
User’s Guide for Tomlab v3.2.11

Kenneth Holmström and Anders Göran

Tomlab Optimization

Gäddgatan 9

SE-723 49 Väster̊as, Sweden

September 2, 2002

1More information available at the TOMLAB home page: http://tomlab.biz and at the Applied Optimization and Modeling

TOM home page http://www.ima.mdh.se/tom. E-mail: tomlab@tomlab.biz.

1

Contents

1 Introduction to TOMLAB 7

1.1 What is TOMLAB? . 7

1.2 The Organization of This Guide . 8

1.3 Further Reading . 9

2 The Design of TOMLAB 10

2.1 Structure Input and Output . 10

2.2 Introduction to Solver and Problem Types . 10

2.3 The Process of Solving Optimization Problems with TOMLAB . 11

2.4 Low Level Routines and Gateway Routines . 14

3 Optimization Problem Types and Solver Routines in TOMLAB 16

3.1 Optimization Problem Types Defined in TOMLAB . 16

3.2 Solver Routines in TOMLAB . 19

3.2.1 Solvers Available in all Tomlab Versions . 19

3.2.2 Solvers Available in the TOMLAB /SOL Toolbox . 21

3.2.3 Solvers Available in the TOMLAB/CGO Toolbox . 21

3.2.4 Finding Available Solvers . 22

4 Defining User Problems in the TOMLAB Quick or Init File format 23

4.1 TOMLAB Quick (TQ) Format for User Problems . 23

4.2 TOMLAB Init File (IF) Format for User Problems . 24

4.3 Create an Init File going from TQ to IF format . 26

4.4 Adding an Init File to the GUI Data Base . 27

5 Solving Linear, Quadratic and Integer Programming Problems 29

5.1 Linear Programming Problems . 29

5.1.1 A Quick Linear Programming Solution . 30

5.1.2 Several Linear Programs . 31

5.1.3 Large Sets of Linear Programs . 31

5.1.4 More on Solving Linear Programs . 33

5.2 Quadratic Programming Problems . 37

5.2.1 A Quick Quadratic Programming solution . 37

5.2.2 Several Quadratic Programs . 38

5.2.3 Large Sets of Quadratic Programs . 39

5.2.4 Another Direct Approach to a QP Solution . 41

5.2.5 More on Solving Quadratic Programs . 41

5.3 Mixed-Integer Programming Problems . 42

5.3.1 Large Sets of Mixed-Integer Programs . 45

5.3.2 More on Solving Mixed-Integer Programs . 45

6 Solving Unconstrained and Constrained Optimization Problems 47

2

6.1 Defining the Problem in Matlab m-files . 47

6.1.1 Communication between user routines . 50

6.2 Solving Unconstrained Optimization using the TQ format . 51

6.3 Direct Call to an Optimization Routine . 52

6.4 Solving Constrained Optimization using the TQ format . 53

6.5 Efficient use of the TOM solvers . 55

7 Solving Global Optimization Problems 56

7.1 Solving Box-Bounded Global Optimization with TQ format . 56

7.2 Defining Global Mixed-Integer Nonlinear Problems with TQ format 57

8 Least Squares and Parameter Estimation Problems 59

8.1 Solving Linear Least Squares Problems using the TQ Format . 59

8.2 Solving Linear Least Squares Problems using the SOL Solver LSSOL 60

8.3 Solving Nonlinear Least Squares Problems using the TQ Format 61

8.4 Fitting Sums of Exponentials to Empirical Data . 64

9 Efficient Use of the SOL Solvers in TOMLAB 65

9.1 Setting Parameters for the SOL Solvers . 65

9.2 Derivatives for the SOL Solvers . 66

9.3 SOL Solver Output on Files . 67

9.4 Warm Starts for the SOL Solvers . 68

9.5 Memory Issues for the SOL Solvers . 69

10 Special Notes and Features 70

10.1 Approximation of Derivatives . 70

10.2 Speed and Solution of Optimization Subproblems . 73

10.3 User Supplied Problem Parameters . 74

10.4 User Given Stationary Point . 75

10.5 Print Levels and Printing Utilities . 76

10.6 Partially Separable Functions . 77

10.7 Usage of routines from Optimization Toolbox 1.x . 78

10.8 Using Matlab 5.0 or 5.1 . 78

10.9 Utility Test Routines . 78

11 The tomGUI Graphical User Interface (GUI) 79

11.1 The Input Modes . 82

11.2 General Parameter Mode . 82

11.3 Solver Parameter Mode . 84

11.4 Plot Parameter Mode . 85

12 The Menu Program tomMenu 87

13 The TOMLAB Routines - Detailed Descriptions 90

3

13.1 The TOM Solvers . 90

13.1.1 clsSolve . 90

13.1.2 conSolve . 92

13.1.3 cutPlane . 95

13.1.4 DualSolve . 97

13.1.5 ego . 99

13.1.6 expSolve . 102

13.1.7 glbSolve . 104

13.1.8 glbFast . 106

13.1.9 glcSolve . 108

13.1.10 glcFast . 110

13.1.11 glcCluster . 113

13.1.12 infSolve . 115

13.1.13 lpSolve . 117

13.1.14L1Solve . 119

13.1.15mipSolve . 121

13.1.16nlpSolve . 123

13.1.17qpSolve . 125

13.1.18 rbfSolve . 127

13.1.19 slsSolve . 130

13.1.20 sTrustr . 132

13.1.21 itrr . 134

13.1.22ucSolve . 135

13.1.23pensdp . 137

13.2 Utility Functions in TOMLAB . 141

13.2.1 tomRun . 141

13.2.2 cpTransf . 142

13.2.3 LineSearch . 143

13.2.4 intpol2 . 144

13.2.5 intpol3 . 144

13.2.6 preSolve . 145

13.2.7 PrintResult . 146

13.2.8 runtest . 147

13.2.9 SolverList . 148

13.2.10 systest . 149

14 TOMLAB LDO (Linear and Discrete Optimization) 150

14.1 Optimization Algorithms and Solvers in TOMLAB LDO . 150

14.1.1 Linear Programming . 150

14.1.2 Transportation Programming . 151

14.1.3 Network Programming . 151

14.1.4 Mixed-Integer Programming . 152

4

14.1.5 Dynamic Programming . 152

14.1.6 Quadratic Programming . 153

14.1.7 Lagrangian Relaxation . 153

14.1.8 Utility Routines . 153

14.2 How to Solve Optimization Problems Using TOMLAB LDO . 154

14.2.1 How to Solve Linear Programming Problems . 154

14.2.2 How to Solve Transportation Programming Problems . 155

14.2.3 How to Solve Network Programming Problems . 155

14.2.4 How to Solve Integer Programming Problems . 157

14.2.5 How to Solve Dynamic Programming Problems . 157

14.2.6 How to Solve Lagrangian Relaxation Problems . 158

14.3 Printing Utilities and Print Levels . 160

14.4 Optimization Routines in TOMLAB LDO . 160

14.4.1 akarmark . 160

14.4.2 balas . 161

14.4.3 dijkstra . 162

14.4.4 dpinvent . 162

14.4.5 dpknap . 163

14.4.6 karmark . 164

14.4.7 ksrelax . 164

14.4.8 labelcor . 165

14.4.9 lpdual . 166

14.4.10 lpkarma . 166

14.4.11 lpsimp1 . 167

14.4.12 lpsimp2 . 168

14.4.13maxflow . 168

14.4.14modlabel . 169

14.4.15NWsimplx . 169

14.4.16qplm . 170

14.4.17qpe . 171

14.4.18 salesman . 171

14.4.19TPsimplx . 172

14.4.20urelax . 173

14.5 Optimization Subfunction Utilities in TOMLAB LDO . 173

14.5.1 a2frstar . 173

14.5.2 gsearch . 174

14.5.3 gsearchq . 174

14.5.4 mintree . 175

14.5.5 TPmc . 175

14.5.6 TPnw . 176

14.5.7 TPvogel . 176

14.5.8 z2frstar . 177

5

A Description of Prob, the Input Problem Structure 178

B Description of Result, the optimization result structure 186

C Global Variables and Recursive Calls 189

D Editing Init Files directly 192

D.1 Editing New Problems in Linear Programming Init Files . 192

D.2 Editing New Problems in Quadratic Programming Init Files . 194

D.3 Editing New Problems in Unconstrained Optimization Init Files 196

D.4 Editing New Problems in Box-bounded Global Optimization Init Files 199

D.5 Editing New Problems in Global Mixed-Integer Nonlinear Programming Init Files 201

D.6 Editing New Problems in Constrained Optimization Init Files . 203

D.7 Creating a New Constrained Optimization Init File . 205

D.8 Editing New Problems in Nonlinear Least Squares Init Files . 206

D.9 Editing New Problems in Exponential Sum Fitting Init Files . 208

D.10 Creating a New Nonlinear Least Squares Init File . 210

D.11 Using the Driver Routines . 212

E Interfaces 214

E.1 Solver Call Compatible with Optimization Toolbox 2.1 . 214

E.1.1 Solving LP Similar to Optimization Toolbox 2.1 . 215

E.1.2 Solving QP Similar to Optimization Toolbox 2.1 . 216

E.2 The Matlab Optimization Toolbox Interface . 217

E.3 The CUTE Interface . 218

E.4 The AMPL Interface . 219

F Motivation and Background to TOMLAB 220

G Performance Tests on Linear Programming Solvers 221

6

1 Introduction to TOMLAB

1.1 What is TOMLAB?

TOMLAB is a general purpose development environment in Matlab for research, teaching and practical solution
of optimization problems.

TOMLAB has grown out of the need for advanced, robust and reliable tools to be used in the development of
algorithms and software for the solution of many different types of applied optimization problems.

There are many good tools available in the area of numerical analysis, operations research and optimization,
but because of the different languages and systems, as well as a lack of standardization, it is a time consuming
and complicated task to use these tools. Often one has to rewrite the problem formulation, rewrite the function
specifications, or make some new interface routine to make everything work. Therefore the first obvious and basic
design principle in TOMLAB is: Define your problem once, run all available solvers. The system takes care of all
interface problems, whether between languages or due to different demands on the problem specification.

In the process of optimization one sometimes want to graphically view the problem and the solution process,
especially for ill-conditioned nonlinear problems. Sometimes it is not clear what solver is best for the particular
type of problem and tests on different solvers can be of use. In teaching one wants to view the details of the
algorithms and look more carefully at the different algorithmic steps. An unexperienced user or a student might
want some very easy way to solve the problem, and would like to use a menu system or a graphical user interface
(GUI). Using a GUI or a menu system also makes it very easy to change parameters influencing the solution
process. When developing new algorithms tests on thousands of problems are necessary to fully access the pros
and cons of the new algorithm. One might want to solve a practical problem very many times, with slightly
different conditions for the run. Or solve a control problem looping in real-time and solving the optimization
problem each time slot.

All these issues and many more are addressed with the TOMLAB optimization environment. TOMLAB gives easy
access to a large set of standard test problems, optimization solvers and utilities. Furthermore, it is easy to define
new problems in the TOMLAB Quick format, and try to solve them using any solver. To access the user problem
in the GUI or menu system, routines converting the problem into the TOMLAB Init File format and adding the
problems to the GUI data base are available and simple to use. To use TOMLAB in real-time control, the efficient
MEX-file interfaces calling fast Fortran solvers are of great importance.

7

1.2 The Organization of This Guide

Section 2 presents the general design of TOMLAB.

Section 3 contains strict mathematical definitions of the optimization problem types. All solver routines available
in TOMLAB are described.

Section 4 describes the two available input formats, the TOMLAB Quick Format (TQ) and the TOMLAB Init
File Format (IF).

Sections 5, 6, 7 and 8 contain examples on the process of defining problems and solving them. All test examples
are available as part of the TOMLAB distribution.

Section 9 contains information on efficient use of the SOL (Stanford System Optimization Laboratory) solvers.

Section 10 discusses a number of special system features such as derivatives, automatic differentiation, partially
separable functions and user supplied parameter information for the function computations.

Section 11 presents the Graphical User Interface (GUI). The GUI gives the user the possibility to set all kinds
of solver parameters that influences the optimization process. It can also be used as a code generator, saving the
status of the GUI and generating m-file code to run the current problem. There is also an option to retrieve the
saved status of the GUI.

Section 12 presents the menu system, tomMenu. The menu system implements some, but not all of the function-
ality of the GUI, but can be useful when running TOMLAB on remote machines over text-only connections.

Section 13 contains detailed descriptions of many of the functions in TOMLAB. The TOM solvers, originally
developed by the Applied Optimization and Modeling (TOM) group, are described together with TOMLAB driver
routine and utility functions. Other solvers, like the Stanford Optimization Laboratory (SOL) solvers called using
MEX-file interfaces are not described, but documentation is available for each solver, e.g. the MINOS User’s Guide
[68].

Section 14 describes the LDO (Linear and Discrete Optimization) solvers for linear, quadratic, and discrete
optimization problems grouped together in the TOMLAB LDO Toolbox.

Appendix A contains tables describing all elements defined in the problem structure. Some subfields are either
empty, or filled with information if the particular type of optimization problem is defined. To be able to set
different parameter options for the optimization solution, and change problem dependent information, the user
should consult the tables in this Appendix.

Appendix B contains tables describing all elements defined in the output result structure returned from all
solvers and driver routines. An array of such structures are also returned if calling the GUI or menu system with
an output variable.

Appendix C is concerned with the global variables used in TOMLAB and routines for handling important global
variables enabling recursive calls of any depth.

Appendix D describes in detail how to edit TOMLAB Init Files directly.

Appendix E describes the available set of interfaces to other optimization software, such as CUTE, AMPL, and
The Mathworks’ Optimization Toolbox.

Appendix F gives some motivation for the development of TOMLAB.

8

1.3 Further Reading

TOMLAB has been discussed in several papers and at several conferences. The main paper on TOMLAB v1.0 is
[51]. The use of TOMLAB for nonlinear programming and parameter estimation is presented in [54], and the use
of linear and discrete optimization is discussed in [55]. Global optimization routines are also implemented, one is
described in [11].

In all these papers TOMLAB was divided into two toolboxes, the NLPLIB TB and the OPERA TB. This was
impractical because of the integration of linear and mixed-integer programming in the GUI and the other menu
and driver tools. The first version of the graphical user interface (GUI) is described in [21]. TOMLAB v2.0 was
discussed in [52], [49]. and [50]. TOMLAB v3.2 and how to solve practical optimization problems with TOMLAB
is discussed in [53].

The use of TOMLAB for costly global optimization with industrial applications is discussed in [12]; costly global
optimization with financial applications in [45, 46, 47]. Applications of global optimization for robust control is
presented in [30, 31]. The use of TOMLAB for exponential fitting and nonlinear parameter estimation are discussed
in e.g. [58, 7, 27, 28, 56, 57].

9

2 The Design of TOMLAB

The scope of TOMLAB is large and broad, and therefore there is a need of a well-designed system. It is also
natural to use the power of the Matlab language, to make the system flexible and easy to use and maintain. The
concept of structure arrays is used and the ability in Matlab to execute Matlab code defined as string expressions
and to execute functions specified by a string.

2.1 Structure Input and Output

Normally, when solving an optimization problem, a direct call to a solver is made with a long list of parameters
in the call. The parameter list is solver-dependent and makes it difficult to make additions and changes to the
system.

TOMLAB solves the problem in two steps. First the problem is defined and stored in a Matlab structure. Then the
solver is called with a single argument, the problem structure. Solvers that were not originally developed for the
TOMLAB environment needs the usual long list of parameters. This is handled by the driver routine tomRun.m
which can call any available solver, hiding the details of the call from the user. Likewise, the solver output is
collected in a standardized result structure and returned to the user.

2.2 Introduction to Solver and Problem Types

TOMLAB solves a number of different types of optimization problems. The currently defined types are listed in
Table 1.

The global variable probType contains the current type of optimization problem to be solved. An optimization
solver is defined to be of type solvType, where solvType is any of the probType entries in Table 1. It is clear that a
solver of a certain solvType is able to solve a problem defined to be of another type. For example, a constrained
nonlinear programming solver should be able to solve unconstrained problems, linear and quadratic programs
and constrained nonlinear least squares problems. In the graphical user interface and menu system an additional
variable optType is defined to keep track of what type of problem is defined as the main subject. As an example,
the user may select the type of optimization to be quadratic programming (optType == 2), then select a particular
problem that is a linear programming problem (probType == 8) and then as the solver choose a constrained NLP
solver like MINOS (solvType == 3).

Table 1: The different types of optimization problems defined in TOMLAB.

probType Type of optimization problem
uc 1 Unconstrained optimization (incl. bound constraints).
qp 2 Quadratic programming.
con 3 Constrained nonlinear optimization.
ls 4 Nonlinear least squares problems (incl. bound constraints).
lls 5 Linear least squares problems.
cls 6 Constrained nonlinear least squares problems.
mip 7 Mixed-Integer programming.
lp 8 Linear programming.
glb 9 Box-bounded global optimization.
glc 10 Global mixed-integer nonlinear programming.
miqp 11 Constrained mixed-integer quadratic programming.
minlp 12 Constrained mixed-integer nonlinear optimization.
sdp 13 Semi-definite programming.
miqq 14 MIQP with quadratic constraints.
exp 15 Exponential fitting problems.
nts 16 Nonlinear Time Series.

Please note that since the actual numbers used for probType may change in future releases, it is recommended to
use the text abbreviations. See help for checkType for further information.

10

Define probSet to be a set of defined optimization problems belonging to a certain class of problems of type
probType. Each probSet is physically stored in one file, an Init File. In Table 2 the currently defined problem sets
are listed, and new probSet sets are easily added.

Table 2: Defined test problem sets in TOMLAB. probSets marked with ∗ are not part of the standard
distribution

probSet probType Description of test problem set
uc 1 Unconstrained test problems.
qp 2 Quadratic programming test problems.
con 3 Constrained test problems.
ls 4 Nonlinear least squares test problems.
lls 5 Linear least squares problems.
cls 6 Linear constrained nonlinear least squares problems.
mip 7 Mixed-integer programming problems.
lp 8 Linear programming problems.
glb 9 Box-bounded global optimization test problems.
glc 10 Global MINLP test problems.
miqp 11 Constrained mixed-integer quadratic problems.
minlp 12 Constrained mixed-integer nonlinear problems.
sdp 13 Semi-definite optimization problems.
miqq 14 MIQP + quadratic constraints problems.
exp 15 Exponential fitting problems.
nts 16 Nonlinear time series problems.

mgh 4 More, Garbow, Hillstrom nonlinear least squares problems.
amp 3 AMPL test problems as nl-files.
chs∗ 3 Hock-Schittkowski constrained test problems.
uhs∗ 1 Hock-Schittkowski unconstrained test problems.
cto∗ 3 CUTE constrained test problems as dll-files.
ctl∗ 3 CUTE large constrained test problems as dll-files.
uto∗ 1 CUTE unconstrained test problems as dll-files.
utl∗ 1 CUTE large unconstrained test problems as dll-files.

The names of the predefined Init Files that do the problem setup, and the corresponding low level routines are
constructed as two parts. The first part being the abbreviation of the relevant probSet, see Table 2, and the
second part denotes the computed task, shown in Table 3. The user normally does not have to define the more
complicated functions ¦ d2c and ¦ d2r. Only the solver nlpSolve can utilize the information in ¦ d2c.
The Init File has two modes of operation; either return a string matrix with the names of the problems in the
probSet or a structure with all information about the selected problem. All fields in the structure, named Prob, are
presented in tables in Section A. Using a structure makes it easy to add new items without too many changes in
the rest of the system. The menu systems and the GUI are using the string matrix returned from the Init File for
user selection of which problem to be solved. For further discussion about the definition of optimization problems
in TOMLAB, see Section 4.

There are default values for everything that is possible to set defaults for, and all routines are written in a way
that makes it possible for the user to just set an input argument empty and get the default.

2.3 The Process of Solving Optimization Problems with TOMLAB

A flow-sheet of the process of optimization in TOMLAB is shown in Figure 1. Normally, a single optimization
problem is solved running the menu system or the Graphical User Interface (GUI). When several problems are to
be solved, e.g. in algorithmic development, it is inefficient to use an interactive system. This is symbolized with
the Advanced User box in the figure, which directly runs the Optimization Driver. If a problem is specified in the
TOMLAB Quick format and not converted to the TOMLAB Init File format , then the GUI and menu systems

11

Table 3: Names for predefined Init Files and low level m-files in TOMLAB.

Generic name Purpose (¦ is any probSet, e.g. ¦=con)
¦ prob Init File that either defines a string matrix with problem names

or a structure prob for the selected problem.
¦ f Compute objective function f(x).
¦ g Compute the gradient vector g(x).
¦ H Compute the Hessian matrix H(x).
¦ c Compute the vector of constraint functions c(x).
¦ dc Compute the matrix of constraint normals, ∂c(x)/dx.
¦ d2c Compute the 2nd part of 2nd derivative matrix of the Lagrangian

function,
∑

i λi∂
2ci(x)/dx

2.
¦ r Compute the residual vector r(x).
¦ J Compute the Jacobian matrix J(x).
¦ d2r Compute the 2nd part of the Hessian matrix,

∑

i ri(x)∂
2ri(x)/dx

2

are not available and the user must either call the driver routine or call the solver directly. The direct solver call
is possible when running a TOM solver, that takes the problem structure as the input. See Section 3 for a list of
the TOM solvers.

Depending on the type of problem, the user needs to supply the low-level routines that calculate the objective
function, constraint functions for constrained problems, and also if possible, derivatives. To simplify this coding
process so that the work has to be performed only once, TOMLAB provides gateway routines that ensure that any
solver can obtain the values in the correct format.

For example, when working with a least squares problem, it is natural to code the function that computes the vector
of residual functions ri(x1, x2, . . .), since a dedicated least squares solver probably operates on the residual while
a general nonlinear solver needs a scalar function, in this case f(x) = 1

2r
T (x)r(x). Such issues are automatically

handled by the gateway functions.

12

¤£ ¡¢User

A
AU

¤£ ¡¢User

Menu system / GUI

Optimization Driver

TOMLAB solver Optimization Toolbox Solver MEX-file Solver

¤£ ¡¢Advanced User

?

Interface Routines

TOMLAB Gateway routines

Low Level Routines

³³³³³³)

¡
¡

¡
¡¡ª

A
A
A
A
A
A
A
AAU

HHHHHHHHj

?

@
@
@R

©©©©©©¼

»»»»»»»»»»»»9

MEX-file interface

XXXXXXXXz

XXXXz

Init File
-

¾

nlp f, nlp g, nlp H, nlp c, nlp dc, nlp d2c, nlp r, nlp J, nlp d2r

Compute f(x), g(x), H(x), c(x), ∂c(x)/dx,
∑

i λi∂
2ci(x)/dx

2

For NLLS residual r(x), Jacobian J(x),
∑

i ri(x)∂
2ri(x)/dx

2

Setup problem. Define names of
functions computing f(x), g(x) etc.

Figure 1: The process of optimization in TOMLAB.

13

2.4 Low Level Routines and Gateway Routines

Low level routines are the routines that compute:

• The objective function value

• The gradient vector

• The Hessian matrix (second derivative matrix)

• The residual vector (for nonlinear least squares problems)

• The Jacobian matrix (for nonlinear least squares problems)

• The vector of constraint functions

• The matrix of constraint normals (the constraint Jacobian)

• The second part of the second derivative of the Lagrangian function.

The last three routines are only needed for constrained problems.

The names of these routines are defined in the structure fields Prob.USER.f, Prob.USER.g, Prob.USER.H etc. It
is the task for the Init File (the predefined Init Files all have names of the type ¦ prob)) to set the names of the
low level m-files. This is done by a call to the routine mFiles with the names as arguments. As an example, see
the last part of the code of con prob below.

...

...

Prob = mFiles(Prob,’con_f’,’con_g’,’con_H’,’con_c’,’con_dc’,’con_d2c’);

Prob = conProbSet(Prob, Name, P, ...

x_0, x_L, x_U, x_min, x_max, f_Low, xName, x_opt, f_opt, ...

cName, A, b_L, b_U, c_L, c_U, HessPattern, ConsPattern,...

pSepFunc, uP, uPName);

Only the low level routines relevant for a certain type of optimization problem need to be coded. There are dummy
routines for the others. Numerical differentiation is automatically used for gradient, Jacobian and constraint
gradient if the corresponding user routine is non present or left out when calling mFiles. However, the solver
always needs more time to estimate the derivatives compared to if the user supplies a code for them. Also the
numerical accuracy is lower for estimated derivatives, so it is recommended that the user always tries to code the
derivatives, if it is possible.

TOMLAB is using gateway routines (nlp f, nlp g, nlp H, nlp c, nlp dc, nlp d2c, nlp r, nlp J, nlp d2r). These
routines extract the search directions and line search steps, count iterations, handle separable functions, keep
track of the kind of differentiation wanted etc. They also handle the separable NLLS case and NLLS weighting.
By the use of global variables, unnecessary evaluations of the user supplied routines are avoided.

To get a picture of how the low-level routines are used in the system, consider Figure 2 and 3. Figure 2 illustrates
the chain of calls when computing the objective function value in ucSolve for a nonlinear least squares problem
defined in mgh prob, mgh r and mgh J. Figure 3 illustrates the chain of calls when computing the numerical
approximation of the gradient (by use of the routine fdng) in ucSolve for an unconstrained problem defined in
uc prob and uc f.

Information about a problem is stored in the structure variable Prob, described in detail in the tables in Appendix
A. This variable is an argument to all low level routines. In the field element Prob.uP, problem specific information
needed to evaluate the low level routines are stored. This field is most often used if problem related questions
are asked when generating the problem. It is often the case that the user wants to supply the low-level routines
with additional information besides the variables x that are optimized. Any unused fields could be defined in the
structure Prob for that purpose. To avoid potential conflicts with future Tomlab releases, it is recommended to
use subfields of Prob.user. It the user wants to send some variables a, B and C, then, after creating the Prob
structure, these extra variables are added to the structure:

14

ucSolve -
¾

nlp f -
¾

ls f -
¾

nlp r -
¾

mgh r

Figure 2: The chain of calls when computing the objective function value in ucSolve for a nonlinear least
squares problem defined in mgh prob, mgh r and mgh J.

ucSolve -
¾

nlp g -
¾

fdng -
¾

nlp f -
¾

uc f

Figure 3: The chain of calls when computing the numerical approximation of the gradient in ucSolve for
an unconstrained problem defined in uc prob and uc f.

Prob.user.a=a;

Prob.user.B=B;

Prob.user.C=C;

Then, because the Prob structure is sent to all low-level routines, in any of these routines the variables are picked
out from the structure:

a = Prob.user.a;

B = Prob.user.B;

C = Prob.user.C;

A more detailed description of how to define new problems is given in sections 5, 6 and 8. The usage of Prob.uP
is described in Section 10.3.

Different solvers all have different demand on how information should be supplied, i.e. the function to optimize, the
gradient vector, the Hessian matrix etc. To be able to code the problem only once, and then use this formulation
to run all types of solvers, interface routines that returns information in the format needed for the relevant solver
were developed.

Table 4 describes the low level test functions and the corresponding Init File routine needed for the predefined
constrained optimization (con) problems. For the predefined unconstrained optimization (uc) problems, the
global optimization (glb, glc) problems and the quadratic programming problems (qp) similar routines have been
defined.

Table 4: Generally constrained nonlinear (con) test problems.

Function Description
con prob Init File. Does the initialization of the con test problems.
con f Compute the objective function f(x) for con test problems.
con g Compute the gradient g(x) for con test problems. x
con H Compute the Hessian matrix H(x) of f(x) for con test problems.
con c Compute the constraint residuals c(x) for con test problems.
con dc Compute the derivative of the constraint residuals for con test problems.
con d2c Compute the 2nd part of 2nd derivative matrix of the Lagrangian function,

∑

i λi∂
2ci(x)/dx

2 for con test problems.
con fm Compute merit function θ(xk).
con gm Compute gradient of merit function θ(xk).

To conclude, the system design is flexible and easy to expand in many different ways.

15

3 Optimization Problem Types and Solver Routines in TOMLAB

Section 3.1 defines all problem types in TOMLAB. Each problem definition is accompanied by brief suggestions
on suitable solvers. This is followed in Section 3.2 by a complete list of the available solver routines in TOMLAB
and the various available extensions, such as /SOL and /CGO.

3.1 Optimization Problem Types Defined in TOMLAB

The unconstrained optimization (uc) problem is defined as

min
x

f(x)

s/t xL ≤ x ≤ xU ,

(1)

where x, xL, xU ∈ R
n and f(x) ∈ R. For unbounded variables, the corresponding elements of xL, xU may be set

to ±∞.

The TOM routine ucSolve includes several of the most popular search step methods for unconstrained optimization.
Bound constraints are treated as described in Gill et. al. [34]. The search step methods for unconstrained optimiza-
tion included in ucSolve are: the Newton method, the quasi-Newton BFGS and DFP method, the Fletcher-Reeves
and Polak-Ribiere conjugate-gradient method, and the Fletcher conjugate descent method. The quasi-Newton
methods may either update the inverse Hessian (standard) or the Hessian itself. The Newton method and the
quasi-Newton methods updating the Hessian are using a subspace minimization technique to handle rank prob-
lems, see Lindström [64]. The quasi-Newton algorithms also use safe guarding techniques to avoid rank problem
in the updated matrix.

Another TOM solver suitable for unconstrained problems is the structural trust region algorithm sTrustr, combined
with an initial trust region radius algorithm. The code is based on the algorithms in [18] and [77], and treats
partially separable functions. Safeguarded BFGS or DFP are used for the quasi-Newton update, if the analytical
Hessian is not used. The set of constrained nonlinear solvers could also be used for unconstrained problems.

The quadratic programming (qp) problem is defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(2)

where c, x, xL, xU ∈ R
n, F ∈ R

n×n, A ∈ R
m1×n, and bL, bU ∈ R

m1 . A positive semidefinite F -matrix gives a convex
QP, otherwise the problem is nonconvex. Nonconvex quadratic programs are solved with a standard active-set
method [65], implemented in the TOM routine qpSolve. qpSolve explicitly treats both inequality and equality
constraints, as well as lower and upper bounds on the variables (simple bounds). It converges to a local minimum
for indefinite quadratic programs. In TOMLAB v3.2 MINOS in the general or the QP-version (QP-MINOS), or
the dense QP solver QPOPT may be used. In the TOMLAB /SOL extension the SQOPT solver is suitable for
both dense and large, sparse convex QP and SNOPT works fine for dense or sparse nonconvex QP.

The constrained nonlinear optimization problem (con) is defined as

min
x

f(x)

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(3)

where x, xL, xU ∈ R
n, f(x) ∈ R, A ∈ R

m1×n, bL, bU ∈ R
m1 and cL, c(x), cU ∈ R

m2 . For general constrained
nonlinear optimization a sequential quadratic programming (SQP) method by Schittkowski [79] is implemented in
the TOM solver conSolve. conSolve also includes an implementation of the Han-Powell SQP method. There are
also a TOM routine nlpSolve implementing the Filter SQP by Fletcher and Leyffer presented in [26].

Another constrained solver in TOMLAB is the structural trust region algorithm sTrustr, described above. Cur-
rently, sTrustr only solves problems where the feasible region, defined by the constraints, is convex. In TOMLAB v3.2

16

MINOS solves constrained nonlinear programs. The TOMLAB /SOL extension gives an additional set of general
solvers for dense or sparse problems.

The box-bounded global optimization (glb) problem is defined as

min
x

f(x)

s/t −∞ < xL ≤ x ≤ xU <∞,

(4)

where x, xL, xU ∈ R
n, f(x) ∈ R, i.e. problems of the form (1) that have finite simple bounds on all variables.

The TOM solver glbSolve implements the DIRECT algorithm [61], which is a modification of the standard Lips-
chitzian approach that eliminates the need to specify a Lipschitz constant. In glbSolve no derivative information is
used. For global optimization problems with expensive function evaluations the TOM routine ego implements the
Efficient Global Optimization (EGO) algorithm [63]. The idea of the EGO algorithm is to first fit a response surface
to data collected by evaluating the objective function at a few points. Then, EGO balances between finding the
minimum of the surface and improving the approximation by sampling where the prediction error may be high.

The global mixed-integer nonlinear programming (glc) problem is defined as

min
x

f(x)

s/t
−∞ < xL ≤ x ≤ xU <∞

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU , xj ∈ N ∀j ∈I,

(5)

where x, xL, xU ∈ R
n, f(x) ∈ R, A ∈ R

m1×n, bL, bU ∈ R
m1 and cL, c(x), cU ∈ R

m2 . The variables x ∈ I, the index
subset of 1, ..., n, are restricted to be integers.

The TOM solver glcSolve implements an extended version of the DIRECT algorithm [62], that handles problems
with both nonlinear and integer constraints.

The linear programming (lp) problem is defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(6)

where c, x, xL, xU ∈ R
n, A ∈ R

m1×n, and bL, bU ∈ R
m1 .

The TOM solver lpSolve implements an simplex algorithm for lp problems.

When a dual feasible point is known in (6) it is efficient to use the dual simplex algorithm implemented in the TOM
solver DualSolve. In TOMLAB v3.2 the LP interface to MINOS, called LP-MINOS is efficient for solving large,
sparse LP problems. Dense problems are solved by LPOPT. The TOMLAB /SOL extension gives the additional
possibility of using SQOPT to solve large, sparse LP.

The mixed-integer programming problem (mip) is defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU , xj ∈ N ∀j ∈I

(7)

where c, x, xL, xU ∈ R
n, A ∈ R

m1×n, and bL, bU ∈ R
m1 . The variables x ∈ I, the index subset of 1, ..., n are

restricted to be integers. Equality constraints are defined by setting the lower bound equal to the upper bound,
i.e. for constraint i: bL(i) = bU (i).

Mixed-integer programs are normally solved using the TOM routine mipSolve that implements a standard branch-
and-bound algorithm, see Nemhauser and Wolsey [69, chap. 8]. When dual feasible solutions are available,
mipSolve is using the TOMLAB dual simplex solver DualSolve to solve subproblems, which is significantly faster
than using an ordinary linear programming solver, like the TOMLAB lpSolve. mipSolve also implements user

17

defined priorities for variable selection, and different tree search strategies. For 0/1 - knapsack problems a round-
down primal heuristic is included. Another TOM solver is the cutting plane routine cutplane, using Gomory cuts.
In TOMLAB Base Module v3.2, both TOM routines are using the linear programming routines in TOMLAB
(lpSolve and DualSolve), to solve relaxed subproblems. In TOMLAB v3.2, mipSolve is using the LP version of
MINOS with warm starts for the subproblems, giving great speed improvement. The Tomlab /Xpress extension
gives access to the state-of-the-art LP, QP, MILP and MIQP solver Xpress-MP. For many MIP problems, it is
necessary to use such a powerful solver, if the solution should be obtained in any reasonable time frame.

The linear least squares (lls) problem is defined as

min
x

f(x) = 1
2 ||Cx− d||

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(8)

where x, xL, xU ∈ R
n, d ∈ R

M , C ∈ R
M×n, A ∈ R

m1×n, bL, bU ∈ R
m1 and cL, c(x), cU ∈ R

m2 .

LSQR solves unconstrained sparse lls problems. LSEI solves the general dense problems. WNNLS is a fast and
robust replacement for the Matlab nnls. The general least squares solver clsSolve may also be used. In the
TOMLAB /NPSOL or TOMLAB /SOL extension the LSSOL solver is suitable for dense linear least squares
problems.

The constrained nonlinear least squares (cls) problem is defined as

min
x

f(x) = 1
2r(x)

T r(x)

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(9)

where x, xL, xU ∈ R
n, r(x) ∈ R

M , A ∈ R
m1×n, bL, bU ∈ R

m1 and cL, c(x), cU ∈ R
m2 .

The TOM nonlinear least squares solver clsSolve treats problems with bound constraints in a similar way as the
routine ucSolve. This strategy is combined with an an active-set strategy to handle linear equality and inequality
constraints [10].

clsSolve includes four optimization methods for nonlinear least squares problems: the Gauss-Newton method, the
Al-Baali-Fletcher [4] and the Fletcher-Xu [24] hybrid method, and the Huschens TSSM method [59]. If rank
problems occur, the solver is using subspace minimization. The line search algorithm used is the same as for
unconstrained problems.

Another fast and robust solver is NLSSOL, available in the TOMLAB /NPSOL or the TOMLAB /SOL extension
toolbox.

One important utility routine is the TOM line search algorithm LineSearch, used by the solvers conSolve, clsSolve
and ucSolve. It implements a modified version of an algorithm by Fletcher [25, chap. 2]. The line search algorithm
uses quadratic and cubic interpolation, see Section 13.2.3.

Another TOM routine, preSolve, is running a presolve analysis on a system of linear equalities, linear inequalities
and simple bounds. An algorithm by Gondzio [42], somewhat modified, is implemented in preSolve. See [10] for a
more detailed presentation.

18

3.2 Solver Routines in TOMLAB

3.2.1 Solvers Available in all Tomlab Versions

TOMLAB includes a large set of optimization solvers. Most of them were originally developed by the Applied
Optimization and Modeling group (TOM) [51]. Since then they have been improved e.g. to handle Matlab sparse
arrays and been further developed. Table 5 lists the main set of TOM optimization solvers in all versions of
TOMLAB.

Table 5: The TOM optimization solvers in TOMLAB Base Module v3.2.

Function Description Section Page
ucSolve Unconstrained optimization with simple bounds on the parameters.

Implements Newton, quasi-Newton and conjugate-gradient methods.
13.1.22 135

sTrustr Constrained convex optimization of partially separable functions, us-
ing a structural trust region algorithm.

13.1.20 132

glbSolve Box-bounded global optimization, using only function values. 13.1.7 104
glbFast Box-bounded global optimization, using only function values. Fortran

MEX implementation of glbSolve.
13.1.8 106

glcSolve Global mixed-integer nonlinear programming, using no derivatives. 13.1.9 108
glcFast Box-bounded global optimization, using only function values. Fortran

MEX implementation of glcSolve.
13.1.10 110

glcCluster Hybrid algorithm for constrained mixed-integer global optimization.
Uses a combination of glcFast (DIRECT) and a clustering algorithm.

13.1.11 113

clsSolve Constrained nonlinear least squares. Handles simple bounds and
linear equality and inequality constraints using an active-set strat-
egy. Implements Gauss-Newton, and hybrid quasi-Newton and Gauss-
Newton methods.

13.1.1 90

conSolve Constrained nonlinear minimization solver using two different sequen-
tial quadratic programming methods.

13.1.2 92

nlpSolve Constrained nonlinear minimization solver using a filter SQP algo-
rithm.

13.1.16 123

lpSolve Linear programming using a simplex algorithm. 13.1.13 117
DualSolve Solves a linear program with a dual feasible starting point. 13.1.4 97
qpSolve Non-convex quadratic programming. 13.1.17 125
mipSolve Mixed-integer programming using a branch-and-bound algorithm. 13.1.15 121
cutplane Mixed-integer programming using a cutting plane algorithm. 13.1.3 95
infSolve Constrained minimax optimization. Reformulates problem and calls

any suitable nonlinear solver.
13.1.12 115

slsSolve Sparse constrained nonlinear least squares. Reformulates problem and
calls any suitable sparse nonlinear solver.

13.1.19 130

L1Solve Constrained L1 optimization. Reformulates problem and calls any
suitable nonlinear solver.

13.1.14 119

Additional Fortran solvers in TOMLAB v3.2 are listed in Table 6. They are called using a set of MEX-file interfaces
developed in TOMLAB.

Another set of Fortran solvers were developed by the Stanford Optimization Laboratory (SOL). Table 7 lists the
SOL optimization solvers available in TOMLAB v3.2, called using a set of MEX-file interfaces developed as part
of TOMLAB. All functionality of the SOL solvers are available and changeable in the TOMLAB framework in
Matlab.

19

Table 6: Additional solvers in TOMLAB Base Module v3.2.

Function Description Reference Page
DFZERO Finding a zero to f(x) in an interval, x is one-dimensional. [80, 19]
LSQR Sparse linear least squares. [71, 70, 78]
LSEI Dense constrained linear least squares
WNNLS Nonnegative constrained linear least squares
QLD Convex quadratic programming

Table 7: The SOL optimization solvers in TOMLAB /MINOS v3.2.

Function Description Reference Page
MINOS 5.5 Sparse linear and nonlinear programming with linear and nonlin-

ear constraints.
[68]

LP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
linear programming.

[68]

QP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
quadratic programming.

[68]

LPOPT 1.0-10 Dense linear programming. [36]
QPOPT 1.0-10 Non-convex quadratic programming with dense constraint matrix

and sparse or dense quadratic matrix.
[36]

20

3.2.2 Solvers Available in the TOMLAB /SOL Toolbox

The extension toolbox TOMLAB/SOL gives access to the complete set of Fortran solvers developed by the Stanford
Systems Optimization Laboratory (SOL). These solvers are listed in Table 8.

Table 8: The optimization solvers in the TOMLAB /SOL toolbox.

Function Description Reference Page
NPSOL 5.02 Dense linear and nonlinear programming with linear and nonlinear

constraints.
[40]

SNOPT 6.1-1 Large, sparse linear and nonlinear programming with linear and
nonlinear constraints.

[39, 37]

SQOPT 6.1-1 Sparse convex quadratic programming. [38]
NLSSOL 5.0-2 Constrained nonlinear least squares. NLSSOL is based on

NPSOL. No reference except for general NPSOL reference.
[40]

LSSOL 1.05-4 Dense linear and quadratic programs (convex), and constrained
linear least squares problems.

[35]

3.2.3 Solvers Available in the TOMLAB/CGO Toolbox

The add-on toolbox Tomlab /CGO solves costly global optimization problems. The solvers are listed in Table 9.
They are written in a combination of Matlab and Fortran code, where the Fortran code is called using a set of
MEX-file interfaces developed in TOMLAB.

Table 9: Additional solvers in Tomlab /CGO.

Function Description Reference Page
rbfSolve Costly constrained box-bounded optimization using a RBF algorithm. [12] 127
ego Costly constrained box-bounded optimization using the Efficient

Global Optimization (EGO) algorithm.
[63] 99

21

3.2.4 Finding Available Solvers

To get a list of all available solvers, including Fortran, C and Matlab Optimization Toolbox solvers, for a certain
solvType the user just calls the routine SolverList with solvType as argument. solvType should either be a string
(’uc’, ’con’ etc.) or the corresponding solvType number, see Table 1. As an example, if wanting a list of all available
solvers of solvType con, then

SolverList(’con’)

gives the output

Solver

nlpSolve

conSolve

sTrustr

constr

minos

npsol

npopt

snopt

fmincon

and if SolverList is called with no given argument then all available solvers for all different solvType are printed.
The second output arguments gives the solvType for each solver. Note that solvers for a more general problem
type may be used to solve the problem. In Table 10 an attempt has been made to classify these relations.

Table 10: The problem classes (probType) possible to solve with each type of solver (solvType) is marked
with an x. When the solver is in theory possible to use, but from a practical point of view is probably
not suitable, parenthesis are added (x).

solvType
probType uc qp con ls lls cls mip lp glb glc
uc x x x (x)
qp x x (x)
con x (x)
ls x x x (x)
lls x x x x x (x)
cls x x (x)
mip x (x)
lp x x x x (x)
glb (x) x x
glc (x) x
exp x x (x) x (x)

22

4 Defining User Problems in the TOMLAB Quick or Init File format

TOMLAB is based on the principle of creating a problem structure that defines the problem and includes all
relevant information needed for the solution of the user problem. Two formats are defined, the TOMLAB Quick
format (TQ format) and the Init File format (IF format). The TQ format gives the user a fast way to setup a
problem structure and solve the problem from the Matlab command line using any suitable TOMLAB solver.

The definition of an advanced general graphical user interface (GUI) and a similar menu system demanded a more
complicated format. The solution is the IF format, where groups of problems are collected into sets, each set
having an initialization file. Besides defining the problem, a list of all problems in the set is also generated by the
initialization file.

In this section follows a more detailed description of the two formats.

4.1 TOMLAB Quick (TQ) Format for User Problems

The TQ format is a quick way to setup a problem and easily solve it using any of the TOMLAB solvers. The
principle is to put all information in a Matlab structure, which then is passed to the solver, which extracts the
relevant information. The structure is passed to the user function routines for nonlinear problems, making it a
convenient way to pass other types of information

The solution process for the TQ format has four steps:

1. Define the problem structure, often called Prob.

2. Define any user supplied function routines.

3. Call the solver or the solver driver routine.

4. Postprocessing, e.g. print the result of the optimization.

Step 1 could be done in several ways in TOMLAB. Recommended is to call one of the following routines dependent
on the type of optimization problem, see Table 11.

Table 11: Routines to create a problem structure in the TQ format.

Matlab call probTypes Type of optimization problem
Prob = qpAssign(...) 2 Quadratic programming.
Prob = conAssign(...) 1,3 Unconstrained and constrained nonlinear optimization.
Prob = clsAssign(...) 4,5,6 Unconstrained and constrained nonlinear least squares.
Prob = mipAssign(...) 7 Mixed-Integer programming.
Prob = lpAssign(...) 8 Linear programming.
Prob = glcAssign(...) 9,10 Box-bounded or mixed-integer constrained global programming.
Prob = probAssign(...) 1,3-6,9-10 General routine, but does not include all possible options.

Step 2 is a call to mFiles.m giving the function names as strings:

Prob = mFiles(Prob, ...);

This step is only needed when using probAssign, the other routines calls mFiles directly.

Step 3, the solver call, is either a direct to the call, e.g. conSolve:

Result = conSolve(Prob);

or a call to the multi-solver driver routine tomRun, e.g. for constrained optimization:

Result = tomRun(’conSolve’, Prob);

23

Note that tomRun handles several input formats, also the TOMLAB Init File format format described in Section
4.2. It may also print the names of the available solvers.

Step 4 could be a call to PrintResult.m:

PrintResult(Result);

The 4th step could be included in Step 3 by increasing the print level to 1, 2 or 3 in the call to the driver routine

Result = tomRun(’conSolve’,Prob, [], 3);

See the different demo files that gives examples of how to apply the TQ format: conDemo.m, ucDemo.m,
qpDemo.m, lsDemo.m, lpDemo.m, mipDemo.m, glbDemo.m and glcDemo.m.

4.2 TOMLAB Init File (IF) Format for User Problems

In the IF format one initialization file is defined for each set of user problems. The set could consist of only one
problem.

The initialization file should perform two tasks:

• If the input problem number is empty, return a string matrix with the i:th row defining the name of the i:th
problem defined in the file.

• If the input problem number is nonempty, return the TOMLAB problem structure defining the corresponding
problem number.

To write such a basic routine is very simple. The user could write such a routine and it will function well.

However, some thoughts make it clear that additional functionality is nice to have in such a routine Adding an
integer ask, to tell if the initialization routine should ask questions, makes the routine either silent, or optionally
asking for problem dependent parameters. TOMLAB has a query routine predefined, that is suitable to use:
askparam.m. Examples of the use of askparam is implemented in several of the predefined Init Files in the
testprob directory: uc prob.m, qp prob.m, mgh prob.m, ls prob.m, cls prob.m and glb prob.m. Most often a problem
dimension is asked for, or a certain data series. Sometimes a parameter value.

Adding the problem structure as input makes it possible to override the default parameters, setting some fields
beforehand.

The syntax of the initialization file (Init File) is the following (assuming the name of the function is new prob.m):

[probList, Prob] = new_prob(P, ask, Prob)

where

P The problem number, either empty, or an integer.
ask An integer defining if questions should be asked in the Init File.

If ask >= 1 ask questions in the Init File. If ask = 0 use default
values. If ask < 0 use values defined in Prob.uP if defined or oth-
erwise use defaults. The last options makes it possible to change
values before the call. If isempty(ask), then if length(Prob.uP)
> 0, ask = −1, else ask = 0.

Prob As input, the problem structure is either empty, or some or all of
the fields are defined, and overrides the default values in the Init
File.

probList A string matrix, always returned.
Prob As output, a full definition of the problem structure is returned if

a valid problem number P is given as input.

If a group of problems have been defined in the TOMLAB Init File format it is easy to retrieve a problem structure
similar to the TOMLAB Quick format format for any of these problems. The general call is

24

Prob = probInit(probFile, probNumber, ask, Prob)

where

probFile Name of the Init File, without file extension.
probNumber The problem number, an integer.
ask An integer, defined exactly as in the call to new prob.m above.
Prob As input, the problem structure is either empty, or some or all of

the fields are defined, and overrides the default values in the Init
File.

When a problem is available as one of the problems defined in the TOMLAB Init File format, i.e. as one problem
in an Init File, there are four ways to proceed to solve the problem

• Solve the problem using the TOMLAB GUI, tomGUI.

tomGUI;

or

global ResultGUI

tomGUI; % After the run results are available in ResultGUI

... % Postprocess ResultGUI

Only the last problem solved is available in ResultGUI. All solver parameters and other parameters influencing
the optimization are possible to change before the call to a suitable solver. Note the code generation facility
in tomGUI, which creates a m-file and mat-file that solves identically the same problem from the command
line. This m-file may, for example, be further extended to solve sequences of problem. This concept is further
explained on page 84.

• Solve the problem using the TOMLAB menu program, tomMenu. Some, but not all, solver parameters and
other parameters influencing the optimization are possible to change before the call to a suitable solver.

tomMenu;

or

Result = tomMenu; % After the run results are available in Result

... % Postprocess Result.

If more than one problem is solved Result(1) gives the results for the first problem, Result(2) gives the results
for the second problem, and so on.

• Pick up the problem structure using probInit and make any changes to the problem structure, e.g.

probFile = ’con_prob’;

probNumber = 10;

ask = [];

Prob = [];

Prob = probInit(probFile, probNumber, ask, Prob)

... % Make changes in the Prob structure

The fields in the structure are described in the tables in Appendix A. Then either directly call a solver

Result = conSolve(Prob);

or call the multi-solver driver routine tomRun

Result = tomRun(’conSolve’, Prob);

25

If increasing the print level to 1, 2 or 3 in the call to the driver routine the call is

Result = tomRun(’conSolve’, Prob, [], 3);

• Define a Prob structure with only the fields you want to change, e.g

Prob.optParam.MaxIter = 1000; % Increase maximal numbers of iterations

Prob.x_0 = [0 1 3]’; % Change initial value of x

% Tell tomRun to use conSolve to solve problem 10 from con_prob.

% Print Level 3 in the call to PrintResult

Result = tomRun(’conSolve’, ’con_prob’, 10, Prob, [], 3);

It is very easy to try another solver in TOMLAB, e.g. to see what nlpSolve does on this problem just add
one line

Result = tomRun(’nlpSolve’, ’con_prob’, 10, Prob, [], 3);

Note that when solving a sequence of similar problems, the best way is to pick up the problem structure once
using probInit, and then make a loop, do the changes in the structure, and solve the problem for each change. An
example solving problem 10 in con prob.m one hundred times for different starting values in the interval [100, 100]

probFile = ’con_prob’;

probNumber = 10;

ask = [];

Prob = [];

Prob = probInit(probFile, probNumber, ask, Prob)

for i=1:100

Prob.x_0 = -100 + 200*rand(3,1);

Result = tomRun(’conSolve’, Prob, [], 1);

end

For each type of the optimization problem there is at least one Init File. All the predefined Init Files with test
problems are available in the testprob directory. See also the different demonstration files in the examples directory
that also includes a few examples of how to apply the IF format. In Appendix D detailed descriptions are given
on how to copy an Init File into a new Init File, and also adding new problems.

4.3 Create an Init File going from TQ to IF format

If dropping the wish to ask user questions, then a simpler type of initialization file may be created. Using the
routines newInitFile, addProb and makeInitFile, it is easy to collect a group of problem structures Prob into a set
and put them into the TOMLAB Init File format. The Prob structures are saved in a Matlab mat-file having the
same name as the Init File. Having defined a proper file in the TOMLAB Init File format, it is added to the GUI
calling the routine AddProblemFile.

See the file makeInitFileDemo for an example on how to create a new Init File and get it into the GUI. It is
recommended that the problems added into the Init File are of the same problem type (probType).

If only up to five problem structures are collected to the Init File, then only one call is needed

% Assume four structures P1,P3,P3 and P4 are created in TQ format

...

makeInitFile(’new_prob’,P1,P2,P3,P4);

If doing this type of call several times during a session global arrays used by makeInitFile must be cleared, and a
call to newInitFile is needed

26

newInitFile;

% Assume four structures P1,P3,P3 and P4 are created in TQ format

...

makeInitFile(’new_prob’,P1,P2,P3,P4);

It might be easier to collect the problems in a loop. Then addProb is usable. Assuming that conAssign is used to
create the basic problem, the following example shows the principles of making the new Init File:

% Make the assignments and calls for the first problem

Prob = conAssign (.....)

...

newInitFile(Prob);

for i=2:10 % Define problem 2, 3, up to 10

% Make the assignments necessary for this particular problem i

Prob.P = i;

...

% Then add the structure when it is complete

addProb(Prob);

end

makeInitFile(’new_prob’); % Create the Init File and save problems

Note that for LP, QP and MIP problems there is another alternative to create a file in the Init File format.
The routines lpAssign, qpAssign and mipAssign have an option to create Init Files with an arbitrarily number of
problems. See the help for the input arguments setupFile and nProblem in these routines. With this strategy the
problems are saved more efficiently with regards to space. One binary mat-file is created for each problem in the
Init File. If the number of problems are large, this alternative may be preferable. The Init File creation is more
complicated, and described in detail with examples in Section 5.

4.4 Adding an Init File to the GUI Data Base

In order to get a file created in the TOMLAB Init File format accessible to the GUI and menu system, it must be
added to the GUI init file data base. The database is stored in the file TomlabProblem.mat.

The command AddProblemFile adds a new Init File to the data base. The name of the file, a menu text shortly
describing the content of the Init File, the problem type, and one additional number mexType must be given.
mexType is always zero for Matlab files. The following example adds the user file new prob:

% Assume the name of the problem to add is ’new_prob’, of type ’con’

AddProblemFile(’new_prob’,’New user created problems’,’con’,0);

Note that in order to run the GUI and the menu system with the newly added problems, they must reside in the
current directory, or somewhere in the Matlab PATH. The added Init File is always put first, as the default file,
among the files having the same problem type.

If the GUI can not find the files it will crash. Then you must either put the problems in the Matlab PATH, or
delete the problems from the GUI data base. A problem is deleted by a call to DeleteProblemFile. You must also
know the problem type of the file.

% Assume the name of the problem to delete is ’new_prob’, of type ’con’

DeleteProblemFile(’new_prob’,’con’);

27

If there are many problems to be deleted from the GUI data base, or if other problems occur, there is a command
to restore everything back to the original distribution of TOMLAB:

CreateTomProb;

The user must press ENTER when a question Overwrite??? (ctrl-c to break) appears.

Another way to get an Init File into the GUI, and deleted from the GUI, is to use the GUI itself. By filling in the file
name in the field New Init File for GUI, and a menu text in New Init File Text, and after that pressing the button
Add Init File to GUI, the problem will be added to the GUI problem data base. Another RED button Delete
selected Init File, will delete the currently selected Init File, if is not part of the original TOMLAB distribution.

28

5 Solving Linear, Quadratic and Integer Programming Problems

This section describes how to define and solve linear and quadratic programming problems, and mixed-integer linear
programs using TOMLAB. Several examples are given on how to proceed, depending on if a quick solution is
wanted, or more advanced tests are needed. TOMLAB is also compatible with MathWorks Optimization TB v2.1.
See Appendix E for more information and test examples.

The test examples and output files are part of the standard distribution of TOMLAB, available in directory
usersguide, and all tests can be run by the user. There is a file RunAllTests that goes through and runs all tests for
this section. The diary command is used to save screen output and the resulting files are stored with the extension
out, and having the same name as the test file.

Also see the files lpDemo.m, qpDemo.m, and mipDemo.m, in the directory examples, where in each file a set of
simple examples are defined. The examples may be ran by giving the corresponding file name, which displays a
menu, or by running the general TOMLAB help routine tomHelp.m.

5.1 Linear Programming Problems

The general formulation in TOMLAB for a linear programming problem is

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(10)

where c, x, xL, xU ∈ R
n, A ∈ R

m1×n, and bL, bU ∈ R
m1 . Equality constraints are defined by setting the lower

bound equal to the upper bound, i.e. for constraint i: bL(i) = bU (i).

Linear programs are normally solved using the TOM routine lpSolve that implements a revised simplex algorithm.
It is also possible to use the active-set QP method routine qpSolve or a general nonlinear solver like nlpSolve or
conSolve. In TOMLAB v3.2, the SOL routines MINOS or QPOPT are suitable for linear programming problems.
To choose alternative solvers, the multi-driver routine tomRun is called.

To illustrate the solution of LPs consider the simple linear programming test problem

min
x1,x2

f(x1, x2) = −7x1 − 5x2

s/t x1 + 2x2 ≤ 6
4x1 + x2 ≤ 12
x1, x2 ≥ 0

(11)

named LP Example.

The following statements define this problem in Matlab

File: tomlab/usersguide/lpExample.m

Name = ’lptest’;

c = [-7 -5]’; % Coefficients in linear objective function

A = [1 2

4 1]; % Matrix defining linear constraints

b_U = [6 12]’; % Upper bounds on the linear inequalities

x_L = [0 0]’; % Lower bounds on x

% x_min and x_max are only needed if doing plots

x_min = [0 0]’;

x_max = [10 10]’;

% b_L, x_U and x_0 have default values and need not be defined.

% It is possible to call lpAssign with empty [] arguments instead

b_L = [-inf -inf]’;

x_U = [];

x_0 = [];

29

5.1.1 A Quick Linear Programming Solution

The quickest way to solve this problem is to define the following Matlab statements using the TOMLAB Quick format:

File: tomlab/usersguide/lpTest1.m

lpExample;

Prob = lpAssign(c, A, b_L, b_U, x_L, x_U, x_0, ’lpExample’);

Result = lpSolve(Prob);

PrintResult(Result);

lpAssign is used to define the standard Prob structure, which TOMLAB always uses to store all information about
a problem. The three last parameters could be left out. The upper bounds will default be Inf, and the problem
name is only used in the printout in PrintResult to make the output nicer to read. If x 0, the initial value, is left
out, an initial point is found by lpSolve solving a feasible point (Phase I) linear programming problem. In this
test the given x 0 is empty, so a Phase I problem must be solved. The solution of this problem gives the following
output to the screen

File: tomlab/usersguide/lpTest1.out

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: No Init File - 1: lpExample f_k -26.571428571428569000

f(x_0) 0.000000000000000000

Solver: lpSolve. EXIT=0.

Simplex method. Minimum reduced cost.

Optimal solution found

FuncEv 3 GradEv 0 Iter 3

Starting vector x:

x_0: 0.000000 0.000000

Optimal vector x:

x_k: 2.571429 1.714286

Lagrange multipliers v. Vector length 4:

v_k: 1.776357e-015 1.776357e-015 -4.549052e+000 -4.453845e+000

Diff x-x0:

2.571429e+000 1.714286e+000

Gradient g_k:

g_k: -1.019533e+001 -1.029884e+001

Reduced gradient gPr: :

gPr: 5.329071e-015 0.000000e+000

=== * * * == * * *

Having defined the Prob structure is it easy to call any solver that can handle linear programming problems,

Result = qpSolve(Prob);

PrintResult(Result)

Even a nonlinear solver may be used.

Result = tomRun(’nlpSolve’,Prob, [], 3);

All TOM solvers may either be called directly, or by using the driver routine tomRun, as in this case.

30

5.1.2 Several Linear Programs

If the user wants to solve more than one LP, or maybe the same LP but under different conditions, then it is possible
to define the problems in the TOMLAB Init File format directly. The lpAssign has additional functionality and
may create an Init File as an option. The same applies for the files qpAssign and mipAssign for quadratic and
mixed-integer programs. The file is then easily added to the GUI data base, and accessible from the GUI and
menu system.

Using the same example (11) to illustrate this format gives the Matlab statements

File: tomlab/usersguide/lpTest2.m

lpExample;

if exist(’lptest’) % Remove lptest if it previously exists

d=which(’lptest’);

delete(d);

end

lpAssign(c, A, b_L, b_U, x_L, x_U, x_0, ’lpExample’, ...

’lptest’, 1, [], x_min, x_max);

AddProblemFile(’lptest’,’Users Guide LP test problems’,’lp’);

tomRun(’lpSolve’,’lptest’,1);

In this example more parameters are used in the call to lpAssign, which tells lpAssign to define a new TOMLAB
problem Init File called lptest. The last two extra parameters x min and x max defines initial plotting axis and
are needed when the user wants to see plots in the GUI and menu programs. Otherwise these parameters are not
needed. The default is to use the lower and upper bounds on the variables, if they have finite values.

The lptest problem file is included in the GUI data base by the call to AddProblemFile and is furthermore set as
the default file for LP problems. Calling tomRun to solve the first problem in lptest will give exactly the same
output as in the first example in Section 5.1.1.

In the call to lpAssign the parameter after the file name lptest, called nProblem, controls which of two types of
definition files are created (See help lpAssign). Setting this parameter as empty or one, as in this case, defines a
program structure in the file lptest in which the user easily can insert more test problems. Note the comments in
the created file, which guides the user in how to define a new problem. There are two places to edit. The name of
the new problem must be added to the probList string matrix definition on row 17-21, and then the actual problem
definition from row 61 and afterwards. The new problem definition can be loaded by execution of a script, by
reading from a stored file or the user can explicitly write the Matlab statements to define the problem in the file
lptest.m. For more information on how to edit an Init File, see the Section D.1. The other type of LP definition
file created by lpAssign is discussed in detail in Section 5.1.3.

When doing this automatic Init File generation lpAssign stores the problem in a mat-file with a name combined
by three items: the name of the problem file (lptest), the string ’ P’ and the problem number given as the input
parameter next after the problem file name. In this case lpAssign defines the file lptest P1.mat.

5.1.3 Large Sets of Linear Programs

It is easy to create an Init File for a large set of test problems. This feature is illustrated by running a test where
the test problem is disturbed by random noise. The vector c in the objective function are disturbed, and the new
problems are defined and stored in the TOMLAB Init File format. To avoid too much output restrict the large
number of test problems to be three.

File: tomlab/usersguide/lpTest3.m

LargeNumber=3;

31

lpExample;

n=length(c);

if exist(’lplarge’) % Remove lplarge if it previously exists

d=which(’lplarge’);

delete(d);

end

for i=1:LargeNumber

cNew =c + 0.1*(rand(n,1)-0.5); % Add random disturbances to vector c

if i==1

% lpAssign defines lplarge.m for LargeNumber testproblems

% and stores the first problem in lplarge_P1.mat

k=[1,LargeNumber];

else

k=i; % lpAssign stores the ith problem in the lplarge_Pi.mat problem file

end

lpAssign(cNew, A, b_L, b_U, x_L, x_U, [], Name,’lplarge’, k);

end

% Define lplarge as the default file for LP problems in TOMLAB.

AddProblemFile(’lplarge’,’Large set of randomized LP problems’,’lp’);

runtest(’lpSolve’,0,’lplarge’,1:LargeNumber,0,0,1);

Each problem gets a unique name. In the first iteration, i = 1, lpAssign defines an Init File with three test
problems, and defines the first test problem, stored in lplarge P1.mat. In the other iterations lpAssign just defines
the other mat-files. All together three mat-files are defined: lplarge P1.mat, lplarge P2.mat and lplarge P3.mat.

AddProblemFile adds the new lplarge problem as the default LP test problem in TOMLAB. The runtest test
program utility runs the selected problems, in this case all three defined. The second zero argument is used if the
actual solver has several algorithmic options. In this case the zero refers to the default option in lpSolve, to use
the minimum cost rule as the variable selection rule. The last arguments are used to lower the default output and
avoid a pause statement after each problem is solved. The results are shown in the following file listing.

File: tomlab/usersguide/lpTest3.out

Solver: lpSolve. Algorithm 0

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: lplarge - 1: lptest - 1 f_k -26.501771581492278000

Solver: lpSolve. EXIT=0.

Simplex method. Minimum reduced cost.

Optimal solution found

FuncEv 3 GradEv 0 Iter 3

CPU time: 0.016000 sec. Elapsed time: 0.016000 sec.

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

32

===

Problem: lplarge - 2: lptest - 2 f_k -26.546357769596234000

Solver: lpSolve. EXIT=0.

Simplex method. Minimum reduced cost.

Optimal solution found

FuncEv 3 GradEv 0 Iter 3

CPU time: 0.016000 sec. Elapsed time: 0.015000 sec.

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: lplarge - 3: lptest - 3 f_k -26.425877951614162000

Solver: lpSolve. EXIT=0.

Simplex method. Minimum reduced cost.

Optimal solution found

FuncEv 3 GradEv 0 Iter 3

CPU time: 0.015000 sec. Elapsed time: 0.016000 sec.

5.1.4 More on Solving Linear Programs

When the problem is defined in the TOMLAB Init File format, it is then possible to run the graphical user interface
tomGUI, the menu program tomMenu, or the multi-solver driver routine tomRun with the necessary arguments.
To call the menu system, either type Result = tomMenu; or just tomMenu; at the Matlab prompt, choose Linear
Programming and the main menu in Figure 4 will be displayed.

Pushing the Choice of problem Init File and Problem button will display the menu Choice of problem Init File
button in Figure 5.

Selecting the menu lp Linear Programming displays the standard menu in Figure 6.

Note that if the test problems described in this chapter has been run, there are two more entries in Fig-
ure 5, lp Large set of randomized LP problems and lp Users Guide LP test problems. If clicking on the button
lp Users Guide LP test problems the single problem lpExample will be selected without any further questions. If
clicking on the button lp Large set of randomized LP problems the menu in Figure 7 is shown and a selection of
one of the three different problems defined is then possible.

After selecting the problem, the menu system returns back to the main LP menu. Selection of optimization solver
is done after pushing the Solver button. Then pushing the Solver algorithm button a particular algorithm choice is
possible for some of the solvers. Others have only one choice, and the menu system directly returns, after writing
a text in the command window.

The default settings of the optimization parameters are changed selecting Optimization Parameter Menu in the
main menu. Pushing the Optimize button will call the driver routine tomRun with the solver selected (or the
default one) and the result will be displayed in the Matlab command window. Finally, choose End and the menu
will disappear.

Instead of using the menu system, the problem could be solved by a direct call to tomRun from the Matlab
prompt or as a command in an m-file. The most straightforward way of doing it (when the problem is defined in
lpnew prob.m) is to give the following call from the Matlab prompt:

probNumber = 13; % Assume problem 13 is defined in lpnew_prob

Result = tomRun(’lpSolve’,’lpnew_prob’, probNumber);

Some other possibilities: Assume that a solution of a problem with the following requirements are wanted:

• Start in the point (1, 1).

• No output printed, neither in the driver routine nor in the solver.

33

Figure 4: The main menu for Linear Programming in tomMenu.

• Use MathWorks Optimization TB v1.5 solver lp.

Then the call to tomRun should be:

Prob = probInit(’lpnew_prob’,13); % Use Init File to define Prob

PriLev = 0;

Prob.x_0 = [1;1];

Prob.PriLevOpt = 0;

Result = tomRun(’lp’, Prob, [], PriLev);

To have the result of the optimization displayed call the routine PrintResult:

PrintResult(Result);

The following example shows how to call tomRun to solve the first problem in ownlp prob.m. Assume the same
requirements as the previous problem, but increase print level to get printing of results

probFile = ’ownlp_prob’;

Prob = probInit(probFile,1);

PriLev = 2;

Prob.x_0 = [1;1];

Prob.optParam.PriLev = 0;

Result = tomRun(’lp’, Prob, [], PriLev);

34

Figure 5: The Init File choice menu in tomMenu.

Figure 6: The problem choice menu for Linear Programming in tomMenu.

35

Figure 7: The problem choice menu for the three test problems defined in the User’s Guide.

36

5.2 Quadratic Programming Problems

The general formulation in TOMLAB for a quadratic programming problem is

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(12)

where c, x, xL, xU ∈ R
n, F ∈ R

n×n, A ∈ R
m1×n, and bL, bU ∈ R

m1 . Equality constraints are defined by setting the
lower bound equal to the upper bound, i.e. for constraint i: bL(i) = bU (i). Fixed variables are handled the same
way.

Quadratic programs are normally solved with a standard active-set method implemented in qpSolve, which explic-
itly treats both inequality and equality constraints, as well as lower and upper bounds on the variables (simple
bounds). It converges to a local minimum for indefinite quadratic programs. It is also possible to choose a general
constrained solver or in v3.0 the SOL routine QPOPT called using a MEX-file interface. To choose alternative
solvers, the multi-driver routine tomRun is called.

To illustrate the solution of QPs consider the simple quadratic programming test problem

min
x

f(x) = 4x2
1 + x1x2 + 4x2

2 + 3x1 − 4x2

s/t x1 + x2 ≤ 5
x1 − x2 = 0
x1 ≥ 0
x2 ≥ 0,

(13)

named QP Example. The following statements define this problem in Matlab

File: tomlab/usersguide/qpExample.m

Name = ’QP Example’; % File qpExample.m

F = [8 2 % Matrix F in 1/2 * x’ * F * x + c’ * x

2 8];

c = [3 -4]’; % Vector c in 1/2 * x’ * F * x + c’ * x

A = [1 1 % Constraint matrix

1 -1];

b_L = [-inf 0]’; % Lower bounds on the linear constraints

b_U = [5 0]’; % Upper bounds on the linear constraints

x_L = [0 0]’; % Lower bounds on the variables

x_U = [inf inf]’; % Upper bounds on the variables

x_0 = [0 1]’; % Starting point

x_min = [-1 -1]; % Plot region lower bound parameters

x_max = [6 6]; % Plot region upper bound parameters

5.2.1 A Quick Quadratic Programming solution

The quickest way to solve this problem is to define the following Matlab statements using the TOMLAB Quick format:

File: tomlab/usersguide/qpTest1.m

qpExample;

Prob = qpAssign(F, c, A, b_L, b_U, x_L, x_U, x_0, ’qpExample’);

Result = qpSolve(Prob);

PrintResult(Result);

37

The solution of this problem gives the following output to the screen

File: tomlab/usersguide/qpTest1.out

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: No Init File - 1: qpExample f_k -0.024999999999999994

f(x_0) 0.000000000000000000

Solver: qpSolve. EXIT=0. INFORM=1.

Active set strategy

Optimal point found

First order multipliers >= 0

Iter 4

Starting vector x:

x_0: 0.000000 0.000000

Optimal vector x:

x_k: 0.050000 0.050000

Lagrange multipliers v. Vector length 4:

v_k: 0.000000e+000 0.000000e+000 0.000000e+000 3.500000e+000

Diff x-x0:

5.000000e-002 5.000000e-002

Gradient g_k:

g_k: 3.500000e+000 -3.500000e+000

Reduced gradient gPr: :

gPr: 2.220446e-015 -1.332268e-015

Eigenvalues of Hessian at x_k

eig: 6.000000 10.000000

=== * * * == * * *

qpAssign is used to define the standard Prob structure, which TOMLAB always uses to store all information about
a problem. The three last parameters could be left out. The upper bounds will default be Inf, and the problem
name is only used in the printout in PrintResult to make the output nicer to read. If x 0, the initial value, is
left out, a initial point is found by qpSolve solving a feasible point (Phase I) linear programming problem calling
the TOMLAB lpSolve solver. In fact, the output shows that the given x0 = (0,−1)T was rejected because it was
infeasible, and instead a Phase I solution lead to the initial point x0 = (0, 0)T .

5.2.2 Several Quadratic Programs

If the user wants to solve more than one QP, or maybe the same QP but under different conditions, then it is possible
to define the problems in the TOMLAB Init File format directly. The qpAssign has additional functionality and
may create an Init File as an option. The file is then easily added to the GUI data base, and accessible from the
GUI and menu system.

Using the same example (13) to illustrate this feature gives

File: tomlab/usersguide/qpTest2.m

qpExample;

if exist(’qptest.m’) % Remove qptest if it previously exists

d=which(’qptest’);

delete(d);

end

38

qpAssign(F, c, A, b_L, b_U, x_L, x_U, x_0, ’qpExample’, ...

’qptest’,1,[],x_min,x_max);

AddProblemFile(’qptest’,’Users Guide QP test problems’,’qp’);

tomRun(’qpSolve’,’qptest’,1);

In this example more parameters are used in the call to qpAssign, which tells qpAssign to define a new TOMLAB
Init File called qptest. The last two extra parameters x min and x max defines initial plotting axis and are efficient
when the user wants to see plots in the GUI and menu programs. Otherwise these parameters are not needed.
The default is to use the lower and upper bounds on the variables, if they have finite values.

The qptest problem file is included as a test file by the call to AddProblemFile and further set as the default file
for QP problems. Calling tomRun to solve the first problem in qptest will give exactly the same output as in the
first example in Section 5.2.1.

In the call to qpAssign the parameter after the file name qptest, called nProblem, controls which of two types of
definition files are created (See help qpAssign). Setting this parameter as empty or one, as in this case, defines an
open structure in qptest where the user easily can insert more test problems. Note the comments in the created file,
which guides the user in how to define a new problem. There are two places to edit. The name of the new problem
must be added to the probList string matrix definition on row 17-21, and then the actual problem definition from
row 61 and afterwards. The new problem definition can be loaded by execution of a script, by reading from a
stored file or the user can explicitly write the Matlab statements to define the problem in the file qptest.m. For
more information on how to edit a QP Init File, see the Section D.2. The other type of QP definition file created
by qpAssign is discussed in detail in Section 5.2.3.

When doing this automatic Init File generation qpAssign stores the problem in a mat-file with a name combined
by three items, the name of the problem file (qptest), the string ’ P’ and the problem number given as the input
parameter next after the problem file name. In this case qpAssign defines the file qptest P1.mat.

5.2.3 Large Sets of Quadratic Programs

It is easy to create an Init File for a large set of test problems. This feature is illustrated by running a test
where the test problem is disturbed by random noise. The matrix F and the vector c in the objective function
are disturbed, and the new problems are defined and stored in the TOMLAB Init File format. To avoid too much
output restrict the large number of test problems to be three.

File: tomlab/usersguide/qpTest3.m

LargeNumber=3;

qpExample;

n=length(c);

if exist(’qplarge’) % Remove qplarge if it previously exists

d=which(’qplarge’);

delete(d);

end

for i=1:LargeNumber

cNew =c + 0.1*(rand(n,1)-0.5); % Generate random disturbances to vector c

FNew =F + 0.05*(rand(n,n)-0.5); % Generate random disturbances to matrix F

FNew =(F + F’)/2; % Make FNew symmetric

if i==1

% qpAssign defines qplarge.m for LargeNumber testproblems

% and stores the first problem in qplarge_P1.mat

39

k=[1,LargeNumber];

else

k=i; % qpAssign stores the ith problem in the qplarge_Pi.mat problem file

end

qpAssign(FNew, cNew, A, b_L, b_U, x_L, x_U, [], Name,’qplarge’, k);

end

% Define qplarge as the default file for QP problems in TOMLAB.

AddProblemFile(’qplarge’,’Large set of randomized QP problems’,’qp’);

runtest(’qpSolve’,0,’qplarge’,1:LargeNumber,0,0,1);

Each problem gets a unique name. In the first iteration, i = 1, qpAssign defines an Init File with three test
problems, and defines the first test problem, stored in qplarge P1.mat. In the other iterations qpAssign just defines
the other mat-files. All together three mat-files are defined: qplarge P1.mat, qplarge P2.mat and qplarge P3.mat.

AddProblemFile adds the new qplarge problem as the default QP test problem in TOMLAB. The runtest test
program utility runs the selected problems, in this case all three defined. The second zero argument is used if
the actual solver has several algorithmic options. In this case the zero refers to the default option, and the only
option, in qpSolve. The last arguments are used to lower the default output and avoid a pause statement after
each problem is solved. The results are shown in the following file listing.

File: tomlab/usersguide/qpTest3.out

Solver: qpSolve. Algorithm 0

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: qplarge - 1: QP Example - 1 f_k -0.027694057239663620

Solver: qpSolve. EXIT=0. INFORM=1.

Active set strategy

Optimal point found

First order multipliers >= 0

FuncEv 4 GradEv 4 ConstrEv 4 Iter 4

CPU time: 0.031000 sec. Elapsed time: 0.031000 sec.

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: qplarge - 2: QP Example - 2 f_k -0.021808805588788130

Solver: qpSolve. EXIT=0. INFORM=1.

Active set strategy

Optimal point found

First order multipliers >= 0

FuncEv 4 GradEv 4 ConstrEv 4 Iter 4

CPU time: 0.016000 sec. Elapsed time: 0.015000 sec.

===== * * * === * * *

TOMLAB SOL+/CGO+/MIN - Three weeks demonstration single user license Valid to 2002-07-10

===

Problem: qplarge - 3: QP Example - 3 f_k -0.023503493112249588

Solver: qpSolve. EXIT=0. INFORM=1.

40

Active set strategy

Optimal point found

First order multipliers >= 0

FuncEv 4 GradEv 4 ConstrEv 4 Iter 4

CPU time: 0.016000 sec. Elapsed time: 0.015000 sec.

5.2.4 Another Direct Approach to a QP Solution

The following example shows yet another way to define and solve the quadratic programming problem (13) by a
direct call to the routine qpSolve. The approach is define a default Prob structure calling ProbDef, and then just
insert values into the fields.

Prob = ProbDef;

Prob.QP.F = [8 2 % Hessian.

2 8];

Prob.QP.c = [3 -4]’; % Constant vector.

Prob.x_L = [0 0]’; % Lower bounds on the variables

Prob.x_U = [inf inf]’; % Upper bounds on the variables

Prob.x_0 = [0 1]’; % Starting point

Prob.A = [1 1 % Constraint matrix

1 -1];

Prob.b_L = [-inf 0]’; % Lower bounds on the constraints

Prob.b_U = [5 0]’; % Upper bounds on the constraints

Result = qpSolve(Prob);

A similar approach is possible when solving all types of problems in TOMLAB.

5.2.5 More on Solving Quadratic Programs

When the problem is defined in the TOMLAB Init File format, it is then possible to run the graphical user interface
tomGUI, the menu program tomMenu, or the multi-solver driver routine tomRun with the necessary arguments. To
call the menu system, either type Result = tomMenu; or just tomMenu; at the Matlab prompt, choose Quadratic
Programming The usage is very similar to the solution of Linear Programs, see the discussion and figures in Section
5.1.4.

41

5.3 Mixed-Integer Programming Problems

This section describes how to solve mixed-integer programming problems efficiently using TOMLAB. To illustrate
the solution of MIPs consider the simple knapsack 0/1 test problem Weingartner 1, which has 28 binary variables
and two knapsacks. The problem is defined

min
x

cTx

s/t
0 ≤ x ≤ 1,

Ax = b,

(14)

where b = (600, 600)T ,

c = −(1898 440 22507 270 14148 3100 4650 30800 615 4975 1160 4225 510 11880
479 440 490 330 110 560 24355 2885 11748 4550 750 3720 1950 10500)T

and the A matrix is

45 0 85 150 65 95 30 0 170 0 40 25 20 0 0 25 0 0 25 0
165 0 85 0 0 0 0 100
30 20 125 5 80 25 35 73 12 15 15 40 5 10 10 12 10 9 0 20
60 40 50 36 49 40 19 150

The following statements define this problem in Matlab using the TOMLAB Quick format:

File: tomlab/usersguide/mipExample.m

Name=’Weingartner 1 - 2/28 0-1 knapsack’;

% Problem formulated as a minimum problem

A = [45 0 85 150 65 95 30 0 170 0 ...

40 25 20 0 0 25 0 0 25 0 ...

165 0 85 0 0 0 0 100 ; ...

30 20 125 5 80 25 35 73 12 15 ...

15 40 5 10 10 12 10 9 0 20 ...

60 40 50 36 49 40 19 150];

b_U = [600;600]; % 2 knapsack capacities

c = [1898 440 22507 270 14148 3100 4650 30800 615 4975 ...

1160 4225 510 11880 479 440 490 330 110 560 ...

24355 2885 11748 4550 750 3720 1950 10500]’; % 28 weights

% Make problem on standard form for mipSolve

[m,n] = size(A);

A = [A eye(m,m)];

c = [-c;zeros(m,1)]; % Change sign to make a minimum problem

[mm nn] = size(A);

x_L = zeros(nn,1);

x_U = [ones(n,1);b_U];

x_0 = [zeros(n,1);b_U];

fprintf(’Knapsack problem. Variables %d. Knapsacks %d\n’,n,m);

fprintf(’Making standard form with %d variables\n’,nn);

% All original variables should be integer, but also slacks in this case

IntVars = nn; % Could also be set as: IntVars=1:nn; or IntVars=ones(nn,1);

x_min = x_L; x_max = x_U; f_Low = -1E7; % f_Low <= f_optimal must hold

n = length(c);

b_L = b_U;

f_opt = -141278;

42

The quickest way to solve this problem is to define the following Matlab statements

File: tomlab/usersguide/mipTest1.m

mipExample;

nProblem = 7; % Use the same problem number as in mip_prob.m

fIP = []; % Do not use any prior knowledge

xIP = []; % Do not use any prior knowledge

setupFile = []; % Just define the Prob structure, not any permanent setup file

x_opt = []; % The optimal integer solution is not known

VarWeight = []; % No variable priorities, largest fractional part will be used

KNAPSACK = 0; % First run without the knapsack heuristic

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth (Default Depth First)

Prob.optParam.MaxIter = 5000; % Must increase iterations from default 500

Result = mipSolve(Prob);

% --

% Add priorities on the variables

% --

VarWeight = c;

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.VarWeight=c;

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Prob.optParam.MaxIter = 5000; % Must increase number of iterations

Result = mipSolve(Prob);

% --

% Use the knapsack heuristic, but not priorities

% --

KNAPSACK = 1; VarWeight = [];

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.KNAPSACK=1;

% Prob.MIP.VarWeight=[];

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, ...

nProblem, IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Result = mipSolve(Prob);

% --

% Now use both the knapsack heuristic and priorities

% --

VarWeight = c; KNAPSACK = 1;

43

% NOTE. Prob is already defined, could skip mipAssign, directly set:

% Prob.MIP.KNAPSACK=1;

% Prob.MIP.VarWeight=c;

Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, nProblem,...

IntVars, VarWeight, KNAPSACK, fIP, xIP, ...

f_Low, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 2; % Depth First, then Breadth search

Result = mipSolve(Prob);

To make it easier to see all variable settings, the first lines define the needed variables. Several of them are
just empty arrays, and could be directly set as empty in the call to mipAssign. mipAssign is used to define the
standard Prob structure, which TOMLAB always uses to store all information about a problem. After mipAssign
has defined the structure Prob it is then easy to set or change fields in the structure. The solver mipSolve is using
three different strategies to search the branch-and-bound tree. The default is the Depth first strategy, which is
also the result if setting the field Solver.Alg as zero. Setting the field as one gives the Breadth first strategy and
setting it as two gives the the Depth first, then breadth search strategy. In the example our choice is the last
strategy. The number of iterations might be many, thus the maximal number of iterations must be increased, the
field optParam.MaxIter.

Tests shows two ways to improve the convergence of MIP problems. One is to define a priority order in which
the different non-integer variables are selected as variables to branch on. The field MIP.VarWeight is used to
set priority numbers for each variable. Note that the lower the number, the higher the priority. In our test case
the coefficients of the objective function is used as priority weights. The other way to improve convergence is to
use a heuristic. For binary variables a simple knapsack heuristic is implemented in mipSolve. Setting the field
MIP.KNAPSACK as true instructs mipSolve to use the heuristic.

Running the four different tests on the knapsack problem gives the following output to the screen

File: tomlab/usersguide/mipTest1.out

mipTest1

Knapsack problem. Variables 28. Knapsacks 2

Making standard form with 30 variables

Branch and bound. Depth First, then Breadth.

--- Branch & Bound converged!!! ITER = 892

Optimal Objective function = -141278.0000000002900000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

5 6

B: 0 0 -1 0 -1 -1 -1 -1 1 -1 0 -1 -1 -1 0 0 0 0 -1 0 -1 0 -1 -1 0 0 0 0 0 0

Branch and bound. Depth First, then Breadth. Priority Weighting.

--- Branch & Bound converged!!! ITER = 470

Optimal Objective function = -141277.9999999998300000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1

0 0 0 0 1 0 1 0 1 1 0 1 0 0

5 6

B: 0 0 -1 0 -1 -1 -1 -1 0 -1 0 -1 -1 -1 0 0 0 0 -1 0 -1 0 -1 -1 0 0 0 0 0 0

Branch and bound. Depth First, then Breadth. Knapsack Heuristic.

Found new BEST Knapsack. Nodes left 0. Nodes deleted 0.

Best IP function value -139508.0000000000000000

Found new BEST Knapsack. Nodes left 1. Nodes deleted 0.

Best IP function value -140768.0000000000000000

Found new BEST Knapsack. Nodes left 4. Nodes deleted 0.

44

Best IP function value -141278.0000000000000000

--- Branch & Bound converged!!! ITER = 138

Optimal Objective function = -141278.0000000002900000

x: 0 0 1 -0 1 1 1 1 0 1 0 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1 0 0 5 6

B: 0 0 -1 0 -1 -1 -1 -1 1 -1 0 -1 -1 -1 0 0 0 0 -1 0 -1 0 -1 -1 0 0 0 0 0 0

Branch and bound. Depth First, then Breadth. Knapsack Heuristic. Priority Weighting.

Found new BEST Knapsack. Nodes left 0. Nodes deleted 0.

Best IP function value -139508.0000000000000000

Found new BEST Knapsack. Nodes left 1. Nodes deleted 0.

Best IP function value -140768.0000000000000000

Found new BEST Knapsack. Nodes left 4. Nodes deleted 0.

Best IP function value -141278.0000000000000000

--- Branch & Bound converged!!! ITER = 94

Optimal Objective function = -141278.0000000000000000

x: 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1 0 0 5 6

B: 1 1 -1 1 -1 -1 -1 -1 1 -1 0 -1 -1 -1 1 1 1 1 -1 1 -1 0 -1 -1 1 0 0 1 1 1

diary off

Note that there is a large difference in the number of iterations if the additional heuristic and priorities are used.
Similar results are obtained if running the other two tree search strategies.

5.3.1 Large Sets of Mixed-Integer Programs

It is easy to setup a problem definition file for a large set of mixed-integer problems. The approach is similar to
the one for Linear Programs discussed in Section 5.1.3, the main difference is that mipAssign is used instead of
lpAssign.

5.3.2 More on Solving Mixed-Integer Programs

When the problem is defined in the TOMLAB Init File format, it is then possible to run the graphical user interface
tomGUI, the menu program tomMenu, or the multi-solver driver routine tomRun with the necessary arguments.
To call the menu system, either type Result = tomMenu; or just tomMenu; at the Matlab prompt, choose Mixed-
Integer Programming The usage is very similar to the solution of Linear Programs, see the discussion and figures
in Section 5.1.4.

Instead of using the menu system solve the problem by a direct call to tomRun from the Matlab prompt or as a
command in an m-file. This approach is of interest in an testing environment. The most straightforward way of
doing it (when the problem is defined in mipnew prob.m) is to give the following call from the Matlab prompt:

probNumber = 7;

Result = tomRun(’mipSolve’, ’mipnew_prob’, probNumber);

Assume the problem should be solved with the following requirements:

• No printing output neither in the driver routine nor in the solver.

• Use solver mipSolve.

Then the call to tomRun should be:

Prob = probInit(’mipnew_prob’,7);

45

PriLev = 0;

Prob.PriLevOpt = 0;

Result = tomRun(’mipSolve’, Prob, [], PriLev);

To have the result of the optimization displayed call the routine PrintResult:

PrintResult(Result);

Assume that the problem to be solved is defined in another TOMLAB Init File, say ownmip prob.m, which is not
the default Init File. The following example shows how to call tomRun to solve the first problem in ownmip prob.m.
Assume the same requirements as itemized above.

probFile = ’ownmip_prob’;

Prob = probInit(probFile,1);

PriLev = 0;

Prob.x_0 = [1;1];

Prob.PriLevOpt = 0;

Result = tomRun(’mipSolve’, Prob, [], PriLev);

46

6 Solving Unconstrained and Constrained Optimization Problems

This section describes how to define and solve unconstrained and constrained optimization problems. Several
examples are given on how to proceed, depending on if a quick solution is wanted, or more advanced runs are needed.
TOMLAB is also compatible with MathWorks Optimization TB v2.1. See Appendix E for more information and
test examples.

All demonstration examples that are using the Tomlab Quick (TQ) format are collected in the directory examples.
Running the menu program tomMenu, it is possible to run all demonstration examples. It is also possible to run
each example separately. The examples relevant to this section are ucDemo and conDemo. All files that show how
to use the Init File format are collected in the directory usersguide. The full path to these files are always given
in the text. Throughout this section the test problem Rosenbrock’s banana,

min
x

f(x) = α
(

x2 − x2
1

)2
+ (1− x1)

2

s/t
−10 ≤ x1 ≤ 2
−10 ≤ x2 ≤ 2

(15)

is used to illustrate the solution of unconstrained problems. The standard value is α = 100. In this formulation
simple bounds are added on the variables, and also constraints in illustrative purpose. This problem is called
RB BANANA in the following descriptions to avoid mixing it up with problems already defined in the problem
definition files.

6.1 Defining the Problem in Matlab m-files

TOMLAB demands that the general nonlinear problem is defined in Matlab m-files, and not given as an input text
string. A file defining the function to be optimized must always be supplied. For linear constraints the constraint
coefficient matrix and the right hand side vector are given directly. Nonlinear constraints are defined in a separate
file. First order derivatives and second order derivatives, if available, are stored in separate files, both function
derivatives and constraint derivatives.

TOMLAB is compatible with MathWorks Optimization TB v2.1, which in various ways demands both functions,
derivatives and constraints to be returned by the same function. TOMLAB handle all this by use of interface
routines, hidden for the user. The user must then always use the MathWorks Optimization TB v2.1 type of calls,
not the TOMLAB function calls, and access to the GUI, menu and driver routines are not possible.

It is generally recommended to use the TOMLAB format instead, because having defined the files in this format,
all MathWorks Optimization TB v2.1 and MathWorks Optimization TB v1.5 solvers are accessible through the
TOMLAB multi-solver driver routines.

The rest of this section shows how to make the m-files for the cases of unconstrained and constrained optimization.
These files does not depend on if the TQ or IF format are used to solve the problem, in both cases they are identical.
The m-files for a constrained IF format example is shown. The files are defined in the directory usersguide and
described in more detail in Appendix D. In Section 6.2 and onwards similar m-files are used to solve unconstrained
optimization using the TQ format.

The most simple way to write the m-file to compute the function value is shown for the example in (15) assuming
α = 100:

File: tomlab/usersguide/rbbs f.m

% crbb_f - function value for Constrained Rosenbrocks Banana

%

% function f = crbb_f(x)

function f = crbb_f(x)

f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Running TOMLAB it is recommended to use a more general format for the m-files, adding one extra parameter,
the Prob problem definition structure described in detail in Appendix A. TOMLAB will handle the simpler format
also, but the more advanced features of TOMLAB are not possible to use.

47

If using this extra parameter, then any information needed in the low-level function computation routine may
be sent as fields in this structure. For single parameter values, like the above α parameter in the example,
the field Prob.uP is recommended, and for matrices, vectores and structures subfields to the field Prob.user and
Prob.userParam are recommended. See the Section 10.3 on how the to set User Supplied Problem Parameters in
the Init File format in TOMLAB.

Using the above convention, then the new m-file for the example in (15) is defined as

File: tomlab/usersguide/rbb f.m

% rbb_f - function value for Rosenbrocks Banana, Problem RB BANANA

%

% function f = rbb_f(x, Prob)

function f = rbb_f(x, Prob)

if isempty(Prob.uP)

alpha = 100;

else

alpha = Prob.uP(1);

end

f = alpha*(x(2)-x(1)^2)^2 + (1-x(1))^2;

The value in the field Prob.uP is the α value. It is defined before calling the solver, either in a TOMLAB Init File,
or directly before the call by explicit setting the Prob structure. In a similar way the gradient routine is defined as

File: tomlab/usersguide/rbb g.m

% rbb_g - gradient vector for Rosenbrocks Banana, Problem RB BANANA

%

% function g = rbb_g(x, Prob)

function g = rbb_g(x, Prob)

if isempty(Prob.uP)

alpha = 100;

else

alpha = Prob.uP(1);

end

g = [-4*alpha*x(1)*(x(2)-x(1)^2)-2*(1-x(1)); 2*alpha*(x(2)-x(1)^2)];

If the gradient routine is not supplied, TOMLAB will use finite differences (or automatic differentiation) if the
gradient vector is needed for the particular solver. In this case it is also easy to compute the Hessian matrix, which
gives the following code

File: tomlab/usersguide/rbb H.m

% rbb_H - Hessian matrix for Rosenbrocks Banana, Problem RB BANANA

%

% function H = crbb_H(x, Prob)

function H = crbb_H(x, Prob)

if isempty(Prob.uP)

alpha = 100;

48

else

alpha = Prob.uP(1);

end

H = [12*alpha*x(1)^2-4*alpha*x(2)+2 , -4*alpha*x(1);

-4*alpha*x(1) , 2*alpha];

If the Hessian routine is not supplied, TOMLAB will use finite differences (or automatic differentiation) if the
Hessian matrix is needed for the particular solver. Often a positive-definite approximation of the Hessian matrix
is estimated during the optimization , and the second derivative routine is then not used.

If using the constraints defined for the example in (15) then a constraint routine needs to defined for the single
nonlinear constraint, in this case

File: tomlab/usersguide/rbb c.m

% rbb_c - nonlinear constraint vector for Rosenbrocks Banana, Problem RB BANANA

%

% function c = crbb_c(x, Prob)

function c = crbb_c(x, Prob)

cx = -x(1)^2 - x(2);

The constraint Jacobian matrix is also of interest and is defined as

File: tomlab/usersguide/rbb dc.m

% rbb_dc - nonlinear constraint gradient matrix

% for Rosenbrocks Banana, Problem RB BANANA

%

% function dc = crbb_dc(x, Prob)

function dc = crbb_dc(x, Prob)

% One row for each constraint, one column for each variable.

dc = [-2*x(1),-1];

If the constraint Jacobian routine is not supplied, TOMLAB will use finite differences (or automatic differentiation)
to estimate the constraint Jacobian matrix if it is needed for the particular solver.

The solver nlpSolve is also using the second derivatives of the constraint vector. The result is returned as a
weighted sum of the second derivative matrices with respect to each constraint vector element, the weights being
the Lagrange multipliers supplied as input to the routine. For the example problem the routine is defined as

File: tomlab/usersguide/rbb d2c.m

% rbb_d2c - The second part of the Hessian to the Lagrangian function for the

% nonlinear constraints for Rosenbrocks Banana, Problem RB BANANA,i.e.

%

% lam’ * d2c(x)

%

% in

%

% L(x,lam) = f(x) - lam’ * c(x)

49

% d2L(x,lam) = d2f(x) - lam’ * d2c(x) = H(x) - lam’ * d2c(x)

%

% function d2c=crbb_d2c(x, lam, Prob)

function d2c=crbb_d2c(x, lam, Prob)

% The only nonzero element in the second derivative matrix for the single

% constraint is the (1,1) element, which is a constant -2.

d2c = lam(1)*[-2 0; 0 0];

6.1.1 Communication between user routines

It is often the case that mathematical expressions that occur in the function computation also is part of the
gradient and Hessian computation. If these operations are costly it is natural to avoid recomputing these and
reuse them when computing the gradient and Hessian.

The function routine is always called before the gradient routine in TOMLAB, and the gradient routine is always
called before the Hessian routine. The constraint routine is similarly called before the computation of the constraint
gradient matrix. However, the TOM solvers call the function before the constraint routine, but the SOL solvers
do the reverse.

Thus it is safe to use global variables to communicate information from the function routine to the gradient and
Hessian, and similarly from the constraint routine to the constraint gradient routine. Any non-conflicting name
could be used as global variable, see Table 51 in Appendix C to find out which names are in use. However, the
recommendation is to always use a predefined global variable named US A for this communication. TOMLAB is
designed to handle recursive calls, and any use of new global variables may cause conflicts. The variable US A
(and also US B) is automatically saved in a stack, and any level of recursions may safely be used. The user is free
to use US A both as variable, and as a structure. If much information is to be communicated, defining US A as a
structure makes it possible to send any amount of information between the user routines.

In the examples directory the constrained optimization example in condemo is using the defined functions con1 f,
con1 g and con1 H. They include an example of communicating one exponential expression between the routines.

The lsdemo example file in the examples directory communicates two exponential expressions between ls1 r and
ls1 J with the use of US A and US B. In ls1 r the main part is

...

global US_A

t = Prob.LS.t(:);

% Exponential computations takes time, and may be done once, and

% reused when computing the Jacobian

US_A = exp(-x(1)*t);

US_B = exp(-x(2)*t);

r = K*x(1)*(US_B - US_A) / (x(3)*(x(1)-x(2))) - Prob.LS.y;

In ls1 J then US A is used

...

global US_A

% Pick up the globally saved exponential computations

e1 = US_A;

e2 = US_B;

50

% Compute the three columns in the Jacobian, one for each of variable

J = a * [t.*e1+(e2-e1)*(1-1/b), -t.*e2+(e2-e1)/b, (e1-e2)/x(3)];

For more discussions on global variables and the use of recursive calls in TOMLAB, see Appendix C.

In the following sections it is described how to setup problems in TOMLAB and use the defined m-files. First
comes the simplest way, to use the TOMLAB Quick format.

6.2 Solving Unconstrained Optimization using the TQ format

The use of the TOMLAB Quick format is best illustrated by examples

The following is the first example in the ucDemo demonstration file. It shows an example of making a call to
probAssign to create a structure in the TOMLAB TQ format, and solve the problem with a call to ucSolve.

% ---

function uc1Demo

% ---

format compact

fprintf(’===\n’);

fprintf(’Rosenbrocks banana with explicit f(x), g(x) and H(x)\n’);

fprintf(’===\n’);

Name = ’RB Banana’;

x_0 = [-1.2 1]’; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

fLowBnd = 0; % Lower bound on function.

% Generate the problem structure using the TOMLAB Quick format (short call)

Prob = probAssign(’uc’, x_L, x_U, Name, x_0, fLowBnd);

% Update the Prob structure with the names of files

Prob = mFiles(Prob,’uc1_f’, ’uc1_g’, ’uc1_H’);

Result = ucSolve(Prob);

PrintResult(Result);

Instead of using probAssign and mFiles, it is possible to use conAssign with a limited number of input parameters.
In its more general form conAssign is used to define constrained problems. It also takes as input the nonzero
pattern of the Hessian matrix, stored in the matrix HessPattern. In this case all elements of the Hessian matrix
are nonzero, and either HessPattern is set as empty or as a matrix with all ones. Also the parameter pSepFunc
should be set. It defines if the objective function is partially separable, see Section 10.6. Setting this parameter
empty (the default), then this property is not used. In the above example the call would be

...

HessPattern = ones(2,2); % The pattern of nonzeros

pSepFunc = []; % No partial separability used

% conAssign is used to generate the TQ problem structure

Prob = conAssign(’uc1_f’, ’uc1_g’, ’uc1_H’, HessPattern, ...

x_L, x_U, Name, x_0, pSepFunc, fLowBnd);

...

51

Also see the other examples in ucDemo on how to solve the problem, when gradients routines are not present, and
numerical differentiation must be used. An example on how to solve a sequence of problems is also presented.

If the gradient is not possible to define, it is just to set the corresponding gradient function name empty, or reduce
the number of parameters in the call to mFiles, as the following example (uc2Demo) shows:

...

% Only give the function. TOMLAB then estimates any derivatives automatically

Prob = mFiles(Prob,’uc1_f’);

...

The example uc3Demo in file ucDemo show how to solve a sequence of problems in TOMLAB, in this case changing
the steepness parameter α in (15). It is important to point out that it is only necessary to define the Prob structure
once and then just change the varying parameters, in this case the α value. The version below is slightly modified,
doing the call to conAssign making the parameter definitions directly. The α value is sent to the user routines using
the field userParam in the Prob structure. Any field in the Prob structure could be used that is not conflicting
with the predefined fields. In this example the a vector of Result structures are saved for later preprocessing.

% ---

function uc3Demo - compact, slightly modified, version

% ---

% conAssign is used to generate the TQ problem structure

% Prob = conAssign(f,g,H, HessPattern, x_L, x_U, Name, x_0, pSepFunc, fLowBnd);

Prob = conAssign(’uc3_f’,[],[],[],[-10;-10], [2;2], [-1.2;1], ’RB Banana’,[],0)

% The different steepness parameters to be tried

Steep = [100 500 1000 10000];

for i = 1:4

Prob.userParam.alpha = Steep(i);

Result(i) = ucSolve(Prob);

end

6.3 Direct Call to an Optimization Routine

When wanting to solve a problem by a direct call to an optimization routine there are two possible ways of doing
it. The difference is in the way the problem dependent parameters are defined. The most natural way is to use a
Init File, like the predefined TOMLAB Init Files ¦ prob (e.g. uc prob if the problem is of the type unconstrained)
to define those parameters. The other way is to define those parameters by first calling the routines ProbAssign
and mFiles, or the routine conAssign. In this subsection, examples of two different approaches are given.

First, solve the problem RB BANANA in (15) as an unconstrained problem. In this case, define the problem in
the files ucnew prob, ucnew f, ucnew g and ucnew H as described in Appendix D.3. Using the problem definition
files in the working directory solve the problem and print the result by the following calls.

File: tomlab/usersguide/ucnewSolve1.m

probFile = ’ucnew_prob’; % Problem definition file.

P = 18; % Problem number for the added RB Banana.

Prob = probInit(probFile, P); % Setup Prob structure.

Result = ucSolve(Prob);

PrintResult(Result);

Now, solve the same problem as in the example above but define the parameters x 0, x L and x L by calling the
routine ProbAssign. Note that in this case the file ucnew prob is not used, only the files ucnew f and ucnew g.

52

The file ucnew H is not needed because a quasi-Newton BFGS algorithm is used. The call to the routine mFiles
defines the files that defines the problem.

File: tomlab/usersguide/ucnewSolve2.m

oType = ’uc’; % Problem type.

x_0 = [-1.2;1]; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

Prob = probAssign(oType, x_L, x_U, ’ucNew’,x_0);% Setup Prob structure.

Prob = mFiles(Prob,’ucnew_f’,’ucnew_g’); % Problem definition files.

Prob.P = 18; % Problem number.

Prob.Solver.Alg=2; % Use quasi-Newton BFGS

Prob.uP = 100; % Set alpha parameter

Result = ucSolve(Prob);

PrintResult(Result);

Note that the calls to ProbAssign and mFiles could be replaced with the following call to conAssign.

Prob = conAssign(’ucnew_f’,’ucnew_g’,[],[],[-10;-10], [2;2], [-1.2;1]);

6.4 Solving Constrained Optimization using the TQ format

Study the following constrained exponential problem, Exponential problem III,

min
x

f(x) = exp(x1)(4x
2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

s/t

−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10
0 ≤ x1 + x2 ≤ 0
1.5 ≤ −x1x2 + x1 + x2

−10 ≤ x1x2

. (16)

The first two constraints are simple bounds, the third is a linear equality constraint, because lower and upper
bounds are the same. The last two constraints are nonlinear inequality constraints. To solve the problem, define
the following statements, available as con1Demo in file conDemo.

Name = ’Exponential problem III’;

A = [1 1]; % One linear constraint

b_L = 0; % Lower bound on linear constraint

b_U = 0; % b_L == b_U implies equality

c_L = [1.5;-10] % Two nonlinear inequality constraints

c_U = []; % Empty means Inf (default) for the two constraints

x_0 = [-5;5]; % Initial value for x

x_L = [-10;-10]; % Lower bounds on x

x_U = [10;10]; % Upper bounds on x

fLowBnd = 0; % A lower bound on the optimal function value

x_min = [-2;-2]; % Used for plotting, lower bounds

x_max = [4;4]; % Used for plotting, upper bounds

x_opt=[-3.162278, 3.162278; -1.224745, 1.224745]; % Two stationary points

f_opt=[1.156627; 1.8951];

HessPattern = []; % All elements in Hessian are nonzero.

ConsPattern = []; % All elements in the constraint Jacobian are nonzero.

pSepFunc = []; % The function f is not defined as separable

53

% Generate the problem structure using the TOMLAB Quick format

Prob = conAssign(’con1_f’, ’con1_g’, ’con1_H’, HessPattern, x_L, x_U, ...

Name, x_0, pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’,...

[], ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Result = tomRun(’conSolve’,Prob);

PrintResult(Result);

The following example, con2Demo in file conDemo, illustrates numerical estimates of the gradient and constrained
Jacobian matrix. Only the statements different from the previous example is given. Note that the gradient routine
is not given at all, but the constraint Jacobian routine is given. Setting Prob.ConsDiff greater than zero will
overrule the use of the constraint Jacobian routine. The solver conSolve is in this case called directly.

% Generate the problem structure using the TOMLAB Quick format

Prob = conAssign(’con1_f’, [], [], HessPattern, x_L, x_U, Name, x_0, ...

pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’, [], ...

ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Prob.NumDiff = 1; % Use standard numerical differences

Prob.ConsDiff = 5; % Use the complex variable method to estimate derivatives

Prob.Solver.Alg = 0; % Use default algorithm in conSolve

Result = conSolve(Prob);

PrintResult(Result);

The third example, con3Demo in file conDemo, shows how to solve the same problem for a number of different
initial values on x. The initial values are stored in the matrix X0, and in each loop step Prob.x 0 is set to one of the
columns in X0. In a similar way any of the values in the Prob structure may be changed in a loop step, if e.g. the
loop is part of a control loop. The Prob structure only needs to be defined once. The different initial points reveal
that this problem is nasty, and that several points fulfill the convergence criteria. Only the statements different
from the previous example is given. A different solver is called dependent on which TOMLAB version is used.

X0 = [-1 -5 1 0 -5 ;

1 7 -1 0 5];

% Generate the problem structure using the TOMLAB Quick format

Prob = conAssign(’con1_f’, ’con1_g’, ’con1_H’, HessPattern, x_L, x_U, Name, ...

X0(:,1), pSepFunc, fLowBnd, A, b_L, b_U, ’con1_c’, ’con1_dc’,...

[], ConsPattern, c_L, c_U, x_min, x_max, f_opt, x_opt);

Prob.Solver.Alg = 0;

TomV = tomlabVersion;

for i = 1:size(X0,2)

Prob.x_0 = X0(:,i);

if TomV(1:1) ~= ’M’

% Users of v3.0 may instead call MINOS (or SNOPT, NPSOL in v3.0 /SOL)

Result = tomRun(’minos’,Prob, [], 2);

else

Result = tomRun(’conSolve’,Prob, [], 2);

end

end

The constrained optimization solvers all have proven global convergence to a local minimum. If the problem is not
convex, then it is always difficult to assure that a global minimum has been reached. One way to make it more

54

likely that the global minimum is found is to optimize very many times with different initial values. The fifth
example, con5Demo in file conDemo illustrates this approach by solving the exponential problem 50 times with
randomly generated initial points.

If the number of variables are not that many, say fifteen, another approach is to use a global optimization solver
like glcSolve to crunch the problem and search for the global minimum. If letting it run long enough, it is very
likely to find the global minimum, but maybe not with high precision. To run glcSolve the problem must be
box-bounded, and the advise is to try to squeeze the size of the box down as much as possible. The sixth example,
con6Demo in file conDemo, illustrates a call to glcSolve. It is very simple to do this call if the problem has been
defined in the TOMLAB format. The statements needed are the following

Prob.optParam.MaxFunc = 5000; % Define maximal number of function evaluations

Result = tomRun(’glcSolve’,Prob,[],2);

A more clever approach, using warm starts and successive checks on the best function value obtained, is discussed
in Section 7. It is also better to use glcAssign and not conAssign if the intension is to use global optimization.

6.5 Efficient use of the TOM solvers

To follow the iterations in the TOM solvers, it is useful to set the IterPrint parameter as true. This gives one line
of information for each iteration. This parameter is part of the optParam subfield:

Prob.optParam.IterPrint = 1;

Note that ucSolve implements a whole set of methods for unconstrained optimization. If the user explicitly wants
Newtons method to be used, utilizing second order information, then set

Prob.Solver.Alg=1; % Use Newtons Method

But ucSolve will switch to the default BFGS method if no routine has been given to return the Hessian matrix.
If the user still wants to run Newtons method, then the Hessian routine must be defined and return an empty
Hessian. That triggers a numerical estimation of the Hessian. Do help ucSolve to see the different algorithmic
options and other comments on how to run the solver.

Both ucSolve and conSolve use line search based methods. The parameter σ influences the accuracy of the line
search each step. The default value is

Prob.LineParam.sigma = 0.9; % Inaccurate line search

However, using the conjugate gradient methods in ucSolve, they benefit from a more accurate line search

Prob.LineParam.sigma = 0.01; % Default accurate line search for C-G methods

as do quasi-Newton DFP methods (default σ = 0.2). The test for the last two cases are made for σ = 0.9. If the
user really wishes these methods to use σ = 0.9, the value must be set slightly different to fool the test:

Prob.LineParam.sigma = 0.9001; % Avoid the default value for C-G methods

The choice of line search interpolation method is also important, a cubic or quadratic interpolation. The default
is to use cubic interpolation.

Prob.LineParam.LineAlg = 1; % 0 = quadratic, 1 = cubic

55

7 Solving Global Optimization Problems

Global Optimization deals with optimization problems that might have more than one local minimum. To find the
global minimum out of a set of local minimum demands other types of methods than for the problem of finding
local minimum. The TOMLAB routines for global optimization are based on using only function or constraint
values, and no derivative information. Two different types are defined, Box-bounded global optimization glb and
global mixed-integer nonlinear programming glc. For the second case, still the problem should be box-bounded.

All demonstration examples that are using the Tomlab Quick (TQ) format are collected in the directory examples.
Running the menu program tomMenu, it is possible to run all demonstration examples. It is also possible to run
each example separately. The examples relevant to this section are glbDemo and glcDemo.

7.1 Solving Box-Bounded Global Optimization with TQ format

Box-bounded global optimization problems are simple to define, only one function routine is needed, because the
global optimization routines in TOMLAB does not utilize information about derivatives. To define the Shekel 5
test problem in a routine glb1 f, the following statements are needed

function f = glb1_f(x, Prob)

A = [4 4 4 4; 1 1 1 1; 8 8 8 8; 6 6 6 6; 3 7 3 7]’;

f=0; c = [.1 .2 .2 .4 .4]’;

for i = 1:5

z = x-A(:,i);

f = f - 1/(z’*z + c(i)); % Shekel 5

end

To solve the Shekel 5 test problem define the following statements, available as glb1Demo in glbDemo.

function glb1Demo

Name = ’Shekel 5’;

x_L = [0 0 0 0]’; % Lower bounds in the box

x_U = [10 10 10 10]’; % Upper bounds in the box

% Generate the problem structure using the TOMLAB Quick format (short call)

Prob = glcAssign(’glb1_f’, x_L, x_U, Name);

Result = glbSolve(Prob); % Solve using the default of 200 iterations

PrintResult(Result);

If the user knows the optimal function value or some good approximation, it could be set as a target for the
optimization, and the solver will stop if the target value is achieved within a relative tolerance. For the Shekel 5
problem, the optimal function value is known and could be set as target value with the following statements.

Prob.optParam.fGoal = -10.1532; % The optimal value set as target

Prob.optParam.eps_f = 0.01; % Convergence tolerance one percent

Convergence will occur if the function value sampled is within one percent of the optimal function value.

Without additional knowledge about the problem, like the function value at the optimum, there is no convergence
criteria to be used. The global optimization routines continues to sample points until the maximal number of
function evaluations or the maximum number of iteration cycles are reached. In practice, it is therefore important
to be able to do warm starts, starting once again without having to recompute the past history of iterations and
function evaluations. Before doing a new warm start, the user can evaluate the results and determine if to continue
or not. If the best function value has not changed for long it is a good chance that there are no better function
value to be found.

56

In TOMLAB warm starts are automatically handled, the only thing the user needs to do is to set one flag,
Prob.WarmStart, as true. The solver glbSolve defines a binary mat-file called glbSave.mat to store the information
needed for a warm start. It is important to avoid running other problems with this solver when doing warm starts.
The warm start information would then be overwritten. The example glb3Demo in glbDemo shows how to do
warm starts. The number of iterations per call is set very low to be able to follow the process.

Name = ’Shekel 5’;

x_L = [0 0 0 0]’;

x_U = [10 10 10 10]’;

% Generate the problem structure using the TOMLAB Quick format (short call)

Prob = glcAssign(’glb1_f’, x_L, x_U, Name);

Prob.optParam.MaxIter = 5; % Do only five iterations per call

Result = tomRun(’glbSolve’,Prob,[],2); pause(1)

Prob.WarmStart = 1; % Set the flag for warm start

for i = 1:6 % Do 6 warm starts

Result = tomRun(’glbSolve’,Prob,[],2); pause(1)

end

The example glb4Demo in glbDemo illustrates how to send parameter values down to the function routine from
the calling routine. Change the Shekel 5 test problem definition so that A and c are given as input to the function
routine

function f = glb4_f(x, Prob)

% A and c info are sent using Prob structure

f = 0; A = Prob.user.A; c = Prob.user.c;

for i = 1:5

z = x-A(:,i);

f = f - 1/(z’*z + c(i)); % Shekel 5

end

Then the following statements solve the Shekel 5 test problem.

Name = ’Shekel 5’;

x_L = [0 0 0 0]’;

x_U = [10 10 10 10]’;

% Generate the problem structure using the TOMLAB Quick format (short call)

Prob = glcAssign(’glb4_f’, x_L, x_U, Name);

% Add information to be sent to glb4_f. Used in f(x) computation

Prob.user.A = [4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7]’;

Prob.user.c = [.1 .2 .2 .4 .4]’;

Result = tomRun(’glbSolve’,Prob,[],2);

7.2 Defining Global Mixed-Integer Nonlinear Problems with TQ format

To solve global mixed-integer nonlinear programming problems with the TQ format, only two routines need to be
defined, one routine that defines the function and one that defines the constraint vector. No derivative information
is utilized by the TOMLAB solvers. To define the Floudas-Pardalos 3.3 test problem, one routine glc1 f

function f = fp3_3f(x, Prob)

f = -25*(x(1)-2)^2-(x(2)-2)^2-(x(3)-1)^2-(x(4)-4)^2-(x(5)-1)^2-(x(6)-4)^2;

and one routine glc1 c

57

function c = fp3_3c(x, Prob)

c = [(x(3)-3)^2+x(4); (x(5)-3)^2+x(6)]; % Two nonlinear constraints (QP)

is needed. Below is the example glc1Demo in glcDemo that shows how to solve this problem doing ten warm
starts. The warm starts are automatically handled, the only thing the user needs to do is to set one flag as
true, Prob.WarmStart. The solver glcSolve defines a binary mat-file called glcSave.mat to store the information
needed for the warm start. It is important to avoid running other problems with glcSolve when doing warm starts.
Otherwise the warm start information will be overwritten with the new problem. The original Floudas-Pardalos
3.3 test problem, has no upper bounds on x1 and x2, but such bounds are implicit from the third linear constraint,
x1 +x2 ≤ 6. This constraint, together with the simple bounds x1 ≥ 0 and x2 ≥ 0 immediately leads to x1 ≤ 6 and
x2 ≤ 6. Using these inequalities a finite box-bounded problem can be defined.

Name = ’Floudas-Pardalos 3.3’; % This example is number 16 in glc_prob.m

x_L = [0 0 1 0 1 0]’; % Lower bounds on x

A = [1 -3 0 0 0 0

-1 1 0 0 0 0

1 1 0 0 0 0]; % Linear equations

b_L = [-inf -inf 2]’; % Upper bounds for linear equations

b_U = [2 2 6]’; % Lower bounds for linear equations

x_U = [6 6 5 6 5 10]’; % Upper bounds after x(1),x(2) values inserted

c_L = [4 4]’; % Lower bounds on two nonlinear constraints

c_U = []; % Upper bounds are infinity for nonlinear constraints

x_opt = [5 1 5 0 5 10]’; % Optimal x value

f_opt = -310; % Optimal f(x) value

x_min = x_L; x_max = x_U; % Plotting bounds

% Set the rest of the arguments as empty

setupFile = []; nProblem = []; IntVars = []; VarWeight = []; KNAPSACK = [];

fIP = []; xIP = []; fLowBnd = []; x_0 = [];

%IntVars = [1:5]; % Indices of the variables that should be integer valued

Prob = glcAssign(’glc1_f’, x_L, x_U, Name, A, b_L, b_U, ’glc1_c’, ...

c_L, c_U, x_0, setupFile, nProblem, IntVars, VarWeight, ...

KNAPSACK, fIP, xIP, fLowBnd, x_min, x_max, f_opt, x_opt);

% Increase the default max number of function evaluations in glcSolve

Prob.optParam.MaxFunc = 500;

Result = glcSolve(Prob);

PrintResult(Result,3);

Prob.WarmStart = 1;

% Do 10 restarts, call driver tomRun, PriLev = 2 gives call to PrintResult

for i=1:10

Result = tomRun(’glcSolve’,Prob,[],2);

end

58

8 Least Squares and Parameter Estimation Problems

This section describes how to define and solve different types of linear and nonlinear least squares and parameter
estimation problems. Several examples are given on how to proceed, depending on if a quick solution is wanted,
or more advanced tests are needed. TOMLAB is also compatible with MathWorks Optimization TB v2.1. See
Appendix E for more information and test examples.

All demonstration examples that are using the Tomlab Quick (TQ) format are collected in the directory examples.
Running the menu program tomMenu, it is possible to run all demonstration examples. It is also possible to run
each example separately. The examples relevant to this section are lsDemo and llsDemo. All files that show how
to use the Init File format are collected in the directory usersguide. The full path to these files are always given
in the text.

8.1 Solving Linear Least Squares Problems using the TQ Format

This section shows examples how to define and solve linear least squares problems using the TOMLAB Quick format.
As a first illustration, the example lls1Demo in file llsDemo shows how to fit a linear least squares model with
linear constraints to given data. This test problem is taken from the Users Guide of LSSOL [35].

Name=’LSSOL test example’;

% In TOMLAB it is best to use Inf and -Inf, not big numbers.

n = 9; % Number of unknown parameters

x_L = [-2 -2 -Inf, -2*ones(1,6)]’;

x_U = 2*ones(n,1);

A = [ones(1,8) 4; 1:4,-2,1 1 1 1; 1 -1 1 -1, ones(1,5)];

b_L = [2 -Inf -4]’;

b_U = [Inf -2 -2]’;

y = ones(10,1);

C = [ones(1,n); 1 2 1 1 1 1 2 0 0; 1 1 3 1 1 1 -1 -1 -3; ...

1 1 1 4 1 1 1 1 1;1 1 1 3 1 1 1 1 1;1 1 2 1 1 0 0 0 -1; ...

1 1 1 1 0 1 1 1 1;1 1 1 0 1 1 1 1 1;1 1 0 1 1 1 2 2 3; ...

1 0 1 1 1 1 0 2 2];

x_0 = [0.1 0.5 0.3333 0.25 0.2 0.1667 0.1428 0.125 0.111]’;

x_0 = 1./[1:n]’;

t = []; % No time set for y(t) (used for plotting)

weightY = []; % No weighting

weightType = []; % No weighting type set

x_min = []; % No lower bound for plotting

x_max = []; % No upper bound for plotting

Prob = llsAssign(C, y, x_L, x_U, Name, x_0, t, weightType, weightY, ...

A, b_L, b_U, x_min, x_max);

Result = tomRun(’lsei’,Prob,[],2);

It is trivial to change the solver in the call to tomRun to a nonlinear least squares solver, e.g. clsSolve, or a general
nonlinear programming solver.

59

8.2 Solving Linear Least Squares Problems using the SOL Solver LSSOL

The example lls2Demo in file llsDemo shows how to fit a linear least squares model with linear constraints to given
data using a direct call to the SOL solver LSSOL. The test problem is taken from the Users Guide of LSSOL [35].

% Note that when calling the LSSOL MEX interface directly, avoid using

% Inf and -Inf. Instead use big numbers that indicate Inf.

% The standard for the MEX interfaces is 1E20 and -1E20, respectively.

n = 9; % There are nine unknown parameters, and 10 equations

x_L = [-2 -2 -1E20, -2*ones(1,6)]’;

x_U = 2*ones(n,1);

A = [ones(1,8) 4; 1:4,-2,1 1 1 1; 1 -1 1 -1, ones(1,5)];

b_L = [2 -1E20 -4]’;

b_U = [1E20 -2 -2]’;

% Must put lower and upper bounds on variables and constraints together

bl = [x_L;b_L];

bu = [x_U;b_U];

H = [ones(1,n); 1 2 1 1 1 1 2 0 0; 1 1 3 1 1 1 -1 -1 -3; ...

1 1 1 4 1 1 1 1 1;1 1 1 3 1 1 1 1 1;1 1 2 1 1 0 0 0 -1; ...

1 1 1 1 0 1 1 1 1;1 1 1 0 1 1 1 1 1;1 1 0 1 1 1 2 2 3; ...

1 0 1 1 1 1 0 2 2];

y = ones(10,1);

x_0 = [0.1 0.5 0.3333 0.25 0.2 0.1667 0.1428 0.125 0.111]’;

x_0 = 1./[1:n]’;

% Set empty indicating default values for most variables

c = []; % No linear coefficients, they are for LP/QP

Warm = []; % No warm start

iState = []; % No warm start

Upper = []; % C is not factorized

kx = []; % No warm start

SpecsFile = []; % No parameter settings in a SPECS file

PriLev = []; % PriLev is not really used in LSSOL

ProbName = []; % ProbName is not really used in LSSOL

optPar(1) = 50; % Set print level at maximum

PrintFile = ’lssol.txt’; % Print result on the file with name lssol.txt

z0 = (y-H*x_0);

f0 = 0.5*z0’*z0;

fprintf(’Initial function value %f\n’,f0);

[x, Inform, iState, cLamda, Iter, fObj, r, kx] = ...

lssol(A, bl, bu, c, x_0, optPar, H, y, Warm, ...

iState, Upper, kx, SpecsFile, PrintFile, PriLev, ProbName);

% We could equally well call with the following shorter call:

% [x, Inform, iState, cLamda, Iter, fObj, r, kx] = ...

% lssol(A, bl, bu, c, x, optPar, H, y);

z = (y-H*x);

f = 0.5*z’*z;

fprintf(’Optimal function value %f\n’,f);

60

8.3 Solving Nonlinear Least Squares Problems using the TQ Format

This section shows examples how to define and solve nonlinear least squares problems using the TOMLAB Quick format.
As a first illustration, the example ls1Demo in file lsDemo shows how to fit a nonlinear model of exponential type
with three unknown parameters to experimental data. This problem, Gisela, is also defined as problem three in
ls prob. A weighting parameter K is sent to the residual and Jacobian routine using the Prob structure. The
solver clsSolve is called directly. Note that the user only defines the routine to compute the residual vector and the
Jacobian matrix of derivatives. TOMLAB has special routines ls f, ls g and ls H that computes the nonlinear least
squares objective function value, given the residuals, as well as the gradient and the approximative Hessian, see
Table 12. The residual routine for this problem is defined in file ls1 r in the directory example with the statements

function r = ls_r(x, Prob)

% Compute residuals to nonlinear least squares problem Gisela

% US_A is the standard TOMLAB global parameter to be used in the

% communication between the residual and the Jacobian routine

global US_A

% The extra weight parameter K is sent as part of the structure

K = Prob.userParam.K;

t = Prob.LS.t(:); % Pick up the time points

% Exponential expressions to be later used when computing the Jacobian

US_A.e1 = exp(-x(1)*t); US_A.e2 = exp(-x(2)*t);

r = K*x(1)*(US_A.e2 - US_A.e1) / (x(3)*(x(1)-x(2))) - Prob.LS.y;

Note that this example also shows how to communicate information between the residual and the Jacobian routine.
It is best to use any of the predefined global variables US A and US B, because then there will be no conflicts
with respect to global variables if recursive calls are used. In this example the global variable US A is used as
structure array storing two vectors with exponential expressions. The Jacobian routine for this problem is defined
in file ls1 J in the directory example. The global variable US A is accessed to obtain the exponential expressions,
see the statements below.

function J = ls1_J(x, Prob)

% Computes the Jacobian to least squares problem Gisela. J(i,j) is dr_i/d_x_j

% Parameter K is input in the structure Prob

a = Prob.userParam.K * x(1)/(x(3)*(x(1)-x(2)));

b = x(1)-x(2);

t = Prob.LS.t;

% Pick up the globally saved exponential computations

global US_A

e1 = US_A.e1; e2 = US_A.e2;

% Compute the three columns in the Jacobian, one for each of variable

J = a * [t.*e1+(e2-e1)*(1-1/b), -t.*e2+(e2-e1)/b, (e1-e2)/x(3)];

The following statements solve the Gisela problem.

% ---

function ls1Demo - Nonlinear parameter estimation with 3 unknowns

% ---

61

Name=’Gisela’;

% Time values

t = [0.25; 0.5; 0.75; 1; 1.5; 2; 3; 4; 6; 8; 12; 24; 32; 48; 54; 72; 80;...

96; 121; 144; 168; 192; 216; 246; 276; 324; 348; 386];

% Observations

y = [30.5; 44; 43; 41.5; 38.6; 38.6; 39; 41; 37; 37; 24; 32; 29; 23; 21;...

19; 17; 14; 9.5; 8.5; 7; 6; 6; 4.5; 3.6; 3; 2.2; 1.6];

x_0 = [6.8729,0.0108,0.1248]’; % Initial values for unknown x

% Generate the problem structure using the TOMLAB Quick format (short call)

% Prob = clsAssign(r, J, JacPattern, x_L, x_U, Name, x_0, ...

% y, t, weightType, weightY, SepAlg, fLowBnd, ...

% A, b_L, b_U, c, dc, ConsPattern, c_L, c_U, ...

% x_min, x_max, f_opt, x_opt);

Prob = clsAssign(’ls1_r’, ’ls1_J’, [], [], [], Name, x_0, y, t);

% Weighting parameter K in model is sent to r and J computation using Prob

Prob.userParam.K = 5;

Result = clsSolve(Prob);

PrintResult(Result,2);

The second example ls2Demo in file lsDemo solves the same problem as ls1Demo, but using numerical differences to
compute the Jacobian matrix in each iteration. To make TOMLAB avoid using the Jacobian routine, the variable
Prob.NumDiff has to be set nonzero. Also in this example the flag Prob.optParam.IterPrint is set to enable one
line of printing for each iteration. The changed statements are

...

Prob.NumDiff = 1; % Use standard numerical differences

Prob.optParam.IterPrint = 1; % Print one line each iteration

Result = tomRun(’clsSolve’,Prob,[],2);

The third example ls3Demo in file lsDemo solves the same problem as ls1Demo, but six times for different values
of the parameter K in the range [3.8, 5.0]. It illustrates that it is not necessary to remake the problem structure
Prob for each optimization, but instead just change the parameters needed. The Result structure is saved as an
vector of structure arrays, to enable post analysis of the results. The changed statements are

for i=1:6

Prob.userParam.K = 3.8 + 0.2*i;

Result(i) = tomRun(’clsSolve’,Prob,[],2);

fprintf(’\nWEIGHT PARAMETER K is %9.3f\n\n\n’,Prob.userParam.K);

end

Table 12 describes the low level routines and the initialization routines needed for the predefined constrained
nonlinear least squares (cls) test problems. Similar routines are needed for the nonlinear least squares (ls) test
problems (here no constraint routines are needed).

62

Table 12: Constrained nonlinear least squares (cls) test problems.

Function Description
cls prob Initialization of cls test problems.
cls r Compute the residual vector ri(x), i = 1, ...,m. x ∈ R

n for cls test problems.
cls J Compute the Jacobian matrix Jij(x) = ∂ri/dxj , i = 1, ...,m, j = 1, ..., n for cls test

problems.
cls c Compute the vector of constraint functions c(x) for cls test problems.
cls dc Compute the matrix of constraint normals ∂c(x)/dx for for cls test problems.
cls d2c Compute the second part of the second derivative of the Lagrangian function for cls test

problems.
ls f General routine to compute the objective function value f(x) = 1

2r(x)
T r(x) for nonlinear

least squares type of problems.
ls g General routine to compute the gradient g(x) = J(x)T r(x) for nonlinear least squares

type of problems.
ls H General routine to compute the Hessian approximation H(x) = J(x)T ∗J(x) for nonlinear

least squares type of problems.

63

8.4 Fitting Sums of Exponentials to Empirical Data

In TOMLAB the problem of fitting sums of positively weighted exponential functions to empirical data may be
formulated either as a nonlinear least squares problem or a separable nonlinear least squares problem [76]. Several
empirical data series are predefined and artificial data series may also be generated. There are five different types
of exponential models with special treatment in TOMLAB, shown in Table 13. In research in cooperation with
Todd Walton, Vicksburg, USA, TOMLAB has been used to estimate parameters using maximum likelihood in
simulated Weibull distributions, and Gumbel and Gamma distributions with real data. TOMLAB has also been
useful for parameter estimation in stochastic hydrology using real-life data.

Table 13: Exponential models treated in TOMLAB.

f(t) =
p
∑

i

αie
−βit, αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p
∑

i

αi(1− e−βit), αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p
∑

i

tαie
−βit, αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p
∑

i

(tαi − γi)e
−βit, αi, γi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

f(t) =
p
∑

i

tαie
−βi(t−γi), αi ≥ 0, 0 ≤ β1 < β2 < ... < βp.

Algorithms to find starting values for different number of exponential terms are implemented. Test results show
that these initial value algorithms are very close to the true solution for equidistant problems and fairly good
for non-equidistant problems, see the thesis by Petersson [72]. Good initial values are extremely important when
solving real life exponential fitting problems, because they are so ill-conditioned. Table 14 shows the relevant
routines. The best way to define new problems of the predefined exponential type is to edit the exp prob.m Init
File as described in Appendix D.9 on page 208.

Table 14: Exponential fitting test problems.

Function Description
exp ArtP Generate artificial exponential sum problems.
expInit Find starting values for the exponential parameters λ.
expSolve Quick setup and solution of exponential fitting problems.
exp prob Defines a exponential fitting type of problem, with data series (t, y). The file includes

data from several different empirical test series.
Helax prob Defines 335 medical research problems supplied by Helax AB, Uppsala, Sweden, where

an exponential model is fitted to data. The actual data series (t, y) are stored on one file
each, i.e. 335 data files, 8MB large, and are not distributed. A sample of five similar files
are part of exp prob.

exp r Compute the residual vector ri(x), i = 1, ...,m. x ∈ R
n

exp J Compute the Jacobian matrix ∂ri/dxj , i = 1, ...,m, j = 1, ..., n.
exp d2r Compute the 2nd part of the second derivative for the nonlinear least squares exponential

fitting problem.
exp c Compute the constraints λ1 < λ2 < ... on the exponential parameters λi, i = 1, ..., p.
exp dc Compute matrix of constraint normals for constrained exponential fitting problem.
exp d2c Compute second part of second derivative matrix of the Lagrangian function for con-

strained exponential fitting problem. This is a zero matrix, because the constraints are
linear.

exp q Find starting values for exponential parameters λi, i = 1, ..., p.
exp p Find optimal number of exponential terms, p.

64

9 Efficient Use of the SOL Solvers in TOMLAB

This section discusses the use of the Fortran solvers from Stanford System Optimization Laboratory (SOL). In
order to use these solvers efficiently, it is recommended to read the corrsponding user guides as well. It is important
to do help on the m-files corresponding to each solver as well as the TOMLAB interface routine. The names for
MINOS solver are minos.m and minosTL.m, and similar for other solvers.

To learn all the different parameter settings for a solver it is useful to run the GUI, where all parameters are
selectable, and all default values are shown. Furthermore there are short help available for the different solver
parameters in the drag menus. Even if the user is not using the GUI to solve the particular user problem, it might
be useful to run the test problems defined in TOMLAB to learn how to use the SOL solvers in the most efficient
way.

9.1 Setting Parameters for the SOL Solvers

TOMLAB is using the structures Prob.optParam and Prob.LineParam for most parameters that influence the
performance of the solvers. The Fortran solvers from Stanford System Optimization Laboratory (SOL) are using
many parameters similar to the TOMLAB parameters, but also a large number of other parameters. To handle
the use of the SOL solvers, a special field in the Prob structure, Prob.SOL, is used to send information to the SOL
solvers, see Table 41 It is also used to store the information needed for warm starts of the SOL solvers.

The vector Prob.SOL.optPar of length 62 holds most of the different parameters that control the performance of
the SOL solvers. All parameters have default values. If calling the SOL solver directly, not using TOMLAB, the
user should set the values wanted in the optPar vector. The rest should have the value −999, which gives the
default value used by the solver. If using TOMLAB then some of the elements in optPar are set to the current
values in the Prob.optParam structure. For information on which elements are set and not set see the Table 39.
Also, doing help on the TOMLAB interface routine gives all elements used, and their names in the Prob.optParam
structure, if present in this structure. The TOMLAB interface routine always has the name of the routine, with
the additional two letters TL, e.g. for MINOS the TOMLAB interface routine is minosTL.

Other important fields to set when using the SOL solvers are the print and summary files that the solvers create.
These files are very important to look through if any problems are occuring, to find what the causes might be,
and if any warnings or errors are reported from the SOL solvers. To create a print and summary file, one example
when running MINOS is the following statements

Prob.SOL.optPar = -999*ones(62,1);

Prob.SOL.optPar(1) = 111111; % Maximal print level

Prob.SOL.PrintFile = ’minos.pri’ % Print file called minos.pri

Prob.SOL.SummFile = ’minos.sum’ % Summary file called minos.sum

Prob.SOL.optPar(39)= 0; % Derivative level. 0 = derivatives not known

Prob.NumDiff = 6; % Tell Tomlab that minos is estimating

Prob.ConsDiff = 6; % all derivatives

Here is added some other settings in the optPar vector as well. The choice of derivative level is very important,
and should match the choice of Prob.NumDiff and Prob.ConsDiff, see Section 10.1. If MINOS is told that no
derivatives are given, then MINOS will try to estimate them, and then TOMLAB must not do the same, i.e.
Prob.NumDiff and Prob.ConsDiff must be set to six (internal solver estimation of derivatives). If MINOS is told
that all derivatives are given, then TOMLAB might estimate them for MINOS using any of the five methods
possible, or by using automatic differentiation.

65

9.2 Derivatives for the SOL Solvers

The Fortran solvers from Stanford System Optimization Laboratory (SOL), have some useful special features,
which influence the way that input is prepared to the solvers.

When defining the gradient vector and the constraint Jacobian matrix it is often the case that they are only
partially known. The SOL solvers give the possibility to mark these elements. They will then be estimated by
finite differences.

In TOMLAB the gradient and the constraint Jacobian matrix are defined in two separate routines. If any element
is unknown, it is just marked with the standard Matlab element NaN. The TOMLAB SOL interface routine will
then convert the NaN element to the corresponding element used by SOL to mark that the element is unknown.

If any gradient or constraint Jacobian element is infinite, in Matlab set as Inf or -Inf, this element is converted to
a big number, 1020, in the TOMLAB SOL interface.

The following applies to the sparse nonlinear programming solvers MINOS and SNOPT. When the constraint
Jacobian matrix is sparse, then only the nonzero elements should be given. The sparse pattern is given as a
sparse matrix Prob.ConsPattern. In this matrix nonzero elements are marking nonzero elements in the constraint
Jacobian. This pattern is static, i.e. given once before the call to the SOL solver. One problem is that a sparse
matrix in Matlab is dynamic, i.e. only the nonzero elements of the matrix are stored. As soon as an element
becomes zero, the vector of nonzeros are decreased one element. A gradient element that is normally nonzero
might become zero during the optimization. Therefore care must be taken by the interface to return the correct
values, because the SOL solvers assume the possible non-zero elements of the constraint Jacobian to be returned
in the correct order. If some elements at the end are missing, they are estimated by finite differences.

The TOMLAB interface assumes the following conventions for the constraint Jacobian matrix:

• If the user returns a sparse matrix, and the number of nonzeros are equal to the number of nonzeros in
Prob.ConsPattern, no checks are done.

• If the user returns a sparse matrix, and the number of nonzeros are not equal to the number of nonzeros
in Prob.ConsPattern, the interface is matching all elements in the sparse array to find which nonzeros they
represent, and returns the correct vector of static nonzeros.

• If the user returns a sparse matrix, and has given no pattern of nonzeros in Prob.ConsPattern, i.e. it is an
empty array, then the solver and the interface assumes a full, dense matrix and the interface makes a full
matrix before returning the elements, column by column, to the solver.

• If the user returns a dense matrix, the interface just feeds all elements, column by column, back to the solver.

• If too few elements are returned, the solver will estimate the rest using finite differences.

When using the dense SOL nonlinear programming solvers, the constraint Jacobian matrix is always assumed to
be dense. The interface will convert any sparse matrix returned by the user to a dense, full matrix, and return the
elements, column by column, to the solver.

If no derivatives are available, it might be better to use the Nonderivative linesearch in SNOPT. It is based
on safeguarded quadratic interpolation. The default is to use a safeguarded cubic interpolation. To select
Nonderivative linesearch set the following parameter:

Prob.SOL.optPar(40) = 0; % Use Nonderivative instead of Derivative Linesearch

66

9.3 SOL Solver Output on Files

The SOL solvers print different amount of information on ASCII files, one Print File with more information, and
one Summary File with less information. SNOPT is using snoptpri.txt.m and snoptsum.txt.m as default names.
MINOS is using minospri.txt.m and minossum.txt.m as default names. Both SNOPT and MINOS always define
these log files in order to write error or warning messages if needed. The following example shows how to set new
names, other than the default, for these files.

Prob.SOL.PrintFile = ’snoptp.out’; % New name for Print File

Prob.SOL.SummFile = ’snopts.out’; % New name for Summary File

Even if the print level is set as low as possible, i.e. zero, still SNOPT and MINOS will write some summary and
result information in the files. The only way to make SNOPT and MINOS totally silent, and avoid writing to log
files, is by setting both the print level and the print file number to zero, i.e.

Prob.SOL.optPar(1) = 0; % No print out

Prob.SOL.optPar(1) = 0; % Print File unit 0

The SQOPT solver by default also defines the two log files as sqoptpri.txt.m and sqoptsum.txt.m. If the print level
is 0 no output will occur, unless some errors are encountered. It is possible to make SQOPT totally silent and
avoid any opening of files by the following statements.

Prob.SOL.PrintFile = ’’;

Prob.SOL.SummFile = ’’;

Prob.SOL.optPar(2) = 0;

Prob.SOL.optPar(3) = 0; % Must be set explicitely to 0 to avoid file creation

The important thing is that besides a zero print level, also the file unit number for SQOPT is set to zero. The
amount of printing is determined by a print level code, which is different for different solvers. See the help and
manual for each solver. Some solvers also have two print levels, one major print level and one minor print level.
This applies for SNOPT, NPSOL and NLSSOL. There are also different other parameters that influence how much
output is written on the files. The following example show how to get maximum output for SNOPT on files with
user defined names.

Prob.SOL.PrintFile = ’sn.p’; % New name for Print File

Prob.SOL.SummFile = ’sn.s’; % New name for Summary File

Prob.SOL.optPar(1) = 111111; % Major print level, combination of six 0/1

Prob.SOL.optPar(2) = 10; % Minor print level, 0, 1 or 10. 10 is maximum

Prob.SOL.optPar(5) = 1; % Print Frequency

Prob.SOL.optPar(6) = 1; % Summary Frequency

Prob.SOL.optPar(7) = 1; % Solution yes. 0 = Solution not printed

Prob.SOL.optPar(8) = 1; % Full options listing, not default

The other SOL solvers, NPSOL, NLSSOL, LSSOL, QPOPT and LPOPT, only define the Print File and Summary File
if the user has defined names for them. See the help for each solver on how to set the correct print level and other
parameters.

67

9.4 Warm Starts for the SOL Solvers

In TOMLAB warm starts for the SOL solvers are automatically handled. The only thing needed is to call the
routine WarmDefSOL after having solved the problem the first time, as the following principal example shows
doing repeated calls to SNOPT.

... % Define first problem

Result = tomRun(’snopt’,Prob); % Solve problem at t=1

...

for t=2:N

... % Changes at time t in Prob structure

Prob = WarmDefSOL(’snopt’, Prob, Result(t-1));

Result(t) = tomRun(’snopt’,Prob); % Call tomRun to solve again

... % Postprocessing

end

The WarmDefSOL routine are setting the warm start flag Prob.WarmStart, as true.

Prob.WarmStart = 1;

It is also moving subfields on the Result.SOL structure into Prob.SOL for the next run. For SNOPT, SQOPT and
MINOS the following commands are needed.

Prob.SOL.xs = Result.SOL.xs

Prob.SOL.hs = Result.SOL.hs

Prob.SOL.nS = Result.SOL.nS

For NPSOL and the other SOL solvers the commands are

Prob.SOL.xs = Result.SOL.xs

Prob.SOL.iState = Result.SOL.iState

Prob.SOL.cLamda = Result.SOL.cLamda

Prob.SOL.H = Result.SOL.H

The fields SOL.cLamda and SOL.H are not used for QPOPT, LPOPT, and LSSOL. For NPSOL and NLSSOL the
TOMLAB interface is automatically setting the necessary parameter Hessian Yes for subsequent runs. However,
in order for the first warm start to work the user must set this parameter before the first run. The principal calls
will be

... % Define first problem

Prob.SOL.optPar(50) = 1; % Define Hessian Yes BEFORE first call

Result = tomRun(’npsol’,Prob); % Solve problem at t=1

...

for t=2:N

...

Prob = WarmDefSOL(’npsol’, Prob, Result);

Result = tomRun(’npsol’,Prob);

...

end

Note that for all solvers the new initial value are taken from the field Prob.SOL.xs and any user change in the
standard initial value Prob.x 0 is neglected. More advanced handling of backup basis, solutions dumps etc. are
possible, see the different user guides.

68

9.5 Memory Issues for the SOL Solvers

Several users have encountered problems where SOL solvers report insufficient memory on machines where memory
should not be an issue. The solvers estimate their internal memory requirements at startup. This estimate is not
always large enough so the user might have to specify additional memory. This can be accomplished by

Prob.optParam.moremem = 1000; % or even larger if necessary

69

10 Special Notes and Features

In this section is collected several topics of general interest, which enables a more efficient use of TOMLAB. The
section about derivatives is particulary important from a practical point of view. It often seems to be the case
that either it is nearly impossible or the user has difficulties in coding the derivatives.

10.1 Approximation of Derivatives

Both numerical differentiation and automatic differentiation are possible. There are five ways to compute nu-
merical differentiation. Furthermore, the SOL solvers MINOS, NPSOL, NLSSOL and SNOPT includes numerical
differentiation.

Numerical differentiation is automatically used for gradient, Jacobian, constraint gradient and Hessian if the user
routine is nonpresent.

Especially for large problems it is important to tell the system which values are nonzero, if estimating the Jacobian,
the constraint Jacobian, or the Hessian matrix. Define a 0-1 matrix, with ones for the nonzero elements. This
matrix is set as input in the Prob structure using the fields Prob.JacPattern, Prob.ConsPattern or Prob.HessPattern.
If there are many zeros in the matrix, this leads to significant savings in each iteration of the optimization.

Forward or Backward Difference Approximations

The default way is to use the classical approach with forward or backward differences together with an automatic
step size selection procedure. This is handled by the routine fdng, which is a direct implementation of the FD

algorithm [34, page 343].

The fdng routine is using the parameter field DiffInt, in the structure optParam, see Table 39, page 183, as the
numerical step size. The user could either change this field or set the field Prob.GradTolg. The field Prob.GradTolg
may either be a scalar value or a vector of step sizes of the same length as the number of unknown parameters x.
The advantage is that individual step sizes can be used, in the case of very different properties of the variables or
very different scales. If the field Prob.GradTolg is defined as a negative number, the fdng routine is estimating a
suitable step size for each of the unknown parameters. This is a costly operation in terms of function evaluations,
and is normally not needed on well-scaled problems.

Similar to the fdng, there are two routines FDJac and FDHess. FDJac numerically estimates the Jacobian in
nonlinear least squares problems or the constraint Jacobian in constrained nonlinear problems. FDJac checks if
the field Prob.GradTolJ is defined, with the same action as fdng. FDHess estimates the Hessian matrix in nonlinear
problems and checks for the definition of the field Prob.GradTolH. Both routines use field Prob.optParam.DiffInt
as the default tolerance if the other field is empty. Note that FDHess has no automatic step size estimation.
The implementation in fdng, FDJac and FDHess avoids taking steps outside the lower and upper bounds on the
decision variables. This feature is important if going outside the bounds makes the function undefined.

Splines

If the Spline Toolbox is installed, gradient, Jacobian, constraint gradient and Hessian approximations could be
computed in three different ways depending of which of the three routines csapi, csaps or spaps the user choose
to use. The routines fdng2, FDJac2 and FDHess2 implements the gradient estimation procedure for the different
approximations needed. All routines use the tolerance in the field Prob.optParam.CentralDiff as the numerical
step length. The basic principle is central differences, taking a small step in both positive and negative direction.

Complex Variables

The fifth approximation method is a method by Squire and Trapp [82], which is using complex variables to estimate
the derivative of real functions. The method is not particulary sensitive to the choice of step length, as long as it
is very small. The routine fdng3 implements the complex variable method for the estimation of the gradient and
FDJac3 the similar procedure to estimate the Jacobian matrix or the constraint gradient matrix. The tolerance is
hard coded as 1E− 20. There are some pitfalls in using Matlab code for this strategy. In the paper by Martins et.

70

al [66], important hints are given about how to implement the functions in Matlab. They were essential in getting
the predefined TOMLAB examples to work, and the user is advised to read this paper before attempting to make
new code and using this differentiation strategy. However, the insensitivity of the numerical step size might make
it worthwhile, if there are difficulties in the accuracy with traditional gradient estimation methods.

Automatic Differentiation

Automatic differentiation is performed by use of the ADMAT toolbox. For information of how to get a copy of
ADMAT TB, see http://www.tc.cornell.edu/∼averma/AD/download.html. Below a short instruction of how to
install it is given.

1. Install the ADMAT TB at e.g. d:\Admat\...

2. Change the path commands in ...\tomlab\lib\admatInit.m and execute the file. (If choosing d:\Admat in 1.
it should be:)

...

...

path(path,’d:\admat’);

path(path,’d:\admat\reverse’);

path(path,’d:\admat\reverseS’);

path(path,’d:\admat\PROBS’);

path(path,’d:\admat\ADMIT\ADMIT-1’);

...

...

3. If not done before, setup location of installed c-compiler by ”mex -setup”.

4. In directory d:\Admat\ADMIT\ADMIT-1, execute ”mex id.c” to form id.dll.

5. NOTE: The ADMAT distribution contains a bug in the file ...\admat\admit\ADMAT-1\getJPI.m. Line
40 which originally reads

PartInfo.SPJ=spones(m,1);

should be changed to

PartInfo.SPJ=sparse(m,1);

ADMAT TB should be initialized by calling admatInit before running TOMLAB with automatic differentiation.
Note that in order for TOMLAB to be fully compatible with the ADMAT TB, the functions must be defined
according to the ADMAT TB requirements and restrictions. Some of the predefined test problems in TOMLAB
do not fulfill those requirements.

In the Graphical User Interface, the differentiation strategy selection is made from the Differentiation Method menu
reachable in the General Parameters mode. Setting the Only 2ndD click-box, only unknown second derivatives
are estimated. This is accomplished by changing the sign of Prob.NumDiff to negative to signal that first order
derivatives are only estimated if the gradient routine is empty, not otherwise. The method to obtain derivatives
for the constraint Jacobian is selected in the Constraint Jacobian diff. method menu in the General Parameters
mode.

When running the menu program tomMenu, push the How to compute derivatives button in the
Optimization Parameter Menu.

To choose differentiation strategy when running the driver routines or directly calling the actual solver set
Prob.AutoDiff equal to 1 for automatic differentiation or Prob.NumDiff to 1, 2, 3, 4 or 5 for numerical differentiation,
before calling drivers or solvers. Note that Prob.NumDiff = 1 will run the fdng routine. Prob.NumDiff = 2, 3, 4
will make the fdng2 routine call the Spline Toolbox routines csapi, csaps and spaps, respectively. The csaps rou-
tine needs a smoothness parameter and the spaps routine needs a tolerance parameter. Default values for these
parameters are set in the structure optParam, see Table 39, fields splineSmooth and splineTol. The user should

71

be aware of that there is no guarantee that the default values of splineSmooth and splineTol are the best for a
particular problem. They work on the predefined examples in TOMLAB. To use the built in numerical differ-
entiation. in the SOL solvers MINOS, NPSOL, NLSSOL and SNOPT, set Prob.NumDiff = 6. Note that the
DERIVATIVE LEVEL SOL parameter must be set properly to tell the SOL solvers which derivatives are known
or not known. There is a field DerLevel in Prob.optParam that is used by TOMLAB to send this information to
the solver. To select the method to obtain derivatives for the constraint Jacobian the field Prob.ConsDiff is set to
1-6 with the same meaning as for Prob.NumDiff as described above.

Here follows some examples of the use of approximative derivatives when solving problems with ucSolve and
clsSolve. The examples are part of the TOMLAB distribution in the file diffDemo in directory examples.

To be able to use automatic differentiation the toolbox ADMAT TB must be installed.

Automatic Differentiation example

probFile = ’uc_prob’; % Name of Init File

P = 1; % Problem number

Prob = probInit(probFile, P);

Prob.Solver.Alg = 2; % Use the safeguarded standard BFGS

Prob.AutoDiff = 1; % Use Automatic Differentiation.

Result = ucSolve(Prob);

FD example

% Finite differentiation using the FD algorithm

probFile = ’uc_prob’; % Name of Init File

P = 1; % Problem number

Prob = probInit(probFile, P);

Prob.Solver.Alg = 2;

Prob.NumDiff = 1; % Use the fdng routine with the FD algorithm.

Result = ucSolve(Prob);

PrintResult(Result,2);

% Change the tolerances used by algorithm FD

Prob.GradTolg = [1E-5; 1E-6]; % Change the predefined step size

Result = ucSolve(Prob);

% The change leads to worse accuracy

PrintResult(Result,2);

% Instead let an algorithm determine the best possible GradTolg

% It needs some extra f(x) evaluations, but the result is much better.

Prob.GradTolg = -1; % A negative number demands that the step length

% of the algorithm is to be used at the initial point

% Avoid setting GradTolg empty, then instead Prob.optParam.DiffInt is used.

Result = ucSolve(Prob);

% Now the result is perfect, very close to the optimal == 0.

PrintResult(Result,2);

Prob.NumDiff = 5; % Use the complex variable technique

72

% The advantage is that it is insensitive to the choice of step length

Result = ucSolve(Prob);

% When it works, like in this case, it gives absolutely perfect result.

PrintResult(Result,2);

pause

Increasing the tolerances used as step sizes for the individual variables leads to a worse solution being found, but no
less function evaluations until convergence. Using the automatic step size selection method gives very good results.
The complex variable method gives absolutely perfect results, the optimum is found with very high accuracy.

The following example illustrates the use of spline function to approximate derivatives. It is only possible to run
if the Spline toolbox is installed.

Spline example

probFile = ’ls_prob’; % Name of Init File

P = 1; % Problem number

Prob = probInit(probFile, P);

Prob.Solver.Alg = 0; % Use the default algorithm in clsSolve

Prob.NumDiff = 2; % Use the Spline Toolbox routine csapi.

Result = clsSolve(Prob);

PrintResult(Result,2);

10.2 Speed and Solution of Optimization Subproblems

It is often the case that the full solution of an optimization problem involves the solution of subtasks, which
themselves are optimization problems. In fact, most general solvers are constructed that way, they solve well-
defined linear or quadratic subproblems as part of the main algorithm. TOMLAB has a standard way of calling
a subsolver with the use of the driver routine tomSolve. The syntax is similar to the syntax of tomRun. Calling
QPOPT to solve a QP sub problem is made with the call

Result = tomRun(’qpopt’, Prob);

The big advantage is that tomSolve handles the global variables with a stack strategy, see Appendix C. Therefore
it is possible to run any level of recursive calls with the TOMLAB TOM solvers, that all run in Matlab. Even if
care has been taken in the MEX-file interfaces to avoid global variable and memory conflicts, there seem to be some
internal memory conflicts occurring when calling recursively the same MEX-file solver. Luckily, because TOMLAB
has several solver options, it should be possible to use different solvers. In one recent two-stage optimization, a
control problem, even four solvers were used. glcSolve was used to find a good initial value for the main optimization
and SNOPT was used to find the exact solution. In each iteration several small optimization problems had to be
solved. Here glbSolve was used to find a good initial point close to the global optimum, and MINOS then iterated
until good accuracy was found.

The general TOM solvers clsSolve, conSolve, cutplane, mipSolve, nlpSolve, qpSolve and sTrustr have all been
designed so it shall be possible to change the subproblem solver. For example to solve the QP subproblems in
conSolve there are several alternatives, QPOPT, qpSolve or even SNOPT. If using the BFGS update in conSolve,
which guarantees that the subproblems are convex, then furthermore QLD or SQOPT could be used. The QP,
LP, FP (feasible point) and DLP (dual LP) subproblems have special treatment. A routine CreateProbQP creates
the Prob structure for the subproblem. The routine checks on the fields Prob.QP.SOL and Prob.QP.optParam and
move these to the usual places Prob.SOL and Prob.optParam for the subproblem. Knowing this, the user may
send his own choices of these two important subfields as input to conSolve and the other solvers mentioned. The
choice of the subsolver is made by giving the name of the wanted subsolver as the string placed in Prob.SolverQP

73

for QP subproblems and similar for the other subproblems. Note that the time consuming call to CreateProbQP
is only done once in the solver, and after that only the fields necessary to be changed are altered in each iteration.

Note that if the user needs to cut CPU time as much possible, one way to save some time is to call tomSolve
instead of tomRun. But no checks are made on the structure Prob, and such tricks should only be made at the
production stage, when the code is known to be error free.

Another way to cut down CPU time for a nonlinear problem is to set

Prob.LargeScale = 1;

even if the problem is not that large (but time consuming). TOMLAB will then not collect information from
iterations, and not try to estimate the search steps made. This information is only used for plotting, and is mostly
not needed. Note that this change might lead to other choices of default solvers, because TOMLAB thinks the
problem is large and sparse. So the default choices might have to be overridden.

10.3 User Supplied Problem Parameters

If a problem is dependent on a few parameters, it is convenient to avoid recoding for each change of these param-
eters, or to define one problem for each of the different parameter choices. The user supplied problem parameters
gives the user an easy way to change the creation of a problem. One field in the Prob structure, the field Prob.uP
is used to store the user supplied problem parameters.

The best way to describe the User Supplied Problem Parameter feature is by an example. Assume a problem
with variable dimension. If the user wants to change the dimension of the problem during the initialization of the
problem, i.e. in the call to the Init File, the routine askparam is of help. The problem 27 in cls prob is an example
of the above:

...

...

elseif P==27

Name=’RELN’;

% n problem variables, n >= 1 , default n = 10

uP = checkuP(Name,Prob);

n = askparam(ask, ’Give problem dimension ’, 1, [], 10, uP);

uP(1) = n;

y = zeros(n,1);

x_0 = zeros(n,1);

x_opt = 3.5*ones(n,1);

...

...

The routine checkuP is checking if the input Prob structure has the field Prob.uP defined, and it if the Name of the
problem is the same as the one set in Prob.Name. If this is true, uP is set to found value. When calling askparam,
if ask <= 0, then the dimension n is set to the default value 10 if uP is empty, otherwise to the value of uP. If
ask > 0 is set by the user, then askparam will ask the question Give problem dimension and set the value given
by user. At the end of the Init File, the field Prob.uP is assigned to the value of uP(1).

Using the routine checkuP, called after the Name variable is assigned, and the general question asking routine
askparam, it is easy to add the feature of user supplied problem parameters to any user problem. Type help
askparam for information about the parameters sent to askparam.

To send any amount of other information to the low-level user routines, it is recommended to use sub fields of
VARProb.user as described in Section 2.4.

In the other problem definition files, cls r and cls J in this example, the parameter(s) are ”unpacked” and can be
used e.g. in the definition of the Jacobian.

...

74

...

elseif P==27

% ’RELN’

n = Prob.uP(1);

...

...

If questions should be asked during the setup of the problem, in the Init File, the user must set the integer ask
positive in the call to probInit. See the example below:

ask=1;

Prob = probInit(’cls_prob’,27,ask);

The system will now ask for the problem dimension, and assuming the choice of the dimension as 20, the output
will be:

Current value = 10

Give problem dimension 20

Now call clsSolve to solve the problem,

Result=clsSolve(Prob);

which gives the printed output

==

Iteration no: 0 Func 80.00000000000000000000 Cond 1

==

Iteration no: 1 Func 1.25000000000000000000 Cond 1

*** Convergence 2, Projected gradient small ***

As a second example assume that the user wants to solve the problem above for all dimensions between 10 and
30. Then the following code snippet will do the work.

for dim=10:30

Prob = [];

Prob.uP(1) = dim;

PriLev = 0;

Result = tomRun(’clsSolve’, ’cls_prob’, 27, Prob, [], PriLev);

end

10.4 User Given Stationary Point

Known stationary points could be defined in the problem definition files. It is also possible for the user to define
the type of stationary point (minimum, saddle or maximum). When defining the problem RB BANANA (15) in
the previous sections, x opt was set as (1, 1) in the problem definition files. If it is known that this point is a
minimum point the definition of x opt could be extended to

x_opt = [1 1 StatPntType]; % Known optimal point (optional).

where StatPntType equals 0, 1, or 2 depending on the type of the stationary point (minimum, saddle or maximum).
In this case set StatPntType to 0 since (1, 1) is a minimum point. The extension becomes

x_opt = [1 1 0]; % Known optimal point (optional).

75

If there is more than one known stationary point, the points are defined as rows in a matrix with the values of
StatPntType as the last column. Assume that (−1,−1) is a saddle point, (1,−2) is a minimum point and (−3, 5)
is a maximum point for a certain problem. The definition of x opt could then look like

x_opt = [-1 -1 1

1 -2 0

-3 5 2];

Note that it is not necessary to define x opt. If x opt is defined it is not necessary to define StatPntType if all given
points are minimum points.

10.5 Print Levels and Printing Utilities

The amount of printing is determined by setting different print levels for different parts of the TOMLAB system.
The parameter is locally most often called PriLev. There are two main print levels. One that determines the
output printing of the driver or menu routines, set in the input structure as Prob.PriLev. The other printing level,
defined in Prob.PriLevOpt, determines the output in the TOM solvers and for the SOL solvers, the output in the
Matlab part of the MEX file interface. In Table 15 the meaning of different print levels are defined. There is
a third print level, defined in Prob.optParam.PriLev, that determines how much output is written by the SOL
solvers on files. See Section 9.3 for details on this.

The utility routine PrintResult prints the results of an optimization given the Result structure. The amount
of printing is determined by a second input argument PriLev. The driver routine tomRun also makes a call to
PrintResult after the optimization, and if the input parameter PriLev is greater than zero, the result will be the
same as calling PrintResult afterwards.

PrintResult is using the global variables, MAX c, MAX x and MAX r to limit the lengths of arrays displayed. All
Matlab routines in the SOL interfaces are also using these global variables. The global variables get default values
by a call to tomlabInit. or if empty is set to default values by the different routines using them. The following
example show the lines needed to change the default values.

global MAX_c MAX_x MAX_r

MAX_x = 100;

MAX_c = 50;

MAX_r = 200;

This code could either be executed at the command line, or in any main routine or script that the user defines.

Table 15: Print level in the TOM solvers, Prob.PriLevOpt

Value Description
< 0 Totally silent.
0 Error messages and warnings.
1 Final results including convergence test results and minor warnings.
2 Each iteration, short output.
3 Each iteration, more output.
4 Line search or QP information.
5 Hessian output, final output in solver.

There is a wait flag field in optParam, optParam.wait. If this flag is set true, most of the TOM solvers uses the
pause statement to avoid the output just flushing by. The user must press RETURN to continue execution. The
fields in optParam is described in Table 39.

The TOM solvers routines print large amounts of output if high values for the PriLev parameter is set. To make
the output look better and save space, several printing utilities have been developed, see Table 23 page 153.

For matrices there are two routines, mPrint and printmat. The routine printmat prints a matrix with row and
column labels. The default is to print the row and column number. The standard row label is eight characters

76

long. The supplied matrix name is printed on the first row, the column label row, if the length of the name is at
most eight characters. Otherwise the name is printed on a separate row.

The standard column label is seven characters long, which is the minimum space an element will occupy in the
print out. On a 80 column screen, then it is possible to print a maximum of ten elements per row. Independent
on the number of rows in the matrix, printmat will first display A(:, 1 : 10), then A(:, 11 : 20) and so on.

The routine printmat tries to be intelligent and avoid decimals when the matrix elements are integers. It determines
the maximal positive and minimal negative number to find out if more than the default space is needed. If any
element has an absolute value below 10−5 (avoiding exact zeros) or if the maximal elements are too big, a switch
is made to exponential format. The exponential format uses ten characters, displaying two decimals and therefore
seven matrix elements are possible to display on each row.

For large matrices, especially integer matrices, the user might prefer the routine mPrint. With this routine a more
dense output is possible. All elements in a matrix row is displayed (over several output rows) before next matrix
row is printed. A row label with the name of the matrix and the row number is displayed to the left using the
Matlab style of syntax.

The default in mPrint is to eight characters per element, with two decimals. However, it is easy to change the
format and the number of elements displayed. For a binary matrix it is possible to display 36 matrix columns in
one 80 column row.

10.6 Partially Separable Functions

The routine sTrustr implements a structured trust region algorithm for partially separable functions (psf). A
definition of a psf is given below and an illustrative example of how such a function is defined and used in
TOMLAB.

f is partially separable if f(x) =
M
∑

i

fi(x), where, for each i ∈ {1, ...,M} there exists a subspace Ni 6= 0 such that,

for all w ∈ Ni and for all x ∈ X, it holds that fi(x + w) = fi(x). X is the closed convex subset of R
n defined by

the constraints.

Consider the problem DAS 2 in File: tomlab/testprob/con prob :

min
x

f(x) = 1
2

6
∑

1
ri(x)

2

s/t Ax ≥ b
x ≥ 0

(17)

where

r =

√
11
6 x1 − 3√

11
x2−3√

2√
0.0775 · x3 +

0.5√
0.0775

x4

3
−3√
2

−5
6 x1 + 0.6x3

0.75x3 +
2
3x4

, A =

−1 −2 −1 −1
−3 −1 −2 1
0 1 4 0

 , b =

−5
−4
1.5

 .

The objective function in (17) is partially separable according to the definition above and the constraints are linear
and therefore they define a convex set. DAS 2 is defined as the constrained problem 14 in con prob, con f, con g
etc. as an illustrative example of how to define a problem with a partially separable objective function. Note the
definition of pSepFunc in con prob.

One way to solve problem (17) with sTrustr is to define the following statements:

probFile = ’con_prob’; % Name of Init File

P = 14; % Problem number in con_prob

Prob = probInit(probFile, P); % Define a problem structure

Result = sTrustr(Prob);

77

The sequence of statements are similar to normal use of TOMLAB. The only thing that triggers the use of
the partial separability is the definition of the variable Prob.PartSep.pSepFunc. To solve the same problem, and
avoiding the use of psf, the following statements could be used:

probFile = ’con_prob’; % Name of Init File

P = 14; % Problem number in con_prob

Prob = probInit(probFile, P); % Define a problem structure

Prob.PartSep.pSepFunc = 0; % Redefining number of separable functions

Result = sTrustr(Prob);

Another alternative is to set Prob.PartSep as empty before the call to sTrustr. This example, slightly expanded,
is included in the distribution as psfDemo in directory examples.

10.7 Usage of routines from Optimization Toolbox 1.x

TOMLAB has interfaces to some of the solvers in MathWorks Optimization TB v1.5. If the user has this toolbox
and want to run these routines for problems defined in the TOMLAB format, the path to directory optim1.x must
be placed before the path to the directory mex. Edit the file startup.m and change if 0 to if 1 to add the correct
path.

If running Mideva, there are equivalents to these routines. If the user wants to run these routines for problems
defined in the TOMLAB format, the path to directory mideva1.x must be placed before the path to the directory
mex. and to the directory optim1.x (if in path). In the file startup.m, change if 0 to if 1 to add the correct path.

10.8 Using Matlab 5.0 or 5.1

Are you are running TOMLAB under Matlab 5.0 or 5.1? If running on PC then the directory matlab5.1 must be
put before the other TOMLAB directories in the Matlab search path.

If running on Unix then the directory unix5.1 must be put before the other TOMLAB directories in the Matlab
search path.

The matlab5.1 directory contains two routines, strcmpi and xnargin. The command strcmpi, used by some
TOMLAB routines, is a Matlab 5.2 command. Therefore, the matlab5.1 directory routine strcmpi is created
for 5.0/5.1 users. It simply calls strcmp after doing upper on the arguments.

A bug in Matlab 5.1 on PC for the nargin command makes it necessary to call nargin with only non-capitalized
letters. The routine xnargin in Matlab 5.1 does lower on the arguments in the call to nargin, and the xnargin
routine in the lib directory does not do it. On unix systems it is necessary to keep the exact function name.

The unix5.1 directory contains one routine, strcmpi.

10.9 Utility Test Routines

The utility routines listed in Table 16 run tests on a large set of test problems.

Table 16: System test routines.

Function Description Section Page
runtest Runs all selected problems defined in a problem file for a given solver. 13.2.8 147
systest Runs big test for each probType in TOMLAB. 13.2.10 149

The runtest routine may also be useful for a user running a large set of optimization problems, if the user does not
need to send special information in the Prob structure for each problem.

78

11 The tomGUI Graphical User Interface (GUI)

The Graphical User Interface is started by calling the Matlab m-file tomlabGUI.m, i.e. by entering the command
tomlabGUI at the Matlab prompt. There is a short command tomGUI.m. The GUI has five modes; Normal
(Result mode), Figure, General parameter mode, Solver parameter mode and Plot parameter mode. At start the
GUI is in Normal mode, shown in Figure 8.

Figure 8: The GUI after startup.

There are one axes area, five menus; Type of Optimization, Init File, Problem, Solver and Plot, and twelve push
buttons; ReOptimize, x0 with Mouse, Result window, Figure window, Solver parameters, Plot parameters, General
parameters, Show default values, Make Plot, Help, Optimize and Close.

There are two edit controls where it is possible to enter the first two initial values (Starting Values) of the unknown
parameters vector. If the problem has more then two dimensions, the rest of the initial values are given in the
General Parameter mode.

In the axes area plots and information given as text are displayed.

The Type of Optimizationmenu is used to select subject, i.e. which type of problem to be solved. There are currently
ten main problem types; unconstrained optimization, quadratic programming, constrained optimization, nonlinear
least squares, exponential sum fitting, constrained nonlinear least squares, mixed-integer linear programming,
linear programming, global unconstrained optimization and global constrained optimization.

With the selection in the Init File, the user makes the choice of which file to get the problem to solve from. In the
Problem menu, the user selects the actual problem to be solved, among the ones present in the current selected
Init File. Presently, there are about 15 to 50 predefined test problems for each problem type. The user can easily
define his own problems and try to solve them using any solver, see sections 5, 6 and 8.

The Solver menu is used to select solver. It can either be a TOMLAB internal solver, a solver in the Matlab
Optimization Toolbox or a general-purpose solver implemented in Fortran or C and ran using a MEX-file interface.

79

Changing Type of Optimization will automatically change the menu entries in the Init File menu, the Problem
menu, and the Solver menu.

From the Plot menu, the type of plot to be drawn is selected. The different types are contour plot, mesh plot, plot
of function values and plot of convergence rate. The contour plot and the mesh plot can be displayed either in
the axes area or in a new figure. The plot of function values and convergence rate are always displayed in a new
figure. For least squares problems and exponential fitting problems it is possible to plot the residuals, the starting
model and the obtained model.

When clicking the Show default values button, the default values for every parameter are displayed in the edit
controls. The button then shows the text Hide default values. If pushing the button again, the parameters will
disappear. Before solving a problem, the user can change any of the values. If leaving an edit control empty, the
default values are used. If giving a value less than -1, it will normally not be used at all. The default values are
used instead. The value −999 indicates missing value, and the default value is always used by the solver. The
value −900 indicates both a missing value, and that this quantity is never used by the currently defined solver.
Thus it is pointless to set a value for this quantity.

The buttons General Parameters, Solver Parameters and Plot Parameters are described in Section 11.1.

Pushing the Make Plot button gives a plot of the current problem. Pushing the Figure window button switches
back to the last plot made. In the contour plot, known local minima, known local maxima and known saddle
points are shown. It is possible to make a contour plot and a mesh plot without first solving the problem. After
the problem is solved, a contour plot shows the search direction and trial step lengths for each iteration. A contour
plot of the classical Rosenbrock banana function, together with the iteration search steps and with marks for the
line search trials displayed, is shown in Figure 9.

Figure 9: A contour plot with the search directions and marks for the line search trials for each iteration
when solving an unconstrained optimization problem.

A contour plot for a constrained problem and a plot of the data is given in Figure 10. In the contour plot,
(inequality) constraints are depicted as dots. Starting from the infeasible point (x1, x2) = (−5.0, 2.5), the solution

80

algorithm first finds a point inside the feasible region. The algorithm then iteratively finds new points. For several
of the search directions, the full step is too long and violates one of the constraints. Marks show the line search
trials. Finally, the algorithm converges to the optimal solution (x∗1, x

∗
2) = (−9.5474, 1.0474).

Figure 10: A contour plot for a constrained problem

In Figure 11 is shown a plot of the data and the obtained model for a nonlinear least squares problem, in this case
an exponential fitting problem.

For global optimization one option is a contour plot together with the sampled points. This plot is illustrative for
how the search procedure is sampling. The points samples cluster around the different local minima. One example
is shown in Figure 12, where the blue dots are the sampled points.

The Help button gives some information about the current problem, e.g. the number of variables. Note that
there are four drag menus on top TOMLAB Help, Solver Parameters, General Parameters, and Plot Parameters.
Selecting any items in these menus displays a help text in plot window.

When the user has chosen a solver and a problem, he then pushes the Optimize button to solve it. When the
algorithm has converged, information about the solution procedure are displayed. This information will include the
solution found, the function value at the solution, the number of iterations used, the number of function evaluations,
the number of gradient evaluations, the number of floating point operations used and the computation time. If no
algorithm is selected as in Figure 8, the Run button has the same function as the Plot button.

If a contour plot is displayed in the axes area and the user pushes the button named x 0 with mouse, it is possible
to select starting point for the current algorithm using the mouse. Pushing the ReOptimize button, the current
problem is re-optimized with the starting point defined as the solution found in the previous solution attempt.

To close the GUI, push the Close button.

81

Figure 11: A plot of the data and the model for a exponential sum fitting problem. The figure shows the
second part of the data series and the estimated optimal model

11.1 The Input Modes

This section describes the three input modes General Parametermode, Solver Parametermode and Plot Parameter
mode. When pushing one of these buttons, the GUI will change to the corresponding mode. The axes area is
replaced by more edit controls and menus.

11.2 General Parameter Mode

The General Parameter Mode makes it possible to set parameters common for the current Type of Optimization
given, See Figure 13.

To the left is the maximum number of iterations (Max iterations), and limits on major and minor iterations.
The last two are used for some solvers. Above each other is the tolerances, e.g. the termination tolerance on the
function value (EpsF), the rank test tolerance (EpsR), the termination tolerance on the change in the decision
variables (EpsX), and the termination tolerance on the gradient (EpsG). If a solver for constrained optimization
handling linear constraints is selected, an edit control for the allowed tolerance on constraint violation (EpsB) is
shown. Another similar edit control (EpsC) is shown for solvers handling nonlinear constraints. This edit control
sets the allowed termination tolerance on the nonlinear constraint violation.

For problems with more than two decision variables, starting values for decision variable x3 to xn are given in the

82

Figure 12: Contour plot with sampled points for the two-dimensional Shekels foxhole problem. The
problem has several local optima and is best solved by global optimization methods.

edit control named ’Starting Values x3 - xn’. Starting values for x1 and x2 are given in the edit controls named
’Starting Values’.

The first menu selects method to compute first and second derivatives. Except for using an analytical expres-
sion, these can be computed either by automatic differentiation using the ADMAT Toolbox, distributed by Arun
Verma at http://www.tc.cornell.edu/∼averma/AD/download.html, or by five different approaches for numerical
differentiation. Three of them requires the Spline Toolbox to be installed.

The Print Level Driver Routine menu selects the level of output from the optimization driver after the solver has
been called. All this output is printed in the Matlab Command Window. Normally it is enough with the default
information given in the GUI result window.

If the Pause Each Iteration check box is selected, the TOMLAB internal solvers are using the pause statement to
halt after each iteration.

If the check box Hold Previous Run is selected, all information about the runs are stored. Making a contour plot,
the step and trial step lengths for all solution attempts are drawn. This option is useful, e.g. when comparing the
performance of different algorithms or checking how the choice of starting point affects the solution procedure.

For some predefined test problems, it is possible to set parameter values when initializing the problem. These
parameters can for example be the size of the problem, the number of residuals or the number of constraints.
Questions asking for input of the parameters will appear when selecting the check box named Ask Questions
when defining problem, otherwise, if the check box is not selected, default values will be used.

When selecting exponential fitting problems, two new menus and a new edit control will appear. The number
of exponential terms (Terms) in the approximating model is selected, default two. There is a choice whether to
solve the weighted least squares fitting problem using an ordinary or separable nonlinear least squares algorithm
(Least Squares Method). There are four types of residual weighting selectable (Residual Weights). The option
y-weighting, i.e. weighting with the measured data, is often proposed, but default is No weighting.

83

Figure 13: The GUI in General Parameter Mode.

Code Generation

Entering a name in the edit control Code Generation File and clicking the Save Code button, two files will be
generated; one Matlab mat-file and one Matlabm-file. The file name given should not include any extension. For
example, entering the name test in the edit control, the files test.mat and test.m will be generated. The files are
saved in the current directory. In the mat-file parameters are stored in the Prob structure format, but the name
of the structure is Problem. In the m-file all commands needed to make a stand-alone run without using the GUI
are defined. The parameter values are those currently used by the GUI. To run the problem, just issue test in the
command window. Note that the print level is set very low by default, and often nothing is displayed. It is easy
to edit the m-file for different needs.

If entering a name in the Code Generation File edit control and clicking the Load Settings button, the GUI will
read the corresponding mat-file. The mat-file should contain a TOMLAB Prob structure with the name Problem.
This is the type of mat-file generated by the Save Code button. The GUI will switch to the Type of Optimization,
Init File, Problem File and Solver defined in the mat-file. The default values for all parameters will be loaded from
the mat-file. This option is useful for retrieving complicated settings for a particular problem and solver.

11.3 Solver Parameter Mode

For the Solver Parameter Mode the parameters areas shown, and possible to set, are dependent on the particular
solver selected in the Solver menu. Some parameters are common for many of the internal TOMLAB solvers
FLow, the best guess on a lower bound for the optimal function value, is used by TOMLAB solver algorithms
using the Fletcher line search algorithm [25]. In Figure 14 the Solver Parameter Mode for the MINOS solver is
shown. MINOS and SNOPT are the solvers with most parameters to be set. Default values are always defined,
and in the picture is shown the default values for MINOS.

Algorithms using a line search approach needs the line search accuracy σ (Sigma) between zero and one. Values

84

Figure 14: The Solver Parameters for the MINOS solver.

close to one (0.9) gives an inaccurate line search, often recommended. Values close to zero (0.1) gives a more
accurate line search, recommended for conjugate gradient methods and sometimes for quasi-Newton methods.
Another menu determines if a quadratic or a cubic interpolation shall be used in the line search algorithm.

The Print Level Optimization Routine menu is used to select the level of output from the optimization solver. All
output printed during the optimization are displayed in the Matlab Command Window.

The menu named Algorithm differs between different solvers. Some solvers have only one algorithm alternative,
others have several. The menu named Method also differs between different solvers, and is sometimes hidden.
Using an unconstrained solver, a least squares solver or an exponential fitting solver, the menu selects method to
compute the search direction. In the constrained case, the Method menu gives the quadratic programming solver
to be used in SQP algorithms.

11.4 Plot Parameter Mode

The Plot Parameter Mode makes it possible to set parameters common for plotting, see Figure 15.

The edit controls named ’Axes’ set the axes in the contour plot and the mesh plot.

To make a contour plot or a mesh plot for problems with more than two decision variables, the user selects the
two-dimensional subspace to plot. The indices of the decision variables defining the subspace are given in the edit
controls called ’Variables At Axis When n > 2’. The view for a mesh plot is changed using the edit controls ’Mesh
View’.

85

Figure 15: The plot parameters in the Plot Parameter Mode.

86

12 The Menu Program tomMenu

The general menu program tomMenu has much of the functionality of the GUI (Section 11), and is sometimes
faster to use. It is also possible to run when not running a window system, e.g. when using telnet to a machine, in
which case the GUI is not possible to use. Some specific solver parameter settings are not available in tomMenu,
as well as the code generation possibility.

Starting the menu system, the first menu, seen in Figure 16, is the selection of the type of optimization problem
(probType).

Figure 16: The choice of the Type of Optimization in tomMenu.

The tomMenu sub-menu for unconstrained optimization is shown in Figure 17. The other sub-menus look similar,
with additional items corresponding to options needed for the relevant problem and solver type. In the following
of this section, the most important standard menu choices are commented.

The Choice of Problem Init File and Problem button selects the problem Init File and the problem to be solved.
Correspondingly, the Solver, Solver algorithm and Solver sub-method buttons selects the solver, particular solver
algorithm, and other method choice to be used.

From the Optimization Parameter Menu, parameters needed for the solution can be changed. The user selects new
values or simply uses the default values. The parameters are those stored in the optParam structure, see Table
39. The Output print levels button selects the level of output to be displayed in the Matlab Command Window
during the solution procedure. The Optimization Parameter Menu also allows the user to choose the differentiation
strategy he wants to use. The Optimization Parameter Menu is dependent on the type of optimization problem.
A short parameter menu for quadratic programming is shown in Figure 18.

Pushing the Optimize button, the relevant routines are called to solve the problem.

When the problem is solved, it is possible to make different types of plots to illustrate the solution procedure.

87

Figure 17: The main menu for unconstrained optimization in tomMenu.

Pushing the Plot Menu button, a menu choosing type of plot will appear. A overview of the available plotting
options are given in connection with the Graphical User Interface described in Section 11.

The menu routine is started by just typing tomMenu at the Matlab prompt. In Section 14.2.1 we illustrate how
to use the menu system for linear programming problems (lpMenu). The menus for nonlinear problems work in a
similar way.

Calling tomMenu) by typing Result = tomMenu will return a structure array containing the Result structures of all
the runs made. As an example, to display the results from the third run, enter the command Result(3). To display
the solution found in the third run, enter the command Result(3).x k. The information stored in the structure are
given in Table 46.

The menu program calls the driver routine tomRun.

There are some options in the menu programs to display graphical information for the selected problem. For
two-dimensional nonlinear unconstrained problems, the menu programs support graphical display of the relevant
optimization problem as mesh or contour plots. In the contour plot, the iteration steps are displayed. For higher-
dimensional problems, iterations steps are displayed in two-dimensional subspaces. Special plots for nonlinear
least squares problems, such as plotting model against data, are available. The plotting utility also includes plot
of convergence rate, plot of circles approximating points in the plane for the Circle Fitting Problem etc. The plot
facilities are exactly the same as for the GUI. See Section 11 for figures similar to the ones produced running the
menu system.

88

Figure 18: Setting optimization parameters for quadratic programming.

89

13 The TOMLAB Routines - Detailed Descriptions

13.1 The TOM Solvers

Detailed descriptions of the TOM solvers, driver routines and some utilities are given in the following sections.
Also see the M-file help for each solver.

For a description of the Fortran solvers, called using the MEX-file interface, see the M-file help, e.g. for the MINOS
solver MINOS.m. For more details, see the User’s Guide for the particular solver.

13.1.1 clsSolve

Purpose
Solves dense and sparse nonlinear least squares optimization problems with linear inequality and equality con-
straints and simple bounds on the variables.

clsSolve solves problems of the form

min
x

f(x) = 1
2r(x)

T r(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ R
n, r(x) ∈ R

N , A ∈ R
m1×n and bL, bU ∈ R

m1 .

Calling Syntax
Result = clsSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Solver algorithm to be run:
0: Gives default, the Fletcher - Xu hybrid method;
1: Fletcher - Xu hybrid method; Gauss-Newton/BFGS.
2: Al-Baali - Fletcher hybrid method; Gauss-Newton/BFGS.
3: Huschens method.
4: Gauss-Newton

Solver.Method Method to solve linear system:
0: QR with pivoting (both sparse and dense).
1: SVD (dense).
2: The inversion routine (inv) in Matlab (Uses QR).
3: Explicit computation of pseudoinverse, using pinv(Jk).

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.
USER.r Name of m-file computing the residual vector r(x).
USER.J Name of m-file computing the Jacobian matrix J(x).
PriLevOpt Print Level.
LargeScale Set to 1 to use sqr2, a sparse QR method for efficient storage of the Q matrix.

Only applicable if Prob.Solver.Method = 0 (default).
optParam Structure with special fields for optimization parameters, see Table 39.

Fields used are: bTol, eps absf, eps g, eps Rank, eps x, IterPrint, MaxIter, PreSolve,
size f, size x, xTol, wait, and QN InitMatrix.

LineParam Structure with line search parameters, see Table 38.
varargin Other parameters directly sent to low level routines.

90

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
v k Lagrange multipliers.
f k Function value at optimum.
g k Gradient value at optimum.
x 0 Starting point.
f 0 Function value at start.
r k Residual at optimum.
J k Jacobian matrix at optimum.
xState State of each variable, described in Table 47.
bState State of each linear constraint, described in Table 48.
Iter Number of iterations.
ExitFlag Flag giving exit status. 0 if convergence, otherwise error. See Inform.
Inform Binary code telling type of convergence:

1: Iteration points are close.
2: Projected gradient small.
4: Function value close to 0.
8: Relative function value reduction low for LowIts = 10 iterations.
32: Local minimum with all variables on bounds.
101: Maximum number of iterations reached.
102: Function value below given estimate.
104: x k not feasible, constraint violated.
104: The residual is empty, no NLLS problem.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The solver clsSolve includes four optimization methods for nonlinear least squares problems: the Gauss-Newton
method, the Al-Baali-Fletcher [5] and the Fletcher-Xu [24] hybrid method, and the Hushens TSSM method [59].
If rank problem occur, the solver is using subspace minimization. The line search is performed using the routine
LineSearch which is a modified version of an algorithm by Fletcher [25]. Bound constraints are partly treated as
described in Gill, Murray and Wright [34]. clsSolve treats linear equality and inequality constraints using an active
set strategy and a null space method.

M-files Used
ResultDef.m, preSolve.m, qpSolve.m, tomSolve.m, LineSearch.m, ProbCheck.m, secUpdat.m, iniSolve.m, endSolve.m

See Also
conSolve, nlpSolve, sTrustr

Limitations
When using the LargeScale option, the number of residuals may not be less than 10 since the sqr2 algorithm may
run into problems if used on problems that are not really large-scale.

Warnings
Since no second order derivative information is used, clsSolve may not be able to determine the type of stationary
point converged to.

91

13.1.2 conSolve

Purpose
Solve general constrained nonlinear optimization problems.

conSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

Calling Syntax
Result = conSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Choice of algorithm. Also affects how derivatives are obtained.
See following fields and the table on page 94.
0,1,2: Schittkowski SQP.
3,4: Han-Powell SQP.

NumDiff How to obtain derivatives (gradient, Hessian).
ConsDiff How to obtain the constraint derivative matrix.
AutoDiff If true, use automatic differentiation.

LineParam Structure with line search parameters. See Table 38.

optParam Structure with optimization parameters, see Table 39.
Fields used are: bTol, cTol, eps absf, eps g, eps x, eps Rank, IterPrint, MaxIter,
QN InitMatrix, size f, size x, xTol and wait.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.

USER.f Name of m-file computing the objective function f(x).
USER.g Name of m-file computing the gradient vector g(x).
USER.H Name of m-file computing the Hessian matrix H(x).
USER.c Name of m-file computing the vector of constraint functions c(x).
USER.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.
PriLevOpt Print level.

varargin Other parameters directly sent to low level routines.

92

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
v k Lagrange multipliers.
c k Value of constraints at optimum.
cJac Constraint Jacobian at optimum.
xState State of each variable, described in Table 47 .
bState State of each linear constraint, described in Table 48.
cState State of each general constraint.
x 0 Starting point.
f 0 Function value at start.
Iter Number of iterations.
ExitFlag Flag giving exit status.
ExitText Text string giving ExitFlag and Inform information.
Inform Code telling type of convergence:

1: Iteration points are close.
2: Small search direction.
3: Iteration points are close and Small search direction.
4: Gradient of merit function small.
5: Iteration points are close and gradient of merit function small.
6: Small search direction and gradient of merit function small.
7: Iteration points are close, small search direction and gradient of merit function
small.
8: Small search direction p and constraints satisfied.
101: Maximum number of iterations reached.
102: Function value below given estimate.
103: Iteration points are close, but constraints not fulfilled. Too large penalty weights
to be able to continue. Problem is maybe infeasible.
104: Search direction is zero and infeasible constraints. The problem is very likely
infeasible.
105: Merit function is infinity.
106: Penalty weights too high.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

93

Description
The routine conSolve implements two SQP algorithms for general constrained minimization problems. One imple-
mentation, Solver.Alg = 0, 1, 2, is based on the SQP algorithm by Schittkowski with Augmented Lagrangian merit
function described in [79]. The other, Solver.Alg = 3, 4, is an implementation of the Han-Powell SQP method.

The Hessian in the QP subproblems are determined in one of several ways, dependent on the input parameters.
The following table shows how the algorithm and Hessian method is selected.

Solver.Alg NumDiff AutoDiff isempty(USER.H) Hessian computation Algorithm
0 0 0 0 Analytic Hessian Schittkowski SQP
0 any any any BFGS Schittkowski SQP
1 0 0 0 Analytic Hessian Schittkowski SQP
1 0 0 1 Numerical differences H Schittkowski SQP
1 > 0 0 any Numerical differences g,H Schittkowski SQP
1 < 0 0 any Numerical differences H Schittkowski SQP
1 any 1 any Automatic differentiation Schittkowski SQP
2 0 0 any BFGS Schittkowski SQP
2 = 0 0 any BFGS, numerical gradient g Schittkowski SQP
2 any 1 any BFGS, automatic diff gradient Schittkowski SQP
3 0 0 0 Analytic Hessian Han-Powell SQP
3 0 0 1 Numerical differences H Han-Powell SQP
3 > 0 0 any Numerical differences g,H Han-Powell SQP
3 < 0 0 any Numerical differences H Han-Powell SQP
3 any 1 any Automatic differentiation Han-Powell SQP
4 0 0 any BFGS Han-Powell SQP
4 = 0 0 any BFGS, numerical gradient g Han-Powell SQP
4 any 1 any BFGS, automatic diff gradient Han-Powell SQP

M-files Used
ResultDef.m, tomSolve.m, LineSearch.m, iniSolve.m, endSolve.m, ProbCheck.m.

See Also
nlpSolve, sTrustr

94

13.1.3 cutPlane

Purpose
Solve mixed integer linear programming problems (MIP).

cutplane solves problems of the form

min
x

f(x) = cTx

subject to 0 ≤ x ≤ xU
Ax = b, xj ∈ N∀j ∈I

where c, x, xU ∈ R
n, A ∈ R

m×n and b ∈ R
m. The variables x ∈ I, the index subset of 1, ..., n are restricted to be

integers.

Calling Syntax
Result = cutplane(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

c Constant vector.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x U Upper bounds on the variables.
x 0 Starting point.

QP.B Active set B 0 at start:
B(i) = 1: Include variable x(i) in basic set.
B(i) = 0: Variable x(i) is set on it’s lower bound.
B(i) = −1: Variable x(i) is set on it’s upper bound.
B empty: lpSolve solves Phase I LP to find a feasible point.

Solver.Method Variable selection rule to be used:
0: Minimum reduced cost. (default)
1: Bland’s anti-cycling rule.
2: Minimum reduced cost, Dantzig’s rule.

MIP.IntVars Which of the n variables are integers. See below for usage instructions.

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: MaxIter, PriLev, wait, eps f, eps Rank, xTol and bTol.

95

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: No feasible point x 0 found.
5: Illegal x 0.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum, c.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
xState State of each variable, described in Table 47 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
The routine cutplane is an implementation of a cutting plane algorithm with Gomorov cuts. cutplane normally uses
the linear programming routines lpSolve and DualSolve to solve relaxed subproblems. cutplane calls the general
interface routines SolveLP and SolveDLP. By changing the setting of the structure fields Prob.Solver.SolverLP
and Prob.Solver.SolverDLP, different sub-solvers are possible to use, see the help for the interface routines.

cutplane can interpret Prob.MIP.IntVars in three different ways:

• Scalar value N ≤ n: variables x1, x2, . . . , xN are restricted to integer values.

• Vector of length less than dimension of problem: the elements designate indices of integer variables, e.g.
IntV ars = [1 3 5] restricts x1, x3 and x5 to take integer values only.

• Vector of same length as c: non-zero values indicate integer variables, e.g. with five variables (x ∈ R
5),

IntV ars = [1 1 0 1 1] demands all but x3 to take integer values.

Examples
See exip39, exknap, expkorv.

M-files Used
lpSolve.m, DualSolve.m

See Also
mipSolve, balas, lpsimp1, lpsimp2, lpdual, tomSolve.

96

13.1.4 DualSolve

Purpose
Solve linear programming problems when a dual feasible solution is available.

DualSolve solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
Ax = bU

where x, xL, xU ∈ R
n, c ∈ R

n, A ∈ R
m×n and bU ∈ R

m.

Finite upper bounds on x are added as extra inequality constraints. Finite nonzero lower bounds on x are added
as extra inequality constraints. Fixed variables are treated explicitly. Adding slack variables and making necessary
sign changes gives the problem in the standard form

min
x

fP (x) = cTx

s/t Âx = b
x ≥ 0

and the following dual problem is solved,

max
y

fD(y) = bT y

s/t ÂT y ≤ c
y urs

with x, c ∈ R
n, A ∈ R

m̂×n and b, y ∈ R
m.

Calling Syntax
[Result] = DualSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Variable selection rule to be used:
0: Minimum reduced cost (default).
1: Bland’s anti-cycling rule.
2: Minimum reduced cost. Dantzig’s rule.

QP.B Active set B 0 at start:
B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: MaxIter, PriLev, wait, eps f, eps Rank and xTol.

QP.c Constant vector.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point, must be dual feasible.
y 0 Dual parameters (Lagrangian multipliers) at x 0.

97

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
QP.B Optimal active set.
ExitFlag Exit flag:

0: OK.
1: Maximal number of iterations reached. No primal feasible solution found.
2: Infeasible Dual problem.
3: No dual feasible starting point found.
4: Illegal step length due to numerical difficulties. Should not occur.
5: Too many active variables in initial point.

f k Function value at optimum.
x 0 Starting point.
x k Optimal primal solution x.
v k Optimal dual parameters. Lagrange multipliers for linear constraints.
c Constant vector in standard form formulation.
A Constraint matrix for linear constraints in standard form.
b Right hand side in standard form.

Description
When a dual feasible solution is available, the dual simplex method is possible to use. DualSolve implements this
method using the algorithm in [41, pages 105-106]. There are three rules available for variable selection. Bland’s
cycling prevention rule is the choice if fear of cycling exist. The other two are variants of minimum reduced cost
variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each step
(the default choice).

M-files Used
cpTransf.m

See Also
lpSolve

98

13.1.5 ego

Purpose
Solve box-bounded constrained global nonlinear optimization problems.

ego solves problems of the form:

min
x

f(x)

subject to xL ≤ x ≤ xU , xL and xU finite
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

f(x) is assumed to be a costly function while the constraints c(x) are assumed to be cheaply computed. If some

subset of the constraints, cI(x), is very costly, create f̂(x) as a penalty function:

f̂(x) = f(x) + βT cI(x), β positive penalties

Calling Syntax
Result=ego(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

USER.f String giving the name of the function to compute the objective function.
USER.c String giving the name of the function to compute the nonlinear constraint vector.

x L Lower bounds for each element in x.
x U Upper bounds for each element in x.
b L Lower bounds for the linear constraints.
b U Upper bounds for the linear constraints.
A Linear constraint matrix.
c L Lower bounds for the nonlinear constraints.
c U Upper bounds for the nonlinear constraints.

PriLevOpt Print level.
Name Problem name. Used for safety check when doing warm starts.
WarmStart If true (> 0), ego reads the output from the last run from the mat-file cgoSave.mat

and resumes optimization from where the last run ended. ego and rbfSolve (page 127)
uses the same mat-file and can read the output of one another.

optParam Structure with fields for optimization parameters. Used fields are:
IterPrint Print one line of information each iteration, including the new x tried. Default 1.
MaxIter Maximum number of iterations used in the global optimization on the response surface

in each step. Default 10000.
MaxFunc Maximum number of function evaluations in ego. Default 200.

If doing a warm start and MaxFunc ≤ nFunc (present # of f(x) calls) then MaxFunc
= MaxFunc +nFunc.

fGoal Goal for function value, not used if empty.
eps f Relative accuracy for function value.

Stop if |f − fGoal| ≤ |fGoal| · eps f , if fGoal is nonzero.
Stop if |f − fGoal| ≤ eps f , if fGoal is zero.

cTol Nonlinear constraint tolerance.

99

Description of Inputs, continued.
Prob Fields used in input argument Prob:

CGO Structure (Prob.CGO) with parameters concerning global optimization options.
The following fields are used:

SCALE 0 - original search space.
1 - transform search space to unit cube (default).

PLOT 0 - no plotting (default).
1 - Plot sampled points.

REPLACE 0 - No replacement.
1 - Large function values are replaced by the median (default).

globalSolver Name of solver used for global optimization on the response surface.
localSolver Name of solver user for local optimization on the response surface.

Percent Strategy to get initial sampled values.
Percent ≥ 100:
User gives initial points x as a matrix in CGO.X.
Each column is one sampled point. The user must supply at least d+ 1 points:
If d = length(Prob.x), then size(X, 1) = d, size(X, 2) ≥ d+ 1) must hold.
CGO.F should be defined as empty, or contain a vector of
corresponding f(x) values. Any CGO.F value set as NaN will be
computed by rbfSolve.

0 < Percent < 100: Random strategy, the Percent value
gives the percentage size of an ellipsoid around the so far
sampled points that the new points are not allowed in.
Range 1%-50%. Recommended values 10% - 20%.

Percent = 0: Initial points are the corner points of the box xU − xL
Generates too many points if the dimension is high.

Percent < 0: Latin hypercube space-filling design.
|Percent| should in principle be the dimension.
The call made is X = daceInit(round(abs(Percent)),Prob.x L,Prob.x U);
See the help of daceInit.m.

varargin Other arguments sent directly to low level functions.

100

Description of Outputs
Result Structure with results from optimization.

x k Matrix containing the best points as columns.
f k Vector with function values corresponding to x k.
Iter Number of iterations used.
FuncEv Number of function evaluations.
ExitText Text string giving information about

cgoSave.mat MATLAB mat-file saved to current directory, used for warmstarts. This file
can be read by rbfSolve as well.
The file contains the following variables:
Name Problem name. Checked against the Prob.Name field if doing a warmstart.
O Matrix with sampled points (in original space).
X Matrix with sampled points (in unit space if SCALE==1)
F Vector with function values.
F m Vector with function values (replaced).
nInit Number of initial points.

Description
ego implements the algorithm EGO by D. R. Jones, Matthias Schonlau and William J. Welch presented in the
paper ”Efficient Global Optimization of Expensive Black-Box Functions” [63].

Please note that Jones et al. has a slightly different problem formulation. The TOMLAB version of ego treats
linear and nonlinear constraints separately.

ego samples points to which a response surface is fitted. The algorithm then balances between sampling new points
and minimization on the surface.

ego and rbfSolve (page 127) use the same format for saving warm start data. This means that it is possible to
try one solver for a certain number of iterations/function evaluations and then do a warm start with the other.
Example:

>> Prob = probInit(’glc_prob’,1); % Set up problem structure

>> Result_ego = tomRun(’ego’,Prob); % Solve for a while with ego

>> Prob.WarmStart = 1; % Indicate a warm start

>> Result_rbf = tomRun(’rbfSolve’,Prob); % Warm start with rbfSolve

M-files Used
iniSolve.m, endSolve.m, conAssign.m, glcAssign.m

See Also
rbfSolve

References

101

13.1.6 expSolve

Purpose
Quick solution to exponential fitting problems.

Calling Syntax
Result = expSolve(p, Name, t, y, wType, eType, SepAlg, x 0, Solver)

Description of Inputs
p Number of exponential terms.
Name Name of problem.
t Time steps.
y Observations (must be same length as t).
wType Weight type: 1 = weight with data, 0 = no weighting.
eType Exponential function type (default 1), see Table 13, page 64.

Optional parameters:

SepAlg 1 = Use separable least squares (default 0).
x 0 Initial values. If empty, initial value algorithm is used.
Solver Name of TOMLAB solver to use. Selected depending on license if empty.

Description of Outputs
Result TOMLAB Result structure as returned by solver selected by input argument

Solver.
LS Statistical information about the solution. See Table 50, page 188.

Global Parameters Used

Description
expSolve formulates a cls (constrained least squares) problem for exponential fitting applications. The problem is
solved with a suitable cls solver.

The aim is to provide a quicker interface to exponential fitting, automating the process of setting up the problem
structure.

M-files Used
GetSolver, expInit, StatLS

102

Examples
Assume that the Matlab vectors t, y contain the following data:

ti 0 1.00 2.00 4.00 6.00 8.00 10.00 15.00 20.00
yi 905.10 620.36 270.17 154.68 106.74 80.92 69.98 62.50 56.29

To set up and solve the problem of fitting the data to a two-term exponential model

f(t) = α1e
−β1t + α2e

−β2t,

give the following commands:

>> p = 2; % Two terms

>> Name = ’Simple two-term exp fit’; % Problem name, can be anything

>> wType = 0; % No weighting

>> eType = 1; % Exponential model 1

>> Result = expSolve(p,Name,t,y,wType,eType);

>> x = Result.x_k’

x =

0.01 0.58 72.38 851.68

The x vector contains the parameters as x = [β1, β2, α1, α2] so the solution may be visualized with

>> plot(t,y,’-*’, t,x(3)*exp(-t*x(1)) + x(4)*exp(-t*x(2)));

Figure 19: Results of fitting experimental data to two-term exponential model. Solid line: final model,
dash-dot: data.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

103

13.1.7 glbSolve

Purpose
Solve box-bounded global optimization problems.

glbSolve solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where f ∈ R and x, xL, xU ∈ R
n.

Calling Syntax
Result = glbSolve(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: PriLev.

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.
USER.f Name of m-file computing the objective function f(x).
GLOBAL Special structure field containing:
iterations Number of iterations, default 50.
epsilon Global/local weight parameter, default 10−4.
K The Lipschitz constant. Not used.
tolerance Error tolerance parameter. Not used.

If restart is chosen in the menu system, the following fields in
GLOBAL are also used and contains information from the previous run:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d min Row vector of minimum function value for each distance.

varargin Other parameters directly sent to low level routines.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
FuncEv Number function evaluations.
x k Matrix with all points giving the function value f k.
f k Function value at optimum.
GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d min Row vector of minimum function value for each distance.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Description
The global optimization routine glbSolve is an implementation of the DIRECT algorithm presented in [61]. DIRECT
is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant.
Since no such constant is used, there is no natural way of defining convergence (except when the optimal function
value is known). Therefore glbSolve runs a predefined number of iterations and considers the best function value
found as the optimal one. It is possible for the user to restart glbSolve with the final status of all parameters from
the previous run, a so called warm start Assume that a run has been made with glbSolve on a certain problem for
50 iterations. Then a run of e.g. 40 iterations more should give the same result as if the run had been using 90
iterations in the first place. To do a warm start of glbSolve a flag Prob.WarmStart should be set to one. Then

104

glbSolve is using output previously written to the file glbSave.mat to make the restart. The m-file glbSolve also
includes the subfunction conhull which is an implementation of the algorithm GRAHAMHULL in [75, page 108]
with the modifications proposed on page 109. conhull is used to identify all points lying on the convex hull defined
by a set of points in the plane.

M-files Used
iniSolve.m, endSolve.m

105

13.1.8 glbFast

Purpose
Solve box-bounded global optimization problems.

glbFast solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where f ∈ R and x, xL, xU ∈ R
n.

glbFast is a Fortran MEX implementation of glbSolve.

Calling Syntax
Result = glbFast(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: PriLev.

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.
USER.f Name of m-file computing the objective function f(x).
GLOBAL Special structure field containing:
iterations Number of iterations, default 50.
epsilon Global/local weight parameter, default 10−4.
K The Lipschitz constant. Not used.
tolerance Error tolerance parameter. Not used.

If restart is chosen in the menu system, the following fields in
GLOBAL are also used and contains information from the previous run:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d min Row vector of minimum function value for each distance.

varargin Other parameters directly sent to low level routines.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
FuncEv Number function evaluations.
x k Matrix with all points giving the function value f k.
f k Function value at optimum.
GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
L Matrix with all rectangle side lengths in each dimension.
F Vector with function values.
d Row vector of all different distances, sorted.
d min Row vector of minimum function value for each distance.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Description
The global optimization routine glbFast is an implementation of the DIRECT algorithm presented in [61]. The
algorithm in glbFast is a Fortran MEX implementation of the algorithm in glbSolve. DIRECT is a modification of the
standard Lipschitzian approach that eliminates the need to specify a Lipschitz constant. Since no such constant is
used, there is no natural way of defining convergence (except when the optimal function value is known). Therefore
glbFast runs a predefined number of iterations and considers the best function value found as the optimal one. It
is possible for the user to restart glbFast with the final status of all parameters from the previous run, a so called

106

warm start Assume that a run has been made with glbFast on a certain problem for 50 iterations. Then a run of
e.g. 40 iterations more should give the same result as if the run had been using 90 iterations in the first place. To
do a warm start of glbFast a flag Prob.WarmStart should be set to one. Then glbFast is using output previously
written to the file glbFastSave.mat to make the restart. glbFast also includes the subfunction conhull which is an
implementation of the algorithm GRAHAMHULL in [75, page 108] with the modifications proposed on page 109.
conhull is used to identify all points lying on the convex hull defined by a set of points in the plane.

M-files Used
iniSolve.m, endSolve.m glbSolve.m.

107

13.1.9 glcSolve

Purpose
Solve general constrained mixed-integer global optimization problems.

glcSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi integer i ∈ I

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

Calling Syntax
Result = glcSolve(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: PriLev, cTol.

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
USER.f Name of m-file computing the objective function f(x).
USER.c Name of m-file computing the vector of constraint functions c(x).
PriLevOpt Print level.
WarmStart If true (> 0), glcSolve reads the output from the last run

from the mat-file glcSave.mat, and continues from the last run.
MIP Structure in Prob, Prob.MIP.

Only field used is Intvars : set of integer variables.
GO Structure in Prob, Prob.GO. Fields used:
fEqual All points with function values within tolerance fEqual

are considered to be global minima and returned.
LinWeight RateOfChange = LinWeight · |a(i, :)| for

linear constraints. Balance between linear and
nonlinear constraints. Default value 0.1.

Description of Outputs

108

Result Structure with result from optimization. The following fields are changed:
Iter Number of iterations.
FuncEv Number function evaluations.
x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.
GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
I L I L(i, j) is the lower bound for rectangle j in integer dimension I(i).
I U I U(i, j) is the upper bound for rectangle j in integer dimension I(i).
feasible Flag indicating if a feasible point has been found.
f min Best function value found at a feasible point.
s 0 s 0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Description
The routine glcSolve implements an extended version of DIRECT, see [62], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcSolve is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcSolve with the final status
of all parameters from the previous run, a so called warm start Assume that a run has been made with glcSolve
on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more should give
the same result as if the run had been using 700 function evaluations in the first place. To do a warm start of
glcSolve a flag Prob.WarmStart should be set to one. Then glcSolve is using output previously written to the file
glcSave.mat to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m

109

13.1.10 glcFast

Purpose
Solve global mixed-integer nonlinear programming problems.

glcFast solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi integer i ∈ I

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

glcFast is a Fortran MEX implementation of glcSolve.

Calling Syntax
Result = glcFast(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

Name Problem name. Used for safety when doing warm starts.
WarmStart Set to 1 makes glcFast read data from glcFastSave.mat and resume optimization from

where previous run ended. See below for details.

USER.f Name of m-file computing the objective function f(x).
USER.c Name of m-file computing the vector of constraint functions c(x).

x L Lower bounds for x, must be finite to restrict the search space.
x U Upper bounds for x, must be finite to restrict the search space.
A Linear constraints matrix.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

PriLev Print level.
optParam Structure with special fields for optimization parameters, see Table 39 on page 183.

Fields used by glcFast are: IterPrint, bTol, cTol, MaxIter, MaxFunc, EpsGlob, fGoal,
eps f, eps x.

GO Structure with special fields for global optimization parameters. The fields used are:
fEqual All points with function values within tolerance fEqual are considered to be global

minima and returned.
LinWeight Controls balance between linear and nonlinear constraints. Default 0.1.

MIP Structure for integer optimization parameters. Currently, the only field used is:
IntVars Set of integer variables, default empty ([]). To make the tree search more efficient,

it is recommended to number the integer values as the first variables.

varargin Other parameters directly sent to low level routines.

If restart is chosen in the menu system, the following fields in GLOBAL are also used and contains information

110

from the previous run:

C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
I L I L(i, j) is the lower bound for rectangle j in integer dimension I(i).
I U I U(i, j) is the upper bound for rectangle j in integer dimension I(i).
feasible Flag indicating if a feasible point has been found.
f min Best function value found at a feasible point.
s 0 s 0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
FuncEv Number function evaluations.
x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.
GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
I L I L(i, j) is the lower bound for rectangle j in integer dimension I(i).
I U I U(i, j) is the upper bound for rectangle j in integer dimension I(i).
feasible Flag indicating if a feasible point has been found.
f min Best function value found at a feasible point.
s 0 s 0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Description
The routine glcFast implements an extended version of DIRECT, see [62], that handles problems with both nonlinear
and integer constraints. The algorithm in glcFast is a Fortran MEX implementation of the algorithm in glcSolve.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcFast is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcFast with the final status
of all parameters from the previous run, a so called warm start Assume that a run has been made with glcFast
on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more should give
the same result as if the run had been using 700 function evaluations in the first place. To do a warm start of
glcFast a flag Prob.WarmStart should be set to one. Then glcFast is using output previously written to the file
glcFastSave.mat to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m glbSolve.m.

Warnings

111

A significant portion of glcFast is coded in Fortran MEX format. If the solver is aborted, it may have allocated
memory for the computations which is not returned. This may lead to unpredictable behaviour if glcFast is started
again. To reduce the risk of trouble, do “clear mex” if a run has been aborted.

112

13.1.11 glcCluster

Purpose
Solve general constrained mixed-integer global optimization problems using a hybrid algorithm.

glcCluster solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xi ∈ N ∀i ∈ I

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

Calling Syntax
Result = glcCluster(Prob,maxFunc1,maxFunc2)
Result = tomRun(’glcCluster’,Prob,ask,PriLev) (driver call)

Description of Inputs
Prob Problem description structure. The following fields are used:

x L Lower bounds for x, must be given to restrict the search space.
x U Upper bounds for x, must be given to restrict the search space.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.

USER.f Name of m-file computing the objective function f(x).
USER.c Name of m-file computing the vector of constraint functions c(x).

PriLevOpt Print level. 0=silent. 1=warm start info. 2=output each iteration.

Name Name of the problem. glcCluster uses the warmstart capability in glcFast and needs
the name for security reasons.

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: PriLev, cTol, IterPrint, MaxIter, MaxFunc,
EpsGlob, eps f, eps x.

MIP Structure in Prob, Prob.MIP.
Only field used is Intvars : set of integer variables.

GO Structure in Prob, Prob.GO. Fields used:
maxFunc1 Maximum number of function evaluations in first and second calls to glcFast.
maxFunc2 Can also be specified as 2nd and 3rd parameters in call to glcCluster.
fEqual All points with function values within tolerance fEqual are considered to be global

minima and returned.
LinWeight RateOfChange = LinWeight · |a(i, :)| for

linear constraints. Balance between linear and
nonlinear constraints. Default value 0.1.

113

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
FuncEv Number function evaluations.
x k Matrix with all points giving the function value f k.
f k Function value at optimum.
c k Nonlinear constraints values at x k.
GLOBAL Special structure field containing:
C Matrix with all rectangle centerpoints.
D Vector with distances from centerpoint to the vertices.
F Vector with function values.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
T T (i) is the number of times rectangle i has been trisected.
G Matrix with constraint values for each point.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
I L I L(i, j) is the lower bound for rectangle j in integer dimension I(i).
I U I U(i, j) is the upper bound for rectangle j in integer dimension I(i).
feasible Flag indicating if a feasible point has been found.
f min Best function value found at a feasible point.
s 0 s 0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.

Solver Solver used.
SolverAlgorithm Solver algorithm used.

Description
The routine glcCluster implements an extended version of DIRECT, see [62], that handles problems with both
nonlinear and integer constraints.

DIRECT is a modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz
constant. Since no such constant is used, there is no natural way of defining convergence (except when the optimal
function value is known). Therefore glcCluster is run for a predefined number of function evaluations and considers
the best function value found as the optimal one. It is possible for the user to restart glcCluster with the final
status of all parameters from the previous run, a so called warm start Assume that a run has been made with
glcCluster on a certain problem for 500 function evaluations. Then a run of e.g. 200 function evaluations more
should give the same result as if the run had been using 700 function evaluations in the first place. To do a warm
start of glcCluster a flag Prob.WarmStart should be set to one. Then glcCluster is using output previously written
to the file glcSave.mat to make the restart.

DIRECT does not explicitly handle equality constraints. It works best when the integer variables describe an
ordered quantity and is less effective when they are categorical.

M-files Used
iniSolve.m, endSolve.m, glcFast.m

114

13.1.12 infSolve

Purpose
Find a constrained minimax solution with the use of any suitable TOMLAB solver.

infSolve solves problems of the type:

min
x

max r(x)

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, r(x) ∈ R

N , c(x), cL, cU ∈ R
m1 , bL, bU ∈ R

m2 and A ∈ R
m2×n.

Calling Syntax
Result=infSolve(Prob,PriLev)

Description of Inputs
Prob Problem description structure. Should be created in the cls format. infSolve

uses two special fields in Prob:

SolverInf Name of solver used to solve the transformed problem.
Valid choices are conSolve, nlpSolve, sTrustr and clsSolve.
If TOMLAB/SOL is installed: minos, snopt, npopt.

InfType 1 - constrained formulation (default).
2 - LS penalty approach (experimental).

The remaining fields of Prob should be defined as required by the selected
subsolver.

PriLev Print level in infSolve.
= 0 Silent except for error messages.
> 0 Print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 Standard output from PrintResult (default).

Description of Outputs
Result Structure with results from optimization. Output depends on the solver

used.

The fields x k, r k, J k, c k, cJac, x 0, xState, cState, v k are transformed
back to match the original problem.

g k is calculated as J kT · r k.

The output in Result.Prob is the result after infSolve transformed the prob-
lem, i.e. the altered Prob structure

Description
The minimax problem is solved in infSolve by rewriting the problem as a general constrained optimization problem.
One additional variable z ∈ R, stored as xn+1 is added and the problem is rewritten as:

min
x

z

subject to xL ≤ (x1, x2, . . . , xn)
T ≤ xU

−∞ ≤ z ≤ ∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
−∞ ≤ r(x)− ze ≤ 0

where e ∈ R
N , e(i) = 1 ∀i.

115

To handle cases where an element ri(x) in r(x) appears in absolute value: minmax |ri(x)|, expand the problem
with extra residuals with the opposite sign: [ri(x);−ri(x)]
Examples
minimaxDemo.m.

See Also
clsAssign.

116

13.1.13 lpSolve

Purpose
Solve general linear programming problems.

lpSolve solves problems of the form
min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ R
n, c ∈ R

n, A ∈ R
m×n and bL, bU ∈ R

m.

Calling Syntax
Result = lpSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Variable selection rule to be used:
0: Minimum reduced cost.
1: Bland’s rule (default).
2: Minimum reduced cost. Dantzig’s rule.

QP.B Active set B 0 at start:
B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: MaxIter, PriLev, wait, eps f, eps Rank, xTol and bTol.

QP.c Constant vector.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: Illegal x 0.
5: No feasible point x 0 found.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum, c.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
xState State of each variable, described in Table 47 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
The routine lpSolve implements an active set strategy (Simplex method) for Linear Programming using an addi-

117

tional set of slack variables for the linear constraints. If the given starting point is not feasible then a Phase I
objective is used until a feasible point is found.

M-files Used
ResultDef.m

See Also
qpSolve

118

13.1.14 L1Solve

Purpose
Find a constrained L1 solution of a function of several variables with the use of any suitable nonlinear TOMLAB
solve.

L1Solve solves problems of the type:

min
x

∑

i |ri(x)|
subject to xL ≤ x ≤ xU

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, r(x) ∈ R

N , c(x), cL, cU ∈ R
m1 , bL, bU ∈ R

m2 and A ∈ R
m2×n.

Calling Syntax
Result = L1Solve(Prob,PriLev)

Description of Inputs
Prob Problem description structure. Prob should be created in the cls constrained

nonlinear format.

L1Solve uses one special field in Prob:

SolverL1 Name of the TOMLAB solver used to solve the augmented general nonlinear problem
generated by L1Solve.

Any other fields are passed along to the solver specified by Prob.SolverL1.
In particular:

x 0 Starting point.
x L Lower bounds on variables.
x U Upper bounds on variables.
A Linear constraint matrix.
b L Lower bounds on variables.
b U Upper bounds on variables.
c L Lower bounds for nonlinear constraints.
c U Upper bounds for nonlinear constraints..

ConsPattern Nonzero patterns of constraint and residual Jacobians.
JacPattern Prob.LS.y must have the correct residual length if JacPattern is empty but

ConsPattern is not.
L1Solve will create the new patterns for the sub-solver using the information supplied
in these two fields.

PriLev Print level in L1Solve.
= 0 silent except for error messages.
> 0 print summary information about problem transformation.

Calls PrintResult with specified PriLev.
= 2 standard output from PrintResult.

119

Description of Outputs
Result Structure with results from optimization. Fields changed depends on which

solver was used for the extended problem.

The fields x k, r k, J k, c k, cJac, x 0, xState, cState, v k, are transformed
back to the format of the original L1 problem. g k is calculated as J kT ·
r k. The returned problem structure Result.Prob is the result after L1Solve
transformed the problem, i.e. the altered Prob structure.

Description

L1Solve solves the L1 problem by reformulating it as the general constrained optimization problem

min
x

∑

i(yi + zi)

subject to xL ≤ x ≤ xU
0 ≤ y ≤ ∞
0 ≤ z ≤ ∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
0 ≤ r(x) + y − z ≤ 0

A problem with N residuals is extended with 2N nonnegative variables y, z ∈ R
N along with N equality constraints

ri(x) + yi − zi = 0.

See Also
infSolve

120

13.1.15 mipSolve

Purpose
Solve mixed integer linear programming problems (MIP).

mipSolve solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
Ax = b
xj ∈ N ∀j ∈I

where c, x, xL, xU ∈ R
n, A ∈ R

m×n and b ∈ R
m. The variables x ∈ I, the index subset of 1, ..., n are restricted to

be integers.

Please note that the linear constraints Ax = b is different from most other TOMLAB solvers. The user must use
slack variables to handle inequality constraints. The right hand side b of the linear constraint expression should
be given as input argument Prob.b U. mipSolve ignores any value supplied in Prob.b L.

Calling Syntax
Result = mipSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

c The vector c in cTx.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints. NOTE: ignored by mipSolve.
b U Upper bounds on the linear constraints. Should be the vector b in the problem

formulation.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.
QP.B Active set B 0 at start:

B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

SolverLP Name of solver used for initial LP subproblem. Default solver is used if empty, see
GetSolver.m and tomSolve.m.

SolverDLP Name of solver used for the dual LP subproblems. Default solver is used if empty, see
GetSolver.m and tomSolve.m.

PriLevOpt Print level in lpSolve and DualSolve:
0: No output; > 0: Convergence result;
> 1: Output every iteration; > 2: Output each step in simplex algorithm.

PriLev Print level in mipSolve.
SOL.optPar Parameters for the SOL solvers, if they are used as subsolvers.
SOL.PrintFile Name of print file for SOL solvers, if they are used as subsolvers.

MIP Structure with fields for integer optimization The following fields are used:
IntVars The set of integer variables.

If IntVars is a scalar, then variables 1, . . . , IntV ars are assumed to be integers.
If empty, all variables are assumed non-integer (LP problem)

VarWeight Weight for each variable in the variable selection phase.
A lower value gives higher priority. Setting Prob.MIP.VarWeight = Prob.c improves
convergence for knapsack problems.

fIP An upper bound on the IP value wanted. Makes it possible to cut branches and avoid
node computations.

xIP The x-value giving the fIP value.
KNAPSACK If solving a knapsack problem, set to true (1) to use a knapsack heuristic.

121

Description of Inputs, continued.
Prob Problem description structure, continued.

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: IterPrint, MaxIter, PriLev, wait, eps f and eps Rank.

Solver Structure with fields for algorithm choices:
Alg Node selection method:

0: Depth first
1: Breadth first
2: Depth first. When integer solution found, switch to Breadth.

method Rule to select new variables in DualSolve/lpSolve:
0: Minimum reduced cost, sort variables increasing. (Default)
1: Bland’s rule (default).
2: Minimum reduced cost. Dantzig’s rule.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Empty feasible set, no integer solution found.
3: Rank problems. Can not find any solution point.
4: No feasible point found running LP relaxation.
5: Illegal x 0 found in LP relaxation.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.
QP.y Dual parameters y (also part of Result.v k.
p dx Search steps in x.
alphaV Step lengths for each search step.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum, c.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers, [Constraints + lower + upper bounds].
xState State of each variable, described in Table 47, page 188.
Solver Solver used (’mipSolve’).
SolverAlgorithm Text description of solver algorithm used.
Prob Problem structure used.

Description
The routinemipSolve is an implementation of a branch and bound algorithm from Nemhauser andWolsey [69, chap.
8.2]. mipSolve normally uses the linear programming routines lpSolve and DualSolve to solve relaxed subproblems.
mipSolve calls the general interface routines SolveLP and SolveDLP. By changing the setting of the structure
fields Prob.Solver.SolverLP and Prob.Solver.SolverDLP, different sub-solvers are possible to use, see the help for
the interface routines.

Algorithm
See [69, chap. 8.2] and the code in mipSolve.m.

Examples
See exip39, exknap, expkorv.

M-files Used
lpSolve.m, DualSolve.m, GetSolver.m, tomSolve.m

See Also
cutplane, balas, SolveLP, SolveDLP

122

13.1.16 nlpSolve

Purpose
Solve general constrained nonlinear optimization problems.

nlpSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

Calling Syntax
Result = nlpSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: eps g, eps c, eps x, MaxIter, wait, size x, PriLev, method and
QN InitMatrix.

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.

USER.f Name of m-file computing the objective function f(x).
USER.g Name of m-file computing the gradient vector g(x).
USER.H Name of m-file computing the Hessian matrix H(x).
USER.c Name of m-file computing the vector of constraint functions c(x).
USER.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.
USER.d2c Name of m-file computing the second derivatives of the constraints,

weighted by an input Lagrange vector

varargin Other parameters directly sent to low level routines.

123

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag Flag giving exit status.
ExitFlag 0: Convergence. Small step. Constraints fulfilled.

1: Infeasible problem?
2: Maximal number of iterations reached.

Inform Type of convergence.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
c k Value of constraints at optimum.
cJac Constraint Jacobian at optimum.
xState State of each variable, described in Table 47 .
bState State of each linear constraint, described in Table 48.
cState State of each general constraint.
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The routine nlpSolve implements the Filter SQP by Roger Fletcher and Sven Leyffer presented in the paper [26].

M-files Used
tomSolve.m, ProbCheck.m, iniSolve.m, endSolve.m

See Also
conSolve, sTrustr

124

13.1.17 qpSolve

Purpose
Solve general quadratic programming problems.

qpSolve solves problems of the form

min
x

f(x) = 1
2 (x)

TFx+ cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ R
n, F ∈ R

n×n, c ∈ R
n, A ∈ R

m×n and bL, bU ∈ R
m.

Calling Syntax
Result = qpSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: eps f, eps Rank, MaxIter, wait, bTol and PriLev.

QP.F Constant matrix, the Hessian.
QP.c Constant vector.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: OK, see Inform for type of convergence.

2: Can not find feasible starting point x 0.
3: Rank problems. Can not find any solution point.
4: Unbounded solution.

Inform If ExitF lag > 0, Inform = ExitF lag, otherwise Inform show type of
convergence:
0: Unconstrained solution.
1: λ ≥ 0.
2: λ ≥ 0. No second order Lagrange mult. estimate available.
3: λ and 2nd order Lagr. mult. positive, problem is not negative definite.
4: Negative definite problem. 2nd order Lagr. mult. positive, but releasing

variables leads to the same working set.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
xState State of each variable, described in Table 47 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
Implements an active set strategy for Quadratic Programming. For negative definite problems it computes eigen-
values and is using directions of negative curvature to proceed. To find an initial feasible point the Phase 1 LP
problem is solved calling lpSolve. The routine is the standard QP solver used by nlpSolve, sTrustr and conSolve.

M-files Used

125

ResultDef.m, lpSolve.m, tomSolve.m, iniSolve.m, endSolve.m

See Also
qpBiggs, qpe, qplm, nlpSolve, sTrustr and conSolve

126

13.1.18 rbfSolve

Purpose
Solve general constrained global optimization problems with costly objective functions.

rbfSolve solves problems of the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

f(x) is assumed to be a costly function while c(x) is assumed to be cheaply computed.

If some subset cI(x) of the constraints is very costly, create F(x) as a penalty function as F (x) = f(x) + βT cI(x),
β positive penalties.

Calling Syntax
Result = rbfSolve(Prob,varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

USER.f Name of function to compute the objective function.
USER.c Name of function to compute the nonlinear constraint vector.

x L Lower bounds on the variables. Must be finite.
x U Upper bounds on the variables. Must be finite.
A Linear constraint matrix.
b U Upper bounds for the linear constraints.
b L Lower bounds for the linear constraints.
c U Upper bounds for the nonlinear constraints.
c L Lower bounds for the nonlinear constraints.

Name Name of the problem. Used for security when doing warm starts.
WarmStart Set true (non-zero) to load data from previous run from cgoSave.mat.

PriLevOpt Print Level.

optParam Structure with optimization parameters. The following fields are used:
IterPrint Print one line of information each iteration (default 1)
MaxFunc Maximum number of function evaluations allowed.
MaxIter Maximum number of iterations.
fGoal Goal for function value, not used if inf or empty.
eps f Relative accuracy for function value.
cTol Nonlinear constraint tolerance.

127

Description of Inputs, continued.
Fields used in input argument Prob:
CGO Structure (Prob.CGO) with parameters concerning global optimization options.

The following fields are used:
idea Type of search strategy on the response surface.

1 - cycle of 6 points in target value fnStar
2 - cycle of 4 points in alpha (default).

rbfType Type of radial basis function: 1 - thin plate spline; 2 - Cubic Spline (default).
SCALE 0 - original search space.

1 - transform search space to unit cube (default).
PLOT 0 - no plotting (default).

1 - Plot sampled points.
REPLACE 0 - No replacement.

1 - Large function values are replaced by the median (default).
globalSolver Name of solver used for global optimization on the RBF surface.
localSolver Name of solver user for local optimization on the RBF surface.

Percent Strategy to get initial sampled values.
Percent ≥ 100:
User gives initial points x as a matrix in CGO.X.
Each column is one sampled point. The user must supply at least d+ 1 points:
If d = length(Prob.x), then size(X, 1) = d, size(X, 2) ≥ d+ 1) must hold.
CGO.F should be defined as empty, or contain a vector of
corresponding f(x) values. Any CGO.F value set as NaN will be
computed by rbfSolve.

0 < Percent < 100: Random strategy, the Percent value
gives the percentage size of an ellipsoid around the so far
sampled points that the new points are not allowed in.
Range 1%-50%. Recommended values 10% - 20%.

Percent = 0: Initial points is the corner points of the box
Generates too many points if the dimension is high.

Percent < 0: Latin hypercube space-filling design. The value
of abs(Percent) should in principle be the dimension. The call
made is X = daceInit(round(abs(Percent)),Prob.x L,Prob.x U);
See the help of daceInit.m.

varargin Other parameters are sent directly to low level routines.

128

Description of Outputs
Result Structure with optimization results. The following fields are changed:

x k Matrix with the best points as columns.
f k The best function value found so far.
Iter Number of iterations.
FuncEv Number of function evaluations.
ExitText Text string with information about the run.

cgoSave.mat To make warm starts possible, rbfSolve saves the following
information in the file cgoSave.mat:
Name Name of the problem. Used for safety check so that the warm start is not made

with data from a different problem.
O Matrix with sampled points (in original space).
X Matrix with sampled points (in unit space, if Prob.CGO.SCALE ==1).
F Vector with function values.
F m Vector with function values (replaced).
nInit Number of initial points: nInit ≥ d+ 1, 2d if center points.

Description
rbfSolve implements the Radial Basis Function (RBF) algorithm presented in [12], augmented to handle linear and
non-linear constraints. The method is based on [43].

A response surface based on radial basis functions is fitted to a collection of sampled points. The algorithm then
balances between minimizing the fitted function and adding new points to the set.

M-files Used
daceInit.m, iniSolve.m, endSolve.m, conAssign.m, glcAssign.m

MEX-files Used
tomsol

See Also
ego.m

Warnings
If rbfSolve is called but is interrupted by the user, or fails, for example due to incorrect input data, it is necessary
to issue one of the following commands:

• clear mex

• clear all

• tomsol(25)

The reason for this is that the MEX-file solver tomsol is used by rbfSolve for time-critical tasks and allocates
memory which must be deallocated.

129

13.1.19 slsSolve

Purpose
Find a Sparse Least Squares (sls) solution to a constrained least squares problem with the use of any suitable
TOMLAB NLP solver.

slsSolve solves problems of the type:

min
x

1
2r(x)

T r(x)

subject to xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, r(x) ∈ R

m, A ∈ R
m1,n, bL, bU ∈ R

m1 and c(x), cL, cU ∈ R
m2 .

The use of slsSolve is mainly for large, sparse problems, where the structure in the Jacobians of the residuals and
the nonlinear constraints are utilized by a sparse NLP solver, e.g. SNOPT.

Calling Syntax
Result=slsSolve(Prob,PriLev)

Description of Inputs
Prob Problem description structure. Should be created in the cls format, prefer-

ably by calling Prob=clsAssign(...) if using the TQ format.

slsSolve uses two special fields in Prob:

SolverL2 Text string with name of the NLP solver used for solving the reformulated problem.
Valid choices are conSolve, nlpSolve, sTrustr, clsSolve.
Suitable SOL solvers, if available: minos, snopt, npopt.

L2Type Set to 1 for standard constrained formulation. Currently this is the only allowed
choice.

All other fields should be set as expected by the nonlinear solver selected.
In particular:

x 0 Starting point.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
A Linear constraint matrix.
c L Upper bounds on the nonlinear constraints.
c U Lower bounds on the nonlinear constraints.

ConsPattern The nonzero pattern of the constraint Jacobian.
JacPattern The nonzero pattern of the residual Jacobian.

Note that Prob.LS.y must be of correct length is JacPattern is empty (but ConsPat-
tern is not).
slsSolve will create the new Prob.ConsPattern to be used by the nonlinear solver using
the information in the supplied ConsPattern and JacPattern.

PriLev Print level in slsSolve. Default value is 2.
0 Silent except for error messages.
> 1 Print summary information about problem transformation.

slsSolve calls PrintResult(Result,PriLev).
2 Standard output in PrintResult.

130

Description of Outputs
Result Structure with results from optimization. The contents of Result depend on

which nonlinear solver was used to solved the reformulated problem.

slsSolve transforms the following fields of Result back to the format of the
original problem:

x k Optimal point.
r k Residual at optimum.
J k Jacobian of residuals at optimum.
c k Nonlinear constraint vector at optimum.
cJac Jacobian of nonlinear constraints at optimum.
x 0 Starting point.
xState State of variables at optimum.
cState State of constraints at optimum.
v k Lagrange multipliers.
g k The gradient vector is calculated as J kT · r k.

Result.Prob is the problem structure defining the reformulated problem.

Description
The constrained least squares problem is solved in slsSolve by rewriting the problem as a general constrained
optimization problem. A set of m (the number of residuals) extra variables z = (z1, z2, . . . , zm) are added at the
end of the vector of unknowns. The reformulated problem

min
x

1
2z

T z

subject to xL ≤ (x1, x2, . . . , xn) ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU
0 ≤ r(x)− z ≤ 0

is then solved by the solver given by Prob.SolverL2.

Examples
slsDemo.m

M-files Used
iniSolve.m, GetSolver.m

131

13.1.20 sTrustr

Purpose
Solve optimization problems constrained by a convex feasible region.

sTrustr solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

where x, xL, xU ∈ R
n, c(x), cL, cU ∈ R

m1 , A ∈ R
m2×n and bL, bU ∈ R

m2 .

Calling Syntax
Result = sTrustr(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

optParam Structure with special fields for optimization parameters, see Table 39.
Fields used are: eps f, eps g, eps c, eps x, eps Rank, MaxIter, wait, size x, size f,
xTol, LowIts, PriLev, method and QN InitMatrix.

PartSep Structure with special fields for partially separable functions, see Table 40.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.
USER.f Name of m-file computing the objective function f(x).
USER.g Name of m-file computing the gradient vector g(x).
USER.H Name of m-file computing the Hessian matrix H(x).
USER.c Name of m-file computing the vector of constraint functions c(x).
USER.dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.

varargin Other parameters directly sent to low level routines.

132

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag Flag giving exit status.
Inform Binary code telling type of convergence:

1: Iteration points are close.
2: Projected gradient small.
4: Relative function value reduction low for LowIts iterations.
8: Too small trust region.
101: Maximum number of iterations reached.
102: Function value below given estimate.
103: Convergence to saddle point (eigenvalues computed).

f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum.
H k Hessian value at optimum.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
c k Value of constraints at optimum.
cJac Constraint Jacobian at optimum.
xState State of each variable, described in Table 47 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The routine sTrustr is a solver for general constrained optimization, which uses a structural trust region algorithm
combined with an initial trust region radius algorithm (itrr). The feasible region defined by the constraints must
be convex. The code is based on the algorithms in [18] and [77]. BFGS or DFP is used for the Quasi-Newton
update, if the analytical Hessian is not used. sTrustr calls itrr.

Functions Used
itrr.m

M-files Used
qpSolve.m, tomSolve.m, iniSolve.m, endSolve.m

See Also
conSolve, nlpSolve, clsSolve, ittr

133

13.1.21 itrr

Purpose
Determine the initial trust region radius.

Calling Syntax
[D 0, f 0, x 0] = itrr(x 0, fS, gS, HS, jMax, iMax, Prob, varargin)

Description of Inputs
x 0 Starting point.
x L Lower bounds for x.
x U Upper bounds for x.
fS String with function call sequence. x k current point.
gS String with gradient call sequence. x k current point.
HS String with Hessian call sequence. x k current point.
jMax Number of outer iterations, normally 1.
iMax Number of inner iterations, normally 5.
Prob Prob.PartSep.index is the index for the partial function to be analyzed.
varargin Extra user parameters, passed to f , g and H;

Description of Outputs
D 0 Initial trust region radius.
f 0 Function value at the input starting point x 0.
x 0 Updated starting point, if jMax > 1.

Description
The routine itrr implements the initial trust region radius algorithm as described by Sartenaer in [77]. itrr is called
by sTrustr.

See Also
sTrustr

134

13.1.22 ucSolve

Purpose
Solve unconstrained nonlinear optimization problems with simple bounds on the variables.

ucSolve solves problems of the form
min
x

f(x)

s/t xL ≤ x ≤ xU

where x, xL, xU ∈ R
n.

Calling Syntax
Result = ucSolve(Prob, varargin)

Description of Inputs
Prob Problem description structure. The following fields are used:

Solver.Alg Solver algorithm to be run:
0: Gives default, either Newton or BFGS.
1: Newton with subspace minimization, using SVD.
2: Safeguarded BFGS with inverse Hessian updates (standard).
3: Safeguarded BFGS with Hessian updates.
4: Safeguarded DFP with inverse Hessian updates.
5: Safeguarded DFP with Hessian updates.
6: Fletcher-Reeves CG.
7: Polak-Ribiere CG.
8: Fletcher conjugate descent CG-method.

Solver.Method Method used to solve equation system:
0: SVD (default).
1: LU-decomposition.
2: LU-decomposition with pivoting.
3: Matlab built in QR.
4: Matlab inversion.
5: Explicit inverse.

Solver.Method Restart or not for C-G method:
0: Use restart in CG-method each n:th step.
1: Use restart in CG-method each n:th step.

LineParam Structure with line search parameters, see routine LineSearch and Table 38.
optParam Structure with special fields for optimization parameters, see Table 39.

Fields used are: eps absf, eps f, eps g, eps x, eps Rank, MaxIter, wait, size x, xTol,
size f, LineSearch, LineAlg, xTol, IterPrint and QN InitMatrix.

x L Lower bounds on the variables.
x U Upper bounds on the variables.
x 0 Starting point.
USER.f Name of m-file computing the objective function f(x).
USER.g Name of m-file computing the gradient vector g(x).
USER.H Name of m-file computing the Hessian matrix H(x).
f Low Lower bound on function value.
PriLevOpt Print level.

varargin Other parameters directly sent to low level routines.

Description of Outputs

135

Result Structure with result from optimization. The following fields are changed:
x k Optimal point.
x 0 Starting point.
f k Function value at optimum.
f 0 Function value at start.
g k Gradient value at optimum.
H k Hessian value at optimum.
B k Quasi-Newton approximation of the Hessian at optimum.
v k Lagrange multipliers.
xState State of each variable, described in Table 47.
Iter Number of iterations.
ExitFlag 0 if convergence to local min. Otherwise errors.
Inform Binary code telling type of convergence:

1: Iteration points are close.
2: Projected gradient small.
4: Relative function value reduction low for LowIts iterations.
101: Maximum number of iterations reached.
102: Function value below given estimate.
104: Convergence to a saddle point.

Solver Solver used.
SolverAlgorithm Solver algorithm used.
Prob Problem structure used.

Description
The solver ucSolve includes several of the most popular search step methods for unconstrained optimization. The
search step methods included in ucSolve are: the Newton method, the quasi-Newton BFGS and DFP methods,
the Fletcher-Reeves and Polak-Ribiere conjugate-gradient method, and the Fletcher conjugate descent method.
The quasi-Newton methods may either update the inverse Hessian (standard) or the Hessian itself. The Newton
method and the quasi-Newton methods updating the Hessian are using a subspace minimization technique to
handle rank problems, see Lindström [64]. The quasi-Newton algorithms also use safe guarding techniques to
avoid rank problem in the updated matrix. The line search algorithm in the routine LineSearch is a modified
version of an algorithm by Fletcher [25]. Bound constraints are treated as described in Gill, Murray and Wright
[34].

The accuracy in the line search is critical for the performance of quasi-Newton BFGS and DFP methods and for
the CG methods. If the accuracy parameter Prob.LineParam.sigma is set to the default value 0.9, ucSolve changes
it automatically according to:

Prob.Solver.Alg Prob.LineParam.sigma
4,5 (DFP) 0.2
6,7,8 (CG) 0.01

M-files Used
ResultDef.m, LineSearch.m, iniSolve.m, tomSolve.m, endSolve.m

See Also
clsSolve

136

13.1.23 pensdp

Purpose
Solve (linear) semi-definite programming problems.

pensdp solves problems of the form

min
x

f(x) = cTx

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

Q
(0)
i +

∑n
k=1 Q

(i)
k xk ¹ 0, k = 1, 2, . . . ,mLMI

(18)

where x, xL, xU ∈ R
n, A ∈ R

ml×n, bL, bU ∈ R
ml and Q

(i)
k are sparse or dense symmetric matrices. The matrix sizes

may vary between different linear matrix inequalities (LMI) but must be the same in each particular constraint.

Calling Syntax
Result = tomRun(’pensdp’,Prob,...)

Description of Inputs
Prob Problem description structure. The following fields are used:

QP.c Vector with coefficients for linear objective function.
A Linear constraints matrix.
b L Lower bound for linear constraints.
b U Upper bound for linear constraints.
x L Lower bound on variables.
x U Upper bound on variables.
x 0 Starting point.

PENSDP Structure with special fields for SDP parameters. Fields used are:

LMI Structure array with matrices for the linear matrix inequalities. See Examples on
page 139 for a discussion of how to set this correctly.

ioptions 8× 1 vector with options, defaults in ().
Any element set to a value less than zero will be replaced by a default value, in some
cases fetched from standard Tomlab parameters.
ioptions(1) 0/1: use default/user defined values for options.
ioptions(2) Maximum number of iterations for overall algorithm (50).

If not given, Prob.optParam.MaxIter is used.
ioptions(3) Maximum number of iterations in unconstrained optimization (100).

If not given, Prob.optParam.MinorIter is used.
ioptions(4) Output level: 0/(1)/2/3 = silent/summary/brief/full.

Tomlab parameter: Prob.PriLevOpt.
ioptions(5) (0)/1: Check density of Hessian / Assume dense.
ioptions(6) (0)/1: (Do not) use linesearch in unconstrained minimization.
ioptions(7) (0)/1: (Do not) write solution vector to output file.
ioptions(8) (0)/1: (Do not) write computed multipliers to output file.

foptions 1× 7 vector with optimization parameters, defaults in ():
foptions(1) Scaling factor linear constraints; must be positive. (1.0).
foptions(2) Restriction for multiplier update; linear constraints (0.7).
foptions(3) Restriction for multiplier update; matrix constraints (0.1).
foptions(4) Stopping criterium for overall algorithm (10−7).

Tomlab equivalent: Prob.optParam.eps f.
foptions(5) Lower bound for the penalty parameters (10−6).
foptions(6) Lower bound for the multipliers (10−14).
foptions(7) Stopping criterium for unconstrained minimzation (10−2).

137

Description of Outputs
Result Structure with result from optimization. The following fields are changed:

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: Illegal x 0.
5: No feasible point x 0 found.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.
f 0 Function value at start.
f k Function value at optimum.
g k Gradient value at optimum, c.
x 0 Starting point.
x k Optimal point.
v k Lagrange multipliers.
xState State of each variable, described in Table 47 .
Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
pensdp implements a penalty algorithm based on the PBM method of Ben-Tal and Zibulevsky. It is possible to
give input data in three different formats:

• Standard sparse SPDA format

• PENSDP Structural format

• Tomlab Quick format

In all three cases, problem setup is done via sdpAssign.

See Also
sdpAssign.m, sdpa2pen.m, sdpDemo.m, tomlab/docs/pensdp.pdf

138

Examples
Setting the LMI constraints is best described by an example. Assume 3 variables x = (x1, x2, x3) and 2 linear
matrix inequalities of sizes 3× 3 and 2× 2 respectively, here given on block-diagonal form:

0
0

0
0

1

+

2 −1 0
2 0

2
1
−1

x1

+

0
0

0
3
−3

x2 +

2 0 −1
2 0

2
0

0

x3 ¹ 0

The LMI structure could then be initialized with the following commands:

% Constraint 1

>> LMI(1).Q0 = [];

>> LMI(1,1).Q = [2 -1 0 ; ...

0 2 0 ; ...

0 0 2];

>> LMI(1,2).Q = [];

>> LMI(1,3).Q = [2 0 -1 ; ...

0 2 0 ; ...

0 0 2];

% Constraint 2, diagonal matrices only

>> LMI(2).Q0 = diag([0, 1]);

>> LMI(2,1).Q = diag([1,-1]);

>> LMI(2,2).Q = diag([3,-3]);

>> LMI(2,3).Q = [];

% Use LMI in call to sdpAssign:

>> Prob=sdpAssign(c,LMI,...)

% ... or set directly into Prob.PENSDP.LMI field:

>> Prob.PENSDP.LMI = LMI;

Some points of interest:

• The LMI structure must be of correct size. This is important if a LMI constraint has zero matrices for
the highest numbered variables. If the above example had zero coefficient matrices for x3, the user would
have to set LMI(1,3).Q = [] explicitly, so that the LMI structure array is really 2× 3. (LMI(2,3).Q would
automatically become empty in this case, unless set otherwise by the user).

• MATLAB sparse format is allowed and encouraged.

• Only the upper triangular part of each matrix is used (symmetry is assumed).

139

Input in Sparse SDPA Format is handled by the conversion routine sdpa2pen. For example, the problem defined
in tomlab/examples/arch0.dat-s can be solved using the following statements:

>> p = sdpa2pen(’arch0.dat-s’)

p =

vars: 174

fobj: [1x174 double]

constr: 174

ci: [1x174 double]

bi_dim: [1x174 double]

bi_idx: [1x174 double]

bi_val: [1x174 double]

mconstr: 1

ai_dim: 175

ai_row: [1x2874 double]

ai_col: [1x2874 double]

ai_val: [1x2874 double]

msizes: 161

ai_idx: [175x1 double]

ai_nzs: [175x1 double]

x0: [1x174 double]

ioptions: 0

foptions: []

>> Prob=sdpAssign(p); % Can call sdpAssign with only ’p’ structure

>> Result=tomRun(’pensdp’,Prob); % Call tomRun to solve problem

140

13.2 Utility Functions in TOMLAB

In the following subsections the driver routine and the utility functions in TOMLAB will be described.

13.2.1 tomRun

Purpose
General multi-solver driver routine for TOMLAB.

Calling Syntax
Result = tomRun(Solver, probFile, probNumber, Prob, ask, PriLev)

Result = tomRun(Solver, Prob, ask, PriLev)

Result = tomRun(Solver, probType, probNumber, ask, PriLev)

Result = tomRun

Result = tomRun(probType)

Description of Inputs
Solver The name of the solver that should be used to optimize the problem. Default

conSolve. If the solver may run several different optimization algorithms,
then the values of Prob.Solver.Alg and Prob.optParam.Method determines
which algorithm and method to be used.

Prob Problem description structure, see Table 31 and Table 32.
ask Flag if questions should be asked during problem definition.

ask < 0 Use values in uP if defined or defaults.
ask = 0 Use defaults.
ask ≥ 1 Ask questions in probFile.
ask = [] If uP = [], ask = −1, else ask = 0.

PriLev Print level when displaying the result of the optimization in the routine
PrintResult. See Section 13.2.7 page 146.
PriLev = 0 No output.
PriLev = 1 Final result, shorter version.
PriLev = 2 Final result.
PriLev = 3 Full results.

The printing level in the optimization solver is controlled by setting the
parameter Prob.PriLevOpt.

probFile User problem Init File, default con prob.m.
probNumber Problem number in probFile. probNumber = 0 gives a menu in probFile.

Description of Outputs
Result Structure with result from optimization, see Table 46.

Description
The driver routine tomRun is called from the command line, or called from the menu routine tomMenu or from the
graphical user interface tomGUI to solve any problem defined in the TOMLAB Quick format or TOMLAB Init File format.
If called with less than the required two parameters, a list of available solvers are printed.

M-files Used
xxxRun.m, xxxRun2.m, PrintResult.m, inibuild.m, probInit.m, mkbound.m, mexSOL.m, mexRun.m

141

13.2.2 cpTransf

Purpose
Transform general convex programs on the form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU

where x, xL, xU ∈ R
n, A ∈ R

m×n and bL, bU ∈ R
m, to other forms.

Calling Syntax
[AA, bb, meq] = cpTransf(Prob, TransfType, makeEQ, LowInf)

Description of Inputs
Prob Problem description structure. The following fields are used:

QP.c Constant vector c in cTx.
A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

TransfType Type of transformation, see the description below.
MakeEQ Flag, if set true, make standard form (all equalities).
LowInf Variables equal to −Inf or variables < LowInf are set to LowInf before

transforming the problem. Default −10−4. |LowInf | are limit if upper
bound variables are to be used.

Description of Outputs
AA The expanded linear constraint matrix.
bb The expanded upper bounds for the linear constraints.
meq The first meq equations are equalities.

Description
If TransType = 1 the program is transformed into the form

min
x

f(x− xL)

s/t AA(x− xL) ≤ bb
x− xL ≥ 0

where the first meq constraints are equalities. Translate back with (fixed variables do not change their values):

x(~x_L==x_U) = (x-x_L) + x_L(~x_L==x_U)

If TransType = 2 the program is transformed into the form

min
x

f(x)

s/t AA(x) ≤ bb
xL ≤ x ≤ xU

where the first meq constraints are equalities.

If TransType = 3 the program is transformed into the form

min
x

f(x)

s/t AAx ≤ bb
x ≥ xL

where the first meq constraints are equalities.

142

13.2.3 LineSearch

Purpose
LineSearch solves line search problems of the form

min
0<αmin≤α≤αmax

f(x(k) + αp)

where x, p ∈ R
n.

Calling Syntax
Result = LineSearch(f, g, x, p, f 0, g 0, LineParam, alphaMax, pType, PriLev, varargin)

Description of Inputs
f Name of m-file computing the objective function f(x).
g Name of m-file computing the gradient vector g(x).
x Current iterate x.
p Search direction p.
f 0 Function value at α = 0.
g 0 Gradient at α = 0, the directed derivative at the present point.
LineParam Structure with line search parameters 38, the following fields are used:

LineAlg Type of line search algorithm, 0 = quadratic interpolation, 1 = cubic interpolation.
fLowBnd Lower bound on the function value at optimum.

sigma InitStepLength rho tau1 tau2 tau3 eps1 eps2 see Table 38.
alphaMax Maximal value of step length α.
pType Type of problem:

0 Normal problem.
1 Nonlinear least squares.
2 Constrained nonlinear least squares.
3 Merit function minimization.
4 Penalty function minimization.

PriLev Printing level:
PriLev > 0 Writes a lot of output in LineSearch.
PriLev > 3 Writes a lot of output in intpol2 and intpol3.

varargin Other parameters directly sent to low level routines.

Description of Outputs
Result Result structure with fields:

alpha Optimal line search step α.
f alpha Optimal function value at line search step α.
g alpha Optimal gradient value at line search step α.
alphaVec Vector of trial step length values.
r k Residual vector if Least Squares problem, otherwise empty.
J k Jacobian matrix if Least Squares problem, otherwise empty.
f k Function value at x+ αp.
g k Gradient value at x+ αp.
c k Constraint value at x+ αp.
dc k Constraint gradient value at x+ αp.

Description
The function LineSearch together with the routines intpol2 and intpol3 implements a modified version of a line
search algorithm by Fletcher [25]. The algorithm is based on the Wolfe-Powell conditions and therefore the
availability of first order derivatives is an obvious demand. It is also assumed that the user is able to supply a
lower bound fLow on f (α). More precisely it is assumed that the user is prepared to accept any value of f (α) for
which f (α) ≤ fLow. For example in a nonlinear least squares problem fLow = 0 would be appropriate.

LineSearch consists of two parts, the bracketing phase and the sectioning phase. In the bracketing phase the
iterates α(k) moves out in an increasingly large jumps until either f ≤ fLow is detected or a bracket on an interval
of acceptable points is located. The sectioning phase generates a sequence of brackets

[

a(k), b(k)
]

whose lengths

tend to zero. Each iteration pick a new point α(k) in
[

a(k), b(k)
]

by minimizing a quadratic or a cubic polynomial

which interpolates f
(

a(k)
)

, f ′
(

a(k)
)

, f
(

b(k)
)

and f ′
(

b(k)
)

if it is known. The sectioning phase terminates when

α(k) is an acceptable point.

143

Functions Used
intpol2.m, intpol3.m

13.2.4 intpol2

Purpose
Find the minimum of a quadratic approximation of a scalar function in a given interval.

Calling Syntax
alfa = intpol2(x0, f0, g0, x1, f1, a, b, PriLev)

Description of Inputs
x0 Interpolation point x0.
f0 Function value at x0.
g0 Derivative value at x0.
x1 Interpolation point x1.
f1 Function value at x1.
a Lower interval bound.
b Upper interval bound.
PriLev Printing level, Prilev > 3 gives a lot of output.

Description of Outputs
alfa The minimum of the interpolated second degree polynomial in the interval

[a, b].

Description
In the line search routine LineSearch the problem of choosing α in a given interval [a, b] occurs both in the bracketing
phase and in the sectioning phase. If quadratic interpolation are to be used LineSearch calls intpol2 which finds
the minimum of a second degree polynomial approximation in the given interval.

See Also
LineSearch, intpol3

13.2.5 intpol3

Purpose
Find the minimum of a cubic approximation of a scalar function in a given interval.

Calling Syntax
alfa = intpol3(x0, f0, g0, x1, f1, g1 , a, b, PriLev)

Description of Inputs
x0 Interpolation point x0.
f0 Function value at x0.
g0 Derivative value at x0.
x1 Interpolation point x1.
f1 Function value at x1.
g1 Derivative value at x1.
a Lower interval bound.
b Upper interval bound.
PriLev Printing level, Prilev > 3 gives a lot of output.

Description of Outputs
alfa The minimum of the interpolated third degree polynomial in the interval

[a, b].

Description
In the line search routine LineSearch the problem of choosing α in a given interval [a, b] occurs both in the bracketing
phase and in the sectioning phase. If cubic interpolation are to be used LineSearch calls intpol3 which finds the
minimum of a third degree polynomial approximation in the given interval.

See Also
LineSearch, intpol2

144

13.2.6 preSolve

Purpose
Simplify the structure of the constraints and the variable bounds in a linear constrained program.

Calling Syntax
Prob = preSolve(Prob)

Description of Inputs
Prob Problem description structure. The following fields are used:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

Description of Outputs
Prob Problem description structure. The following fields are changed:

A Constraint matrix for linear constraints.
b L Lower bounds on the linear constraints, set to NaN for redundant constraints.
b U Upper bounds on the linear constraints, set to NaN for redundant constraints.
x L Lower bounds on the variables.
x U Upper bounds on the variables.

Description
The routine preSolve is an implementation of those presolve analysis techniques described by Gondzio in [42],
which is applicable to general linear constrained problems. See [10] for a more detailed presentation.

preSolve consists of the two routines clean and mksp. They are called in the sequence clean, mksp, clean. The
second call to clean is skipped if the mksp routine could not remove a single nonzero entry from A.

clean consists of two routines, r rw sng that removes singleton rows and el cnsts that improves variable bounds
and uses them to eliminate redundant and forcing constraints. Both r rw sng and el cnsts check if empty rows
appear and eliminate them if so. That is handled by the routine emptyrow. In clean the calls to r rw sng and
el cnsts are repeated (in given order) until no further reduction is obtained.

Note that rows are actually not deleted or removed, instead preSolve indicates that constraint i is redundant by
setting b L(i) = b U(i) = NaN and leaves to the calling routine to decide what to do with those constraints.

145

13.2.7 PrintResult

Purpose
Prints the result of an optimization.

Calling Syntax
PrintResult(Result, PriLev)

Description of Inputs
Result Result structure from optimization.
PriLev Printing level:

0 Silent.
1 Problem number and name. Function value at the solution and at start.

Known optimal function value (if given).
2 Optimal point x and starting point x 0. Number of evaluations of the func-

tion, gradient etc. Lagrange multipliers, both returned and TOMLAB esti-
mate. Distance from start to solution. The residual, gradient and projected
gradient. ExitF lag and Inform.

3 Jacobian, Hessian or Quasi-Newton Hessian approximation.

146

13.2.8 runtest

Purpose
Run all selected problems defined in a problem file for a given solver.

Calling Syntax
runtest(Solver, SolverAlg, probFile, probNumbs, PriLevOpt, wait, PriLev)

Description of Inputs
Solver Name of solver, default conSolve.
SolverAlg A vector of numbers defining which of the Solver algorithms to try. For

each element in SolverAlg, all probNumbs are solved. Leave empty, or set 0
if to use the default algorithm.

probFile Problem definition file. probFile is by default set to con prob if Solver is
conSolve, uc prob if Solver is ucSolve and so on.

probNumbs A vector with problem numbers to run. If empty, run all problems in
probFile.

PriLevOpt Printing level in Solver. Default 2, short information from each iteration.
wait Set wait to 1 if pause after each problem. Default 1.
PriLev Printing level in PrintResult. Default 5, full information.

M-files Used
SolverList.m

See Also
systest

147

13.2.9 SolverList

Purpose
Prints the available solvers for a certain solvType.

Calling Syntax
[SolvList, SolvTypeList, SolvDriver] = SolverList(solvType)

Description of Inputs
solvType Either a string ’uc’, ’con’ etc. or the corresponding solvType number. See

Table 1.

Description of Outputs
SolvList String matrix with the names of the solvers for the given solvType.
SolvTypeList Integer vector with the solvType for each of the solvers.
SolvDriver String matrix with the names of the driver routine for each different

solvType.

Description
The routine SolverList prints all available solvers for a given solvType, including Fortran, C and Matlab Optimiza-
tion Toolbox solvers. If solvType is not specified then SolverList lists all available solvers for all different solvType.
The input argument could either be a string such as ’uc’, ’con’ etc. or a number corresponding to the type of
solver, see Table 1.

Examples
See Section 3.

M-files Used
SolverList.m

148

13.2.10 systest

Purpose
Run big test to check for bugs in TOMLAB.

Calling Syntax
systest(solvTypes, PriLevOpt, PriLev, wait)

Description of Inputs
solvTypes A vector of numbers defining which solvType to test.
PriLevOpt Printing level in the solver. Default 2, short information from each iteration.
wait Set wait to 1 if pause after each problem. Default 1.
PriLev Printing level in PrintResult. Default 5, full information.

See Also
runtest

149

14 TOMLAB LDO (Linear and Discrete Optimization)

TOMLAB LDO is a collection of routines in TOMLAB for solving linear and discrete optimization (LDO) problems
in operations research and mathematical programming. Included are many routines for special problems in linear
programming, network programming, integer programming and dynamic programming.

Note that included in standard TOMLAB are the standard solver lpSolve for linear programming, the solver
DualSolve, used to solve linear programming problems when a dual feasible point is known, and two routines for
mixed-integer programming, mipSolve and cutplane. The aim of the corresponding simpler routines in the LDO
collection are mainly teaching. Use the standard TOMLAB routines for production runs.

14.1 Optimization Algorithms and Solvers in TOMLAB LDO

This section describes the LDO routines by giving tables describing most Matlab functions with some comments.
All function files are collected in the directory ldo.

There is a simple menu program, simplex, for linear programming. The routine is a utility to interactively solve
LP problems in canonical standard form. When the problem is defined, simplex calls the TOMLAB internal LDO
solvers lpsimp1 and lpsimp2.

Like the MathWorks, Inc. Optimization Toolbox 1.x, TOMLAB LDO is using a vector with optimization parame-
ters. In Optimization Toolbox, the routine setting up the default values in a vector OPTIONS with 18 parameters
is called foptions. Our solvers need more parameters, currently 29, and therefore the routine goptions is used
instead of foptions.

In TOMLAB the routine lpDef is used to define the optPar vector and the routine optParamDef the optParam
structure.

14.1.1 Linear Programming

There are several algorithms implemented for linear programming, listed in Table 17. The solver lpSolve2 is
using the same input and output format as the TOMLAB solvers described in Section 2. It is using the optimization
parameter structure optParam instead of the optimization parameter vector optPar.

lpsimp1 and lpsimp2 are simpler versions of the two basic parts in lpSolve2 that solves Phase I and Phase II LP
problem, respectively. lpdual is an early version of the TOMLAB solver DualSolve.

lpSolve calls both the routines Phase1Simplex and Phase2Simplex to solve a general linear program (lp) defined
as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,
bL ≤ Ax ≤ bU

(19)

where c, x, xL, xU ∈ R
n, A ∈ R

m1×n, and bL, bU ∈ R
m1 .

The implementation of lpsimp2 is based on the standard revised simplex algorithm as formulated in Goldfarb and
Todd [41, page 91] for solving a Phase II LP problem. lpsimp1 implements a Phase I simplex strategy which
formulates a LP problem with artificial variables. This routine is using lpsimp2 to solve the Phase I problem.
The dual simplex method [41, pages 105-106], usable when a dual feasible solution is available instead of a primal
feasible, is also implemented (lpdual).

Two polynomial algorithms for linear programming are implemented. Karmakar’s projective algorithm (karmark)
is developed from the description in Bazaraa et. al. [6, page 386]. There is a choice of update, either according
to Bazaraa or the rule by Goldfarb and Todd [41, chap. 9]. The affine scaling variant of Karmakar’s method
(akarmark) is an implementation of the algorithm in Bazaraa [41, pages 411-413]. As the purification algorithm a
modification of the algorithm on page 385 in Bazaraa is used.

The internal linear programming solvers lpsimp2 and lpdual both have three rules for variable selection implemented.
Bland’s cycling prevention rule is the choice if fear of cycling exists. There are two variants of minimum reduced
cost variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each
step (the default choice).

150

Table 17: Solvers for linear programming.

Function Description Section Page
lpSolve2 General solver for linear programming problems. Has two internal

routines. Phase1Simplex finds basic feasible solution (bfs) using ar-
tificial variables. It calls the other internal routine, Phase2Simplex,
which implements the revised simplex algorithm with three selection
rules.

13.1.13 117

lpsimp1 The Phase I simplex algorithm. Finds a basic feasible solution (bfs)
using artificial variables. Calls lpsimp2.

14.4.11 167

lpsimp2 The Phase II revised simplex algorithm with three selection rules. 14.4.12 168
karmark Karmakar’s algorithm. Kanonical form. 14.4.6 164
lpkarma Solves LP on equality form, by converting and calling karmark. 14.4.10 166
lpdual The dual simplex algorithm. 14.4.9 166
akarmark Affine scaling variant of Karmarkar’s algorithm. 14.4.1 160

14.1.2 Transportation Programming

Transportation problems are solved using an implementation of the transportation simplex method as described
in Luenberger [65, chap 5.4] (TPsimplx). Three simple algorithms to find a starting basic feasible solution for the
transportation problem are included; the northwest corner method (TPnw), the minimum cost method (TPmc)
and Vogel’s approximation method (TPvogel). The implementation of these algorithms follows the algorithm
descriptions in Winston [83, chap. 7.2]. The functions are described in Table 18.

Table 18: Routines for transportation programming.

Function Description Section Page
TPnw Find initial bfs to TP using the northwest corner method. 14.5.6 176
TPmc Find initial bfs to TP using the minimum cost method. 14.5.5 175
TPvogel Find initial bfs to TP using Vogel’s approximation method. 14.5.7 176
TPsimplx Implementation of the transportation simplex algorithm. 14.4.19 172

14.1.3 Network Programming

The implementation of the network programming algorithms are based on the forward and reverse star repre-
sentation technique described in Ahuja et al. [3, pages 35-36]. The following algorithms are currently implemented:

• Search for all reachable nodes in a network using a stack approach (gsearch). The implementation is a
variation of the Algorithm SEARCH in [2, pages 231-233].

• Search for all reachable nodes in a network using a queue approach (gsearchq). The implementation is a
variation of the Algorithm SEARCH in [2, pages 231-232].

• Find the minimal spanning tree of an undirected graph (mintree) with Kruskal’s algorithm described in
Ahuja et. al. [3, page 520-521].

• Solve the shortest path problem using Dijkstra’s algorithm (dijkstra). A direct implementation of the Algo-
rithm DIJKSTRA in [2, pages 250-251].

• Solve the shortest path problem using a label correcting method (labelcor). The implementation is based on
Algorithm LABEL CORRECTING in [2, page 260].

151

• Solve the shortest path problem using a modified label correcting method (modlabel). The implementation is
based on Algorithm MODIFIED LABEL CORRECTING in [2, page 262], including the heuristic rule discussed
to improve running time in practice.

• Solve the maximum flow problem using the Ford-Fulkerson augmenting path method (maxflow). The imple-
mentation is based on the algorithm description in Luenberger [65, pages 144-145].

• Solve the minimum cost network flow problem (MCNFP) using a network simplex algorithm (NWsimplx).
The implementation is based on Algorithm network simplex in Ahuja et. al. [3, page 415].

• Solve the symmetric traveling salesman problem using Lagrangian relaxation and the subgradient method
with the Polyak rule II (salesman), an algorithm by Held and Karp [44].

The network programming routines are listed in Table 19.

Table 19: Routines for network programs.

Function Description Section Page
gsearch Searching all reachable nodes in a network. Stack approach. 14.5.2 174
gsearchq Searching all reachable nodes in a network. Queue approach. 14.5.3 174
mintree Finds the minimum spanning tree of an undirected graph. 14.5.4 175
dijkstra Shortest path using Dijkstra’s algorithm. 14.4.3 162
labelcor Shortest path using a label correcting algorithm. 14.4.8 165
modlabel Shortest path using a modified label correcting algorithm. 14.4.14 169
maxflow Solving maximum flow problems using the Ford-Fulkerson augmenting

path method.
14.4.13 168

salesman Symmetric traveling salesman problem (TSP) solver using Lagrangian
relaxation and the subgradient method with the Polyak rule II.

14.4.18 171

NWsimplx Solving minimum cost network flow problems (MCNFP) with a net-
work simplex algorithm.

14.4.15 169

14.1.4 Mixed-Integer Programming

To solve mixed linear inequality integer programs two algorithms are implemented as part of TOMLAB, mipSolve
and cutplane. Described in the Network Programming section 14.1.3 is the salesman routine, which is an special
type of integer programming problem. The directory tsplib contains test problems for the travelling salesman
problem. The routine runtsp runs any of the 25 predefined problems. tsplib reads the actual problem definition
and generates the problem.

Balas method for binary integer programs restricted to integer coefficients is implemented in the routine balas [48].

14.1.5 Dynamic Programming

Two simple examples of dynamic programming are included. Both examples are from Winston [83, chap. 20].
Forward recursion is used to solve an inventory problem (dpinvent) and a knapsack problem (dpknap), see Table
20.

Table 20: Routines for dynamic programming.

Function Description Section Page
dpinvent Forward recursion DP algorithm for the inventory problem. 14.4.4 162
dpknap Forward recursion DP algorithm for the knapsack problem. 14.4.5 163

152

14.1.6 Quadratic Programming

Two simple routines for quadratic programming are included,

Table 21: Routines for quadratic programming.

Function Description Section Page
qpe Solves a qp problem, restricted to equality constraints, using a null

space method.
14.4.17 171

qplm Solves a qp problem, restricted to equality constraints, using La-
grange’s method.

14.4.16 170

14.1.7 Lagrangian Relaxation

The usage of Lagrangian relaxation techniques is exemplified by the routine ksrelax, which solves integer linear
programs with linear inequality constraints and upper and lower bounds on the variables. The problem is solved
by relaxing all but one constraint and hence solving simple knapsack problems as subproblems in each iteration.
The algorithm is based on the presentation in Fischer [23], using subgradient iterations and a simple line search
rule. Lagrangian relaxation is used by the symmetric travelling salesman solver salesman. Also a routine to draw
a plot of the relaxed function is included. The Lagrangian relaxation routines are listed in Table 22.

Table 22: Routines for Lagrangian relaxation.

Function Description Section Page
ksrelax Lagrangian relaxation with knapsack subproblems. 14.4.7 164
urelax Lagrangian relaxation with knapsack subproblems, plot result. 14.4.20 173

14.1.8 Utility Routines

Table 23 lists the utility routines used in TOMLAB LDO. Some of them are also used by the other routines in
TOMLAB.

Table 23: Utility routines.

Function Description
a2frstar Convert node-arc A matrix to Forward-Reverse Star Representation.
z2frstar Convert matrix of arcs (and costs) to Forward-Reverse Star.
cpTransf Transform general convex programs to other forms.
optParamDefDefine optimization parameters in the TOMLAB format (optParam).
lpDef Define optimization parameters in the Optimization Toolbox 1.x format (optPar).
mPrint Print matrix, format: NAME(i, :) a(i, 1)a(i, 2)...a(i, n).
printmat Print matrix with row and column labels.
vPrint Print vector in rows, format: NAME(i1 : in) vi1vi2 ...vin .
xPrint Print vector x, row by row, with format.
xPrinti Print integer vector x. Calls xprint.
xPrinte Print integer vector x in exponential format. Calls xprint.

153

14.2 How to Solve Optimization Problems Using TOMLAB LDO

This section describes how to use TOