4.
Set k =k + 1.

end while

A.7.1 Convergence criterias

wgk)_xgk—l)
e max
(3 max(

< €

(k X >~
‘oci) ,stzey

i

¢ it (e
. gz max
l¢ ViUV

70| size)) < egmax (|£9)], sizey)

e Relative function value reduction low for Lowlts iterations.

A.7.2 Stop criterias

e k> MaxlIter

b f(k) S fLow

A.7.3 Computation of Search Direction

Newton

Solve Hp = —§ either using Singular Value Decomposition with rank estimation and a subspace minimization
technique or using LU-Decomposition with or without pivoting.

Safeguarded quasi-Newton DFP or BFGS

Solve Bp = —§ either using Singular Value Decomposition with rank estimation and a subspace minimization
technique or using LU-Decomposition with or without pivoting.

Safeguarded quasi-Newton inverse DFP or BFGS
Set p = —Bj.

Fletcher-Reeves, Polak-Ribiere and Fletcher conjugate descent CG

if CGrestart and CGstep =N + 1 then
Set cgstep = 1 and B = 0.

end if
if k=0 then
Set p = —g.

else

TOMLAB v1.0 User’s Guide

Set p = —g + Op.
end if
Set CGstep = CGstep + 1.

A.7.4 Update Procedure

Safeguarded quasi-Newton BFGS
Set z = ap.
if ||z|| > €, then
Set y = gkt — k),
if 27y < 0.2-27Bz then
Set w = 0.827 Bz Y+ (1 0827 Bz)BZ

) 2TBz—2Ty 2TBz—2Ty
else

Set w = y.
end if
if 27w = 0 then

if 2Bz # 0 then

Set B+1) = B(k) B%f—;’;.

end if -
else if z7Bz = 0 then

Set B+ — Bk 4 up”

else 3)) o
?ft'fB(k-H) — Bk) wp” _ BzzTZBZB
end i
end if

Safeguarded quasi-Newton inverse BFGS
Set z = ap.
if ||z|| > €, then
Set y = gkt — gk,
if 27y # 0 then

" T R B, T
SetB(kH):B() (]_+?J By)%_%‘
end if
end if

Safeguarded quasi-Newton inverse DFP
Set z = ap.
if ||z|| > €, then
Set y — g(k+1) — g()
if 27y <0.2- yTBy then
Set w = 8y By (1_M)By‘

yTBy—=2Ty yTBy—=2Ty
else
Set w = z.
end if

if 27w = 0 then
if y" By # 0 then o
Set BUHD = B — Bl
yT By
end if
else if y" By = 0 then
Set B+ = B0 4 wu-

else } . L
Set B+ = B0 4 wier — By
end if

end if

151

TOMLAB v1.0 User’s Guide

Safeguarded quasi-Newton DFP
Set z = ap.
if ||z|| > €, then
Set y = g(k+1) — g(k).
if 2Ty # 0 then
® ad TR T
Set BT = B0+ (14 252) 45
end if

end if

Fletcher-Reeves CG
kDT Z(k+1)

_ 3 g
Set f = " orim

Polak-Ribiere CG

(~(k+1>T _g(k)T) s(k+1)
Set 8 =

9 9

0T 5

Fletcher conjugate descent CG

se+DT s (k1)
_ _§ g
Set 8 = ST,

_ szB—i-BzyT

152

TOMLAB v1.0 User’s Guide 153
B Description of Algorithms in OPERA TB
B.1 akarmark
if 2.0 is not given or £_0; =0 for any j = 1,2,...,n then
Set z(0 = (L . 1)
if b— Az(® £0 then
Set A=(A b—Az©®), 20 =(20" 1) ande=(c" 2 |al)T
j=1
Set n=n+1
end i
else
Set 2(9) = z_0.
end if
Compute L = [1+ > > log,(1 + |ai;|)]-
(]
Set tol = 272L,
— n—1 _ 1
Compute o = %= and r = WoTrEnt
Set ¢ = 0.97 and p = min(107'2, L),
for k=0,1,.... ke — 1 do
Set D = diag{z*),..,2{¥}, ¢ = D¢, and A = AD.
Compute dual estimate y*) by solving Ay = & — (i, ...,). R
Compute reduced cost vector R = ¢— (;(%, ceny zf‘k))T — ATy, projected gradient vector g, = é— (g, ..., ;)T — ATy

and search direction d = —Dygy,,.

if R > —1071° and it either holds that ¢”z(®) —pTy*) < tol or that the function value redution is less than

10~ then

Let W be a index set of the variables active on their lower bounds, i.e.

W= {j Ll < 10—12}.

Set r equal to the rank of A plus the number of elements in W.

while r < n do
Let Z be a basis for the null space of the matrix (eiféw), where e; is the ¢:th unit row vector.
Letd;=Zp ifti ¢ Wandd;, =0ifieW.
if ¢Td > 0 then

Set d = —d.
end if
. —z®
Set « = min h
igW,d;<0 i

if {i:i¢W,d; <0} =0 then
STOP, purification failed.
end if
Set k1) = z(F) 4 ad.
Update W and set r equal to the rank of B plus the number of elements in W.
end while
STOP, purification succeeded.
end if
Set A" = max

max Py

i a
s (1—9)?
Set o = min (A%‘{;m , T)
Set -+ = x(0) 4 ad.
end for

dj
k)

B.2 cutplane

Set m; = m — meq.
if m; > 0 then

TOMLAB v1.0 User’s Guide

Add m; slack variables to create a problem on standard form.
Update A, ¢ and n.
end if
Set €1 = 10712,
if B_0 is not given then
Call Phase I simplex routine PhaselSimplex to get the solution x and B.
if no feasible Phase I solution were found then
STOP.
end if
end if
Set B4, = {i: B; = 1}, the set of basic variables.
Set N;q4r = {i : B; = 0}, the set of nonbasic variables.
if £ 0 is not given then
Set Tj = 0,] ¢ Bidw-
Solve Agpxp = b, where Ap = Aij, j € Big, and xp = Tj, J € Bigs.
else
Set z = z_0.
end if
Call Phase II simplex routine Phase2Simplex to get the solution z, B and y.
for k=0,1,...;knae do
Update B;g4, and N;g;.
Set Tigz = xj,] <nrAj € Bidg-
Set x1; = [Zide, + €1].
Set x,; = max(0, Tigz; — *1;)-
Determine the variable with its fractional part closest to 0.5 i.e. set ¢ = argmin(|z,, — 0.5]).
if i =0 or z,, < ¢ then
STOP, convergence.
end if
Set ey = A,}}AN, where A,}il is the i:th row in Ag,l and Ay = A;j, j € Nige.
Set a; = 0 if j € Njq, else set a; = max(0,cn; — |en; +€1]).

A Om><1
SetA:(a 4),b:(bT 2z, VT, e=(c" 0) andz= (2" -—=,)T

Set B=(B 1),n=n+land m=m+1.
Call dual simplex routine Ipdual to get the solution x, B and y.
if the dual simplex routine failed then
Use Phase I and Phase II simplex routines.
end if

end for

B.3 dijkstra

Set n equal to the number of nodes.
Set B = {s} and T'= N\{s}, where N is the set of all nodes.
Set dist(s) = 0 and pred(s) = 0.
for j =1,2,...,n do
if (s,j) € Z then
Set dist(j) = c¢s;, where ¢;; means the cost of arc (4, j).
Set pred(j) = s.
else
Set dist(j) = oo.
end if
end for
while B # N do
Let i € T be a node for which dist(i) = min{dist(j) : j € T'}.
Set B=BU {i} and T = T\{i}.
for each j : (i,7) € Z do

154

TOMLAB v1.0 User’s Guide 155

if dist(j) > dist(i) + ¢;; then
Set dist(j) = dist(i) + cij.
Set pred(j) = i.
end if
end for
end while

B.4 dpinvent
Set zrow = minzy; and rypp = maxry;.
J g
Set s=14+zypp — Trow-
Set Ui]’ = 0, 1= 1,2,..,8,] = 1,2,...,7’L.
Set fi =00 and fp, = 00,1 =1,2,...,s.
Set fP1+zS—mLOW =0.
fort=1,2,...,n do
Set ujoy = ur, and uypp = Uy, .

if t =n then

Set Tio0 = Lyupp = TLAST-
else

Set Ti0 = xp, and Ty = Ty, -
end if

for i = Tiow, Tiow + 1, ..., Typp do
Set Umin = 0 and fiin = 00.
for j = Wow, Wiow + 1, ..., Uypp doO
Seta::i—j—l—dt.
if zow <z < zypp then
Set fu=Ps(j>0)+Pj+1s(i>0)+Li+ fr. . .-
if fu < finin then
Set umin = j and fmin = fu.
end if
end if
end for
Set fl-l—i—zLow = fmin and Utvi—zpow.,t = Umin-
end for
Set fp = f.
end for
Set £ = xpasT.
fort=n,n—-1,...,1do
Set Ut = U1+Cv—wLow,t'
Set t = o — up +d;.
end for
Set foopt = fitapasr—zrow -

B.5 dpknap

if v U is not given then
Set uy, = LALJ,J, =12, .., n.
else
Set uy =uU.
end if
Set Ui]’ =0,i1=1,2,.,b+1,5=1,2,....,n.
Set fi=0and fp, =0,i=1,2,...,0+ 1.
fori=1,2,...,n do
for k=1,2,...,b+1do
Set Upmar =0 and frae = fp,-
for j =1,2,...,min(uy,, LALJ) do

TOMLAB v1.0 User’s Guide 156

Set x = (k—1) — A;j.
if x <0 then
break for
else
if ¢;5 + fPH_m > fmaz then
Set Upmar = J and frmae = ¢iJ + fP1+m-
end if
end if
end for
Set fr = fmaz and Uki = Umaa-
end for
Set fp = f.
end for
Set x =b+ 1.
for k=n,n—-1,...,1do
Set up, = Uyy.
Set x =2 — AkUzk.
end for
Set f-opt = fyt1.

B.6 gsearch

Set pred(i) = 0 and mark(i) = 0,3 =1,2,...,m.
Set pred(s) = —1 and mark(s) = 1.
Set LIST = {s}.
while LIST # () do
Set i equal to the first element in LIST.
if there is an arc from node ¢ to node j and mark(j) = 0 then
Set mark(j) = 1 and pred(j) = i.
Put j first in LIST.
else
Delete the first element in LIST.
end if

end while

B.7 gsearchq

Set pred(i) = 0 and mark(i) =0,i=1,2,...,m.
Set pred(s) = —1 and mark(s) = 1.
Set LIST = {s}.
while LIST # () do
Set i equal to the first element in LIST.
Delete the first element in LIST.
for all arcs (i, j) outgoing from node i do
if mark(j) = 0 then
Set mark(j) = 1 and pred(j) = i.
Put j at the end of LIST.
end if
end for
end while

B.8 karmark
Compute L = [1 +log,y(1 + max |¢;]) logs (1 +m) + > > logy (1 + |asj])]-
J i

Set tol = max(27%,1079).

TOMLAB v1.0 User’s Guide 157

Compute o = %=L and r = m
Set 2(0) = (L., 0T,
Set k= 0.
while ¢T'z(®) > tol and k: < kmaz do
Set D = dlatg{.a:1 . } 2@ =(%,.,1),¢=Dcand B = (’;‘f)
Compute d = (B*(BB*)"'B —1I)é.
if Goldfarb/Todd choice of update then
Set a = 0.99.
Compute & = #©) + a—L ”d”
else if Bazaraa choice of update then
Compute z = 2(© + arﬁ.
end if
Set z(k+1) = L2
Set k=k+1.
end while
Let W be a index set of the variables active on their lower bounds, i.e. W = { g x;k) < 10_12}.

Set B = (IT) and set r equal to the rank of B plus the number of elements in W.

while r < n do
Let Z be a basis for the null space of the matrix (eifew), where e; is the 4:th unit row vector.
Let d; = Z; 1fz¢Wanddz=01fz€W
if ¢’d > 0 then

Set d = —d.
end if
. —z®
Set « = min 7
igW,d; <0

Set k1) = (k) 4 ad.
Update W and set r equal to the rank of B plus the number of elements in W.
end while

B.9 ksrelax

Set z; =0,7=1,2,...,nand u; =0,¢=1,2,...,m— 1.
Set A,j =A,;,j=1,2,...,n and b= b,.
Set Al’j = Aij and Bi =b;, 1 € {1,2, ,m} - {’I“}, 1=12..n
Set A=2, fail =0, fp =0, fp_,, =00 and zp = z.
for k =1,2,..., ke do
if ¢’z < —co then
STOP, convergence.
end if
Set ¢ = ATu.
Call the knapsack problem solver dpknap with the parameters A b, ¢ and zy to get the solution x and fp.
Set fp = fp + ulb and compute the subgradient § = b — Az.
if >0,i=1,2,...m—1and ¢’z > fp then
Set fp = ch and Tp = T.
Set fail =0 and A = 2.

end if
if fp < fp,,, then
Set fail = 0.
else
Set fail = fail + 1.
end if
Set fp,, = .

if fail > 0 then
Set A =i\ and fail = 0.
end if

TOMLAB v1.0 User’s Guide 158

Set ssg = dtg+ (l; - z‘ix)Q
if a <0or sgg <107 then
STOP, convergence.
end if
Set a = & and u; = max(0,u; — ag;), i = 1,2,...,m — 1.
end for

.10 labelcor

Set dist(j) = oo for each j € N\{s}, where N is the set of all nodes.
Set dist(s) = 0 and pred(s) = 0.
repeat
for all arcs (i,7) € Z do
if dist(j) > dist(i) + ¢;; then
Set dZSt(]) = dZSt(’L) + Cij-
Set pred(j) = i.
end if
end for
until no changes in dist are made

B.11 Ipdual

Set m; = m — meq.
if m; > 0 then
Add m; slack variables to create a problem on standard form.
Update A, ¢ and n.
end if
if B_0 is given then
Set B = {i: B.0; = 1}, the set of basic variables.
Set N(© = {i: B_0; = 0}, the set of nonbasic variables.
else
Set BO ={n-m+1,n-—m+2,...n}
Set N ={1,2,...n —m}.

end if

if £ 0 is given then
Set z = z_0.

else

Set x; =0:j € N.
Solve Agpxp = b, where Ap = A;;:j€ Bandep =z :j € B.

end if
if y_0 is given then
Set y = y_0.
else
Compute initial shadow prices y by solving Apy = cp, where cg =¢; : j € B.
end if

Compute initial reduced costs ¢y = ¢y — Aﬁy, where Ay =A;j:j€Nandey =c¢j:j EN.
if ¢y, <0 for any i =1,2,...,n —m then
if ¢y, < —10713 for any i = 1,2,....,n — m then
STOP, initial shadow prices y is not dual feasible.
else
Set ¢y, = 0 for all i such that —107** < én, < 0.
end if
end if
for k =1,2,..., ke do
Compute the objective function value f =bTy,
if x; > —101%for alli = 1,2, ...,n then

TOMLAB v1.0 User’s Guide 159

if x; <0 for any ¢ =1,2,...,n then
Set x; = 0 for all ¢ such that x; < 0.

end if

STOP, convergence.
end if
Choose the variable z,, to exclude from the basis either using Blands rule or Minimal Reduced Cost rule.
Solve ALu = e;, where B; = p.
Compute v = AL u.
ifv; >0forall j=1,2,....,n —m then

STOP, infeasible dual problem.
end if
Determine nonbasic variable x, to enter the base. Choose

—¢én, —én;
Ne _ min{ i 1wy < -1071%j=1,2,..,n — m} def ,
Vg Vj
where ¢ = Nj.
if v =0 then
Choose
—én, —énN;
Na _ min{ N <0,5 = 1,2,...,n—m} def
Vg vj

end if

if v =10 or v > 10° then
STOP, numerical difficulties.

end if
Set ¢y =¢n +yv,¢p =7, ¢, =0and y =y — yu.
Compute primal search direction d by solving Apd = —a,, where a, is the g:th column in A.

Set zy =a =3, xp =2 +ad and z, = 0.

Set B = BU {q}\{p} and N = N U {p}\{q}.
if a > 10° then
Numerical difficuties, recompute z by setting xny = 0 and solving Agzp = b.
end if
end for

B.12 Ipkarma
Set k=m+n+2andl=2(m+n)+2.

n m
Set M =312 |ejl + 3. bil +2max (lejl, [bil) |-
j=1 i=1 ’

CT —bT 01><k
R A Qmxm [mxm Omxn-l-l —b
Set B = onxn AT Qrxm —Jnxn nx1 —c
1ixi-1 -M

l
Set v; = > B, 1=1,2,..,k.
j=1

Set B=(B —v)andd=(0" 1)

Call karmark with constraint matrix B and cost vector d to get the solution Z.
Set ¢ = (M +1)z;,j=1,2...,n.

Sety=M+1z;,j=n+1,...,n+m.

TOMLAB v1.0 User’s Guide 160

B.13 lpsimpl
Solve the LP problem

min f(z) = él'x
s/t Az = b
z > 0

with A= (A Imm) g=(0n 1mea om=mea)T z0= (0" b7)" and
BoO=(0" 1m)".
if f(Z) < 1070 then
if there are no artificial variable left in the base then
Set = and B equal to those entries in # and B corresponding to the non artificial variables.
end if
else
No feasible solution exist.
Set 2 and B equal to those entries in # and B corresponding to the non artificial variables.
end i

B.14 lpsimp2

Set m; = m — meq.
if m; > 0 then
Add m; slack variables to create a problem on standard form.
Update A, ¢ and n.
if 0 is given then
Extend x_0 with zeros for the added slack variables.
end if
end if
if neither B_0 nor x.0 is given then
Set BO ={n—-—m+1,n—m+2,...,n}
Set N ={1,2,...,n —m}.
else if B_0 is given then
Set B© = {i: B.0; = 1}, the set of basic variables.
Set N(© = {i: B_0; = 0}, the set of nonbasic variables.

end if
if 2.0 is given then
Set x = z_0.

Set B = {i:z; >0}.
Set N© = {i:z; <0}.
if the number of elements in B(® is less than m then
Add to B index elements i corresponding to z; = 0 to have B9 contain m elements.
Delete the same elements i from N(©).
end if
else
Set z; =0:j € N.
Solve Apxp = b, where Ap = A;;: j€ Bandap =z :j € B.
end if
for k =1,2,..., ke do
Compute the objective function value f = chap, where cg =¢; : j € B.
Compute shadow prices y by solving ALy = cp.
Compute reduced costs ¢y = ey — A%y, where Ay =A;5:j € Nandey =c¢j:j €N.
if éN Z —€f then
STOP, z is optimal.
end if
Choose the variable z, to include in the new basis either using Bland’s anti-cycling rule or the Minimal
Reduced Cost rule.

TOMLAB v1.0 User’s Guide

Compute the search direction d by solving Agd = —a,, where a, is the g:th column in A.
Set P = {i:d; <0}.
if P =() then

The problem is unbounded, STOP.
else

—3 . —xB,

Set the step length a = df;’ = win (d—f)

Variable z,, is to be excluded from the basis.
end i

Set g = xp + ad.
Set z, = 0 and z, = «.
Set B+ = BW U {g}\{p} and NF+1) = N® U {p}\{qg}.

en or

B.15 maxflow

Set m equal to the number of nodes.
Set x;; =0V(i,j) € Z.
Set maz_flow = 0.
while not convergence do
Set pred(i) = 0 and flow(i) =0,i=1,2,...,m.
Set pred(s) = —1 and flow(s) = oo.
Set LIST = s.
while LIST # () and pred(t) = 0 do
Set i equal to the first element in LIST.
for all arcs (i, j) outgoing from node i do
if pred(j) = 0 and z;; < z_U;; then

Set pred(j) =i and flow(j) = min (flow(i), z_-U;j — x45).

Put j at the end of LIST.
end if
end for
for all arcs (j,4) coming in to node i do
if pred(j) =0 and zj; < z_Uj;; then
Set pred(j) =i and flow(j) = min (flow(i), z;).
Put j at the end of LIST.
end if
end for
Delete the first element in LIST.
end while
if pred(t) > 0 then
Set j =t and i = pred(t).
Set z;; = x5 + flow(t).
while i # s do
Set j =i and i = pred(i).
if (i,j) € Z then
Set x;; = x5 + flow(t).

else
Set z;; = xi; — flow(t).
end if
end while
Set maz_flow = mazx_flow + flow(t).
else
STOP, the maximum flow is maz_flow.
end if

end while

161

TOMLAB v1.0 User’s Guide

B.16 modlabel

Set dist(j) = oo for each j € N\{s}, where N is the set of all nodes.
Set dist(s) = 0 and pred(s) = 0.
Set LIST = {s}.
while LIST # () do
Set 7 equal to the first element in LIST'.
Delete the first element in LIST.
for all arcs (i,j) outgoing from node i do
if dist(j) > dist(i) + ¢;; then
Set dist(j) = dist(i) + cij.
Set pred(j) = i.
if j ¢ LIST then
if j has been in in LIST before then
Put j first in LIST.
else
Put j at the end of LIST.
end if
end if
end if
end for
end while

B.17 mintree

Set Z_tree = Zin.
while the number of arcs in Z_tree is less than n — 1 do

Choose the arc (i,7) ¢ Z_treeU Zin for which C;; = min{C;; : (4,j) ¢ Z_tree U Zin}.

if the arc (i,7) does not create a cycle with the arcs in Z_tree then
Add the arc (i,5) to Z_tree.

end i

Set Ci]‘ = Cji = Inf.

end while

B.18 TPmc

Initially set x to a zero matrix of dimension m X n.
Set M = max(c) + 1.
for k=1,2,...m+n—1do
Choose (i, j) for which 4 4+ j = min{i + j : ¢;; = min(c)}
if s; > d; then
Set Tij = dj.
Set S; = S; — d]’.
Set all elements in the j:th column of ¢ equal to M.

else
Set Tij = Sj-
Set dj = dj — 8.
Set all elements in the i:th row of ¢ equal to M.

end if

Set By, = (i,7)-

end for
B.19 TPnw

Initially set x to a zero matrix of dimension m X n.
Set i =1and j = 1.

162

TOMLAB v1.0 User’s Guide 163

for k=1,2,...m+n—1do
if s; >dj then

Set Tij = dj.
Set By = (4,7)-
Set S; = 8§ — dj.
Set j =75+ 1.
else
Set z;; = s;.
Set By = (i,).
Set dj = dj — 8.
Set i =1+ 1.
end if
end for

B.20 TPsimplx

if >3 s; > > d; then
i J
Add a dummy demand point with zero cost.
else if > s; < > d; then

K2
Add a dumm}z supply point with high cost.
end if
if x and B is not given then
Call TPuogel to get a starting basic feasible solution.
else if only x is given then
Set B to represent the nonzero entries in .
else if only B is given then
Compute z for the given basis B.
end if
for k =1,2,... ke, do
Compute the simplex multipliers y = (%) by setting v, = 0 and solving the m 4+ n — 1 equations u; +v; = ¢;;
for (i,7) € B.
Compute the reduced costs é;; = ¢;; — u; — vj.
Set ¢min = min(é).
if ¢,in > 0 then
STOP, z is optimal.

else
Set ¢ = (i, q;) where ¢q,q; = Cmin.
end if
Determine the cycle of change vector u by solving Ay = b, where A € R*T™>"+m and b € R*™. Ap,, ; =1,
AmyBini = 1fori=1,2,...m+n. Apinmen = 1 and the rest of the entries in A is zero. b,, = —1, by, = —1

and the rest of the entries in b is zero.
Set = min {zp,, B, : p; <0}.

if § = () then
STOP, the problem has an unbounded fesible region.
else
Set p = (pi,pj) where xp,,, = 0.
end if
Set TB;1,B;2» = TBi1,Bi2 T ;-
Set my,q;, = 0.

Set B =B U {q¢}\{p}-
end for

TOMLAB v1.0 User’s Guide 164

B.21 TPvogel

Initially set x to a zero matrix of dimension m X n.
Set k= 1.
while k <m +n—1do
Compute for each column j a penalty p.; equal to the difference between the two smallest costs in the column,
using entries that do not lie in a crossed-out row or column.
if there is a column where only one entry is not crossed-out then
for j =1,2,...,n do
if column j is a column with only one crossed-out entry then
Choose i so that (i, j) corresponds to that entry.
if s; > dj then

Set Tij = d,
Set S; = §; — dj.
else
Set Tij = Si-
Set d]’ = d]‘ — S;.
end if
Set B, = (4, 7).
Set k=k+ 1.
end if
end for

else
Compute for each row ¢ a penalty p,, equal to the difference between the two smallest costs in the row,
using entries that do not lie in a crossed-out row or column.
if there is a row where only one entry is not crossed-out then
fori=1,2,...,m do
if row ¢ is a row with only one crossed-out entry then
Choose j so that (i,7) corresponds to that entry.
if s; > d; then

Set Tij = dj.
Set S; = 8§ — dj.
else
Set Tij = Sj-
Set dj = d]' — 8.
end if
Set By = (i,7).
Set k=k+1.
end if
end for

else
if max(p,) > max(p.;) then
Set ¢ = argmax(p,).
Choose j so that (i,7) corresponds to the smallest cost in row ¢ of the non crossed-out entries.
else
Set j = argmax(p;).
Choose i so that (7, j) corresponds to the smallest cost in column j of the non crossed-out entries.

end if
if s; > dj then
Set Tij = dj.

Set S; = 8§ — dj.
Cross out column j.

else
Set Tij = Si.
Set dj = dj — 8.

Cross out row 1.
end if

TOMLAB v1.0 User’s Guide 165

Set By, = (i,7)-
Set k=k+1.
end if
end if

end while

B.22 urelax

Set z; =0,5=1,2,..,nandu; =-1,i=1,2,...,m—1.
Set fl,«j =A,,7=12,...,nand b=b,.
Set Al’j = Aij and Bi =b;, 1 € {1,2, ,m} - {’I“}, 1=12 .. n.
Set fp =0 and zp = .
for £ =0,1,...,u_max do
Set uj =u; +1,1=1,2,....m—1.
Set ¢ = ATw. R
Call the knapsack problem solver dpknap with the parameters fl, b, ¢ and zy to get the solution z and fp.
Set fp = fp + u”b and compute the subgradient §j = b — Ax.
if >0,i=1,2,...m—1and ¢’z > fp then
Set fp =cT2 and 2p = z.
end if

end for

TOMLAB v1.0 User’s Guide 166

References

[1] LINGO - The Modeling Language and Optimizer. LINDO Systems Inc., Chicago, IL, 1995.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and Applications. Prentice-
Hall Inc., Kanpur and Cambridge, 1993.

[4] M. Al-Baali and R. Fletcher. Variational methods for non-linear least squares. J. Oper. Res. Soc., 36:405-421,
1985.

[5] M. Al-Baali and R. Fletcher. An efficient line search for nonlinear least-squares. Journal of Optimization
Theory and Applications, 48:359-377, 1986.

[6] M. C. Bartholomew-Biggs. Algorithms for general constrained nonlinear optimization. Technical Report
Technical Report 277, Numerical Optimisation Centre, Mathematics Division, University of Hertfordshire,
1993.

[7] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear Programming and Network Flows. John
Wiley and Sons, New York, 2nd edition, 1990.

[8] J. Bisschop and R. Entriken. AIMMS - The Modeling System. Paragon Decision Technology, Haarlem, The
Netherlands, 1993.

[9] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling system in a strategic
planning environment. Mathematical Programming Study, 20:1-29, 1982.

[10] Mattias Bjorkman. Nonlinear Least Squares with Inequality Constraints. Bachelor Thesis, Department of
Mathematics and Physics, Milardalen University, Sweden, 1998. Supervised by Kenneth Holmstrom.

[11] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint. CUTE: Constrained and Unconstrained Testing
Environment. ACM Transactions on Mathematical Software, 21(1):123-160, 1995.

[12] I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint. CUTE: Constrained and Unconstrained Testing
Environment. Technical report, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, September
2 1997.

[13] Mary Ann Branch and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime Park Way, Natick, MA
01760-1500, 1996.

[14] A. Brooke, D. Kendrick, and A. Meeraus. GAMS - A User’s Guide. The Scientific Press, Redwood City, CA,
1988.

[15] A. R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of minimization algorithms
for convex constraints using a structured trust region. SIAM Journal on Scientific and Statistical Computing,
6(4):1059-1086, 1996.

[16] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s Guide. SIAM, 1979.

[17] Erik Dotzauer and Kenneth Holmstrém. The TOMLAB Graphical User Interface for Nonlinear Programming.
Advanced Modeling and Optimization, 1(2), 1999.

[18] Arne Stolbjerg Drud. Interactions between nonlinear programing and modeling systems. Mathematical Pro-
gramming, Series B, 79:99-123, 1997.

[19] S. I. Feldman, David M. Gay, Mark W. Maimone, and N. L. Schryer. A Fortran-to-C converter. Technical
Report Computing Science Technical Report No. 149, AT&T Bell Laboratories, May 1992.

[20] Marshall L. Fisher. An Application Oriented Guide to Lagrangian Relaxation. Interfaces 15:2, pages 10-21,
March-April 1985.

TOMLAB v1.0 User’s Guide 167

[21] R. Fletcher and C. Xu. Hybrid methods for nonlinear least squares. IMA Journal of Numerical Analysis,
7:371-389, 1987.

[22] Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 2nd edition, 1987.

[23] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Technical Report
NA/171, University of Dundee, 22 September 1997.

[24] R. Fourer, D. M. Gay, and B. W.Kernighan. AMPL - A Modeling Language for Mathematical Programming.
The Scientific Press, Redwood City, CA, 1993.

[25] B. S. Garbow, J. M. Boyle, J. J. Dongara, and C. B. Moler. Matrix Eigensystem Routines-EISPACK Guide
Extension. In Lecture Notes in Computer Science. Springer Verlag, New York, 1977.

[26] David M. Gay. Hooking your solver to AMPL. Technical report, Bell Laboratories, Lucent Technologies,
Murray Hill, NJ 07974, 1997.

[27] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s Guide for NPSOL (Version 4.0): A Fortran
package for nonlinear programming. Department of Operations Research, Stanford University, Stanford, CA,
1986. SOL 86-2.

[28] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1982.

[29] D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[30] Jacek Gondzio. Presolve analysis of linear programs prior to applying an interior point method. INFORMS
Journal on Computing, 9(1):73-91, 1997.

[31] Michael Held and Richard M. Karp. The Traveling-Salesman problem and minimum spanning trees: Part II.
Mathematical Programming, 1:6-25, 1971.

[32] Kaj Holmberg. Heltalsprogrammering och dynamisk programmering och fléden i nétverk och kombinatorisk
optimering. Technical report, Division of Optimization Theory, Linkoping University, Linkoping, Sweden,
1988-1993.

[33] Kenneth Holmstrom. The TOMLAB Optimization Environment in Matlab. Advanced Modeling and Opti-
mization, 1(1):47-69, 1999.

[34] Kenneth Holmstrém and Mattias Bjorkman. The TOMLAB NLPLIB Toolbox for Nonlinear Programming.
Advanced Modeling and Optimization, 1:70-86, 1999.

[35] Kenneth Holmstrom, Mattias Bjorkman, and Erik Dotzauer. The TOMLAB OPERA Toolbox for Linear and
Discrete Optimization. Advanced Modeling and Optimization, 1(2), 1999.

[36] J. Huschens. On the use of product structure in secant methods for nonlinear least squares problems. STAM
Journal on Optimization, 4(1):108-129, February 1994.

[37] Kenneth Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

[38] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant.
Journal of Optimization Theory and Applications, 79(1):157-181, October 1993.

[39] Donald R. Jones. DIRECT. Encyclopedia of Optimization, 1999. To be published.

[40] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive Black-
Box functions. Journal of Global Optimization, 13:455-492, 1998.

[41] P. Lindstrom. Algorithms for Nonlinear Least Squares - Particularly Problems with Constraints. PhD thesis,
Inst. of Information Processing, University of Umea, Sweden, 1983.

[42] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Reading,
Massachusetts, 2nd edition, 1984.

TOMLAB v1.0 User’s Guide 168

[43] C. B. Moler. MATLAB — An Interactive Matrix Laboratory. Technical Report 369, Department of Mathe-
matics and Statistics, University of New Mexico, 1980.

[44] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.4 USER’S GUIDE. Technical Report SOL 83-
20R, Revised Feb. 1995, Systems Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, California 94305-4022, 1995.

[45] G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[46] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND: An object-oriented computer
environment for modeling and analysis: The modeling language. Computers and Chemical Engineering, 15:53—
72, 1991.

[47] Raymond P. Polivka and Sandra Pakin. APL: The Language and Its Usage. Prentice Hall, Englewood Cliffs,
N. J., 1975.

[48] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

[49] A. Sartenaer. Automatic determination of an initial trust region in nonlinear programming. Technical Report
95/4, Department of Mathematics, Facultés Universitaires ND de la Paix, Bruxelles, Belgium, 1995.

[50] K. Schittkowski. On the Convergence of a Sequential Quadratic Programming Method with an Augmented
Lagrangian Line Search Function. Technical report, Systems Optimization laboratory, Stanford University,
Stanford, CA, 1982.

[51] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matriz
Eigensystem Routines - FISPACK Guide Lecture Notes in Computer Science. Springer-Verlag, New York,
2nd edition, 1976.

[52] Wayne L. Winston. Operations Research: Applications and Algorithms. International Thomson Publishing,
Duxbury Press, Belmont, California, 3rd edition, 1994.

