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of optimization, as well as present the Matlab 5.x based optimization envi-

ronment TOMLAB, which includes algorithms for most types of optimization
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1. INTRODUCTION

In applied statistical research there is a need of good quality optimization soft-
ware, e.g. to estimate parameters in distributions, approximate nonlinear regression
models to empirical data or tune parameters in Monte Carlo simulation models. This
paper discusses new algorithmic developments in the �eld of optimization, as well
as present the Matlab optimization environment TOMLAB, developed by Holm-
str�om (1999a), which includes algorithms for most types of optimization problems.
TOMLAB implements powerful and robust state-of-the-art routines for nonlinear
parameter estimation and global optimization; areas of special interest in statistical
research. Results on practical applications in these areas will be discussed.

The paper is organized as follows. In Section 2 the optimization environment
TOMLAB is described. Global optimization is the topic of Section 3, with emphasis
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on the current tools available in TOMLAB. An example of global optimization in
�nance is given in Section 4, the aim being optimal stock market trading perfor-
mance. Nonlinear parameter estimation and the tools in TOMLAB is discussed in
Section 5. TOMLAB includes special treatment and e�cient algorithms for model
�tting in exponential models presented in Section 6. Results on a real-life example
from cancer treatment in radiotherapy is given. Section 6 present some conclusions.

2. THE OPTIMIZATION ENVIRONMENT TOMLAB

TOMLAB is a Matlab 5 based development environment for research and teach-
ing in optimization, running on both Unix and PC systems. One motivation for
TOMLAB is to simplify research on practical optimization problems, giving easy
access to all types of solvers; at the same time having full access to the power
of Matlab. The design principle is: de�ne your problem once, optimize using any

suitable solver. The aim of TOMLAB is to provide access to most state-of-the-art
numerical optimization software in an integrated and easy-to-use way. TOMLAB
could be used as a stand-alone tool or as part of a more general algorithm.

In TOMLAB itself about 65 numerical optimization algorithms are implemented,
and using di�erent types of pre-de�ned interfaces, many more solvers are directly
possible to use, like SNOPT,MINOS, NPSOL,NPOPT, NLSSOL, LPOPT,QPOPT,
LSSOL, FSQP, LSQR, SYMMLQ and solvers in the Math Works Optimization
Toolbox. Most areas of optimization are covered. There are solvers for linear pro-
gramming, mixed-integer programming, quadratic programming, unconstrained op-
timization, general nonlinear programming, constrained linear and nonlinear least
squares, box-bounded global optimization, global mixed-integer nonlinear program-
ming.

A number of routines for special problems are implemented, e.g. partially sepa-
rable functions, separable nonlinear least squares, dual linear programming, approx-
imation of parameters in exponential models, transportation simplex programming,
network simplex programming, binary mixed-integer programming

There are several ways to solve optimization problems in TOMLAB. Either by
a direct call to a solver or to a general multi-solver driver routine, or interactively,
using the Graphical User Interface (GUI) by Dotzauer and Holmstr�om (1999) or a
menu system. Yet another way to solve an optimization problem in TOMLAB is
to use the call-compatible interfaces simulating the behaviour of the Math Works
Optimization Toolbox, which is especially useful for users that previously used that
toolbox. The GUI may also be used as a preprocessor to generate Matlab code for
stand-alone runs.

If analytical derivatives are not available, automatic di�erentiation is easy using
an interface to the ADMAT/ADMIT TB. Furthermore, �ve methods for numerical
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di�erentiation are implemented. A large set of standard test problems are included,
as well as example and demonstration �les. New user-de�ned problems are easily
added.

TOMLAB v1.0 handles small and medium size dense problems, is free for aca-
demic use and downloadable from the home page of the Applied Optimization and
Modeling (TOM) group, URL: http://www.ima.mdh.se/tom. No support is
given. TOMLAB 1.0 is based on NLPLIB TB, a Matlab toolbox for nonlinear
programming and parameter estimation [Holmstr�om and Bj�orkman (1999)], and
OPERA TB, a Matlab toolbox for linear and discrete optimization [Holmstr�om,
Bj�orkman and Dotzauer (1999a)]. A User's Guide for TOMLAB v1.0 by Holm-
str�om, Bj�orkman and Dotzauer (1999b) is available

The new TOMLAB v2.0 system, presented in Holmstr�om (1999c), also handles
large, sparse problems and the code is possible to automatically convert to C++
and compile and run much faster than in Matlab using the Mideva system. Both
TOMLAB v2.0 and Mideva are available from the web site of MathTools Inc,
URL: http://www.mathtools.com. A User's Guide for TOMLAB v2.0 by Holm-
str�om (1999b) is downloadable from the URL: http://www.ima.mdh.se/tom.

3. GLOBAL OPTIMIZATION

Consider the following the following bounded unconstrained problem

min
x

f(x)

s:t: xL � x � xU ;

(1)

where x; xL; xU 2 Rn and f(x) 2 R. With the additional assumption that the
elements in xL; xU all take �nite values, and f(x) might have several local minima,
the problem is that of box-bounded global optimization.

The TOMLAB routine glbSolve implements the DIRECT algorithm by Jones,
Perttunen and Stuckman (1993) that solves the box-bounded global optimization
problem using no derivative information. The algorithm is a modi�cation of the
standard Lipschitzian approach that eliminates the need to specify a Lipschitz con-
stant. The idea is to carry out simultaneous searches using all possible constants
from zero to in�nity. Jones et al. introduce a di�erent way of looking at the Lip-
schitz constant. Really, the Lipschitz constant is viewed as a weighting parameter
that indicate how much emphasis to place on global versus local search. In standard
Lipschitzian methods, this constant is usually large because it must be equal to or
exceed the maximum rate of change of the objective function. As a result, these
methods place a high emphasis on global search, which leads to slow convergence. In
contrast, the DIRECT algorithm carries out simultaneous searches using all possible
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constants, and therefore operates on both the global and local level. The algorithm
implemented in TOMLAB is fully described in Bj�orkman and Holmstr�om (1999).

The DIRECT is guaranteed to converge to the global optimal function value, if
the objective function f is continuous or at least continuous in the neighborhood of
a global optimum. This could be guaranteed since, as the number of iterations goes
to in�nity, the set of points sampled by DIRECT form a dense subset of the unit
hypercube. In other words, given any point x in the unit hypercube and any � > 0,
DIRECT will eventually sample a point (compute the objective function) within a
distance � of x.

Adding integer, linear and nonlinear constraints to the model, formulate the
global mixed-integer nonlinear programming (GMINLP) problem as

min
x

f(x)

s:t:

xL � x � xU ;

bL � Ax � bU
cL � c(x) � cU

xi integer 8i 2 I

(2)

where x; xL; xU 2 Rn and f(x) 2 R. A 2 Rm1�n, bL; bU 2 Rm1 and cL; c(x); cU 2

Rm2. The index set I is a arbitrarily subset of the n variables. Assume that the
elements in xL; xU all take �nite values, and that f(x) might have several local
minima.

The TOMLAB routine glcSolve implements an extended version of DIRECT by
Jones (1999), that handles GMINLP problems.

The very general GMINLP problem formulation covers most problems in the
�eld of optimization and it is evident that only a small sub-class of these problems
can be solved in a reasonable time frame with our solver. The number of variables
should not be too high.

When simulating complex systems, as in �nance, one simulation is often very
costly and derivatives are di�cult to obtain. To �nd the global optimum for ad-
justable parameters in such models in a reasonable time frame, possibly also includ-
ing integer and nonlinear constraints, it is evident that the information from each
simulation, i.e. cost function evaluation, must be e�ciently used.

A new technique by Jones, Schonlau and Welch (1998), called E�cient Global
Optimization (EGO), has been developed for problems where the function is costly
to compute. EGO tries to exploit all function evaluations e�ciently. The idea of
the EGO algorithm is to �rst �t a response surface to data collected by evaluating
the objective function at a few points. Then, EGO balances between �nding the
minimum of the surface and improving the approximation by sampling where the
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prediction error may be high. building a response surface doing parameter estima-
tion, and then applying global optimization techniques on the response surface to
�nd new sample points. The TOMLAB routine ego implements a variation of this
algorithm, where the unconstrained TOMLAB solver is used for the parameter es-
timation problem of �nding the response surface and glbSolve, previously discussed,
is used to �nd the global optimum on the response surface.

In our most current research a new algorithm with a similar approach as EGO
is developed. This algorithm is using approximation with radial basis functions
to build the response surface and seems very promising. Preliminary results show
better results than the previously discussed solvers, and this routine is soon to be
included in TOMLAB.

In the next section an application of global optimization in computational �nance
is discussed.

4. GLOBAL OPTIMIZATION OF STOCK MARKET TRADING

In our research on prediction methods in computational �nance, we study the
prediction of various kinds of quantities related to stock markets, like stock prices,
stock volatility and ranking measures. In one project we instead of the classical time
series approach used the more realistic prediction problem of building a multi-stock
arti�cial trader (ASTA). The behavior of the trader is controlled by a parameter
vector which is tuned for best performance. Here, one of our global optimization
routines in TOMLAB, glbSolve, is used to �nd the optimal parameters for the noisy
functions obtained, when running on a large database of Swedish stock market data.
The ASTA system and this problem is discussed in more detail in Hellstr�om and
Holmstr�om (1999).

The Stochastics Indicator is a classical technical trading rule. We have obtained
very good results in ASTA using this rule to select buy and sell rules in a multi-stock
trading algorithm, see Figure 2 for a performance diagram that compares the trading
results with the stock market index. We tried to tune two of the parameters in this
trading rule. In Figure 2 we see the points sampled when trying to �nd the optimal
buy and sell rules in the Stochastics Indicator. They cluster around (40; 78), which
seems to be the global optimum. In Figure 3 one-dimensional views of the Net pro�t
(with reversed sign) versus the Buylevel and the Sellevel are shown. The optimum
is more well-determined and distinct in the Buylevel. The global optimum is in
fact very close to the standard values used in technical analysis. Further testing and
analysis are needed to establish robustness properties of the parameters found.

5. NONLINEAR PARAMETER ESTIMATION
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Figure 1: Performance of the trading function Stoch(30; 3; 3; 20; 80) based on the
Stochastics indicator.

Nonlinear parameter estimation problems, especially of exponential type, are
often ill-conditioned. Practical numerical tests on real applications show that current
solvers often return erronous results, claiming success when not having converged
to a true local minimum. Or the solvers simply fail to converge.

The TOMLAB nonlinear least squares solver, clsSolve, is designed to be robust
for ill-conditioned problems and has in tests showed to be more robust than other
available software. It also converges faster (with less function evaluations) than
other solvers. It is often the case in model approximation that there are bounds
on the variables, like nonnegativity constraints. Many solvers does not handle such
things. Furthermore, the model might include linear constraints on the variables.
The TOMLAB clsSolve solver has special treatment of both simple bounds and
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Figure 2: Sampled points by glbSolve in the parameter space when optimizing the
buy and sell levels for the trading function Stoch(30; 3; 3; Sellevel; Buylevel).
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Figure 3: One-dimensional views of the global optimization of the parameters in the
trading function Stoch(30; 3; 3; Sellevel; Buylevel). The left graph shows the Net

pro�t versus the Buylevel for an equidistant grid of values of the Sellevel. The right
graph shows the Net pro�t versus the Sellevel for an equidistant grid of values of the
Buylevel.

linear constraints, and tests show that it performs very robust on all these types of
problems, see Holmstr�om and Bj�orkman (1999),

The constrained nonlinear least squares problem (cls) is de�ned as

min
x

f(x) = 1
2
r(x)T r(x)

s:t:
xL � x � xU ;

bL � Ax � bU

(3)

where x; xL; xU 2 Rn, r(x) 2 RN, A 2 Rm�n, bL; bU 2 Rm.
The routine clsSolve implements four methods for nonlinear least squares prob-

lems: the Gauss-Newton method, the Al-Baali and Fletcher hybrid method (1985),
the Fletcher and Xu hybrid method (1987) and the Huschens (1994) TSSM method.
If rank problems occur, the algorithm is using subspace minimization. The line
search algorithm is a modi�cation of an algorithm by Fletcher. Linear equality and
inequality constraint are treated using an active-set strategy.

The TOMLAB constrained nonlinear least squares solver clsSolve are used in
several of our applied research projects, e.g. estimation of formation constants in
chemical equilibrium analysis, analysis of plasmid stability in fermentation processes
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and �tting of exponential sums to empirical data in radiotherapy planning. The
radiotherapy planning problem is discussed in Section 6.

Another case where special treatment of linear constraints gives numerical ad-
vantages is in the solution of nonlinear equation systems. If some of equations are
linear in the variables it is better to solve the problem as a linearly constrained
nonlinear least squares problem. More formally, if solving the nonlinear systems of
equations g(x) = 0; g 2 Rm. If partitioning into the nonlinear and linear equations
g(x) = [r(x); Ax� b], then the solution is obtained solving the following problem

min
x

f(x) = 1
2
r(x)T r(x)

s:t: Ax = b

(4)

Additional constraints are easy to add to the problem formulation.

6. PARAMETER ESTIMATION IN EXPONENTIAL MODELS

The problem of �tting positive sums of positively weighted exponential functions
to empirical data may be formulated either as a nonlinear least squares problem
or a separable nonlinear least squares problem. Several empirical data series are
prede�ned and arti�cial data series may also be generated. Algorithms to �nd
starting values for di�erent number of exponential terms are implemented.

There are �ve di�erent types of exponential models with special treatment in
TOMLAB. They are shown in Table 1. In current research with Todd Walton,
Vicksburg, TOMLAB has been used to estimate parameters using maximum like-
lihood in simulated Weibull distributions, and Gumbel and Gamma distributions
with real data. TOMLAB has also been useful for parameter estimation in stochas-
tic hydrology using real-life data.

In Holmstr�om, Ahnesj�o and Petersson (1999) algorithms for �tting exponential
sums D (r) =

Pp
i=1 ai(1�exp (�bir)) to numerical data are presented and compared

for e�ciency and robustness. The numerical examples stem from parameter esti-
mation in dose calculation for radiotherapy planning. The doses are simulated by
emitting an ionizing photon beam into water and at di�erent depths d and di�erent
radius r from the beam center measuring the absorption. The absorbed dose is nor-
mally distinguished into primary dose from particles excited by the photon beam
and scattered dose from the following particle interactions.

In Table 2. results are presented from a comparison of di�erent nonlinear solvers
for the Helax problems described above. The tested solvers are:

� TOMLAB v1.0 clsSolve, Gauss-Newton with subspace minimization.
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Table 1: Exponential models treated in TOMLAB.

f(t) =
pP

i
�ie

��it, �i � 0, 0 � �1 < �2 < ::: < �p.

f(t) =
pP

i
�i(1� e��it), �i � 0, 0 � �1 < �2 < ::: < �p.

f(t) =
pP

i
t�ie

��it, �i � 0, 0 � �1 < �2 < ::: < �p.

f(t) =
pP

i
(t�i � 
i)e

��it, �i; 
i � 0, 0 � �1 < �2 < ::: < �p.

f(t) =
pP

i
t�ie

��i(t�
i), �i � 0, 0 � �1 < �2 < ::: < �p.

� TOMLAB v1.0 clsSolve, Fletcher-Xu Hybrid algorithm. Problems solved using
a separable nonlinear least squares algorithm.

� MathWorks Optimization Toolbox 2.0, Matlab solver lsqnonlin, a Levenberg-
Marquardt algorithm.

� MathWorks Optimization Toolbox 2.0, Matlab solver lsqnonlin, a large-scale
trust-region algorithm.

� Systems Optimization Laboratory, Stanford. The constrained nonlinear least
squares solver NLSSOL, run through TOMLAB v1.0 MEX-�le interface.

� Systems Optimization Laboratory, Stanford. The general nonlinear solver
NPSOL, run through TOMLAB v1.0 MEX-�le interface. interface.

The table entries for each solver consists of three integers which give the numbers
of iterations, residual evaluations and Jacobian evaluations required to solve the
problem. We restrict to present detailed information for the �rst �fteen and the last
two problems but the average values and the number of failures are based on all the
334 problems. The y indicates that the separable nonlinear least squares algorithm
II from Ruhe and Wedin 1980 is run. Note that the lsqnonlin LS algorithm has
convergence problems, giving many failures. The e�ciency of the clsSolve Fletcher-
Xu method with the separable algorithm is obvious, less than 65 percent of the
number of iterations, residual evaluations and Jacobian evaluations for the best of
the other solvers are required to solve the problems.

Worth mentioning is that TOMLAB includes routines for computing (initial)
parameter estimates for exponential sum model �tting problems that are very close
to the true solution for equidistant problems and fairly good for non-equidistant
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problems, see the thesis by Petersson (1998). This is extremely important when
solving problems in real life applications, and these good initial values are used in
the radiotherapy example.

7. CONCLUSIONS

We have discussed a new and useful tool in applied statistical computations,
the optimization environment TOMLAB. The tool includes both a broad range of
optimization solvers, but also special tools e.g. for separable nonlinear least squares
and parameter estimation in exponential models.

New algorithms and software in the area of global optimization makes it possible
to optimize parameters for costly functions e.g. appearing in simulations. The TOM-
LAB nonlinear least squares solvers are robust and performs well on ill-conditioned
problems.
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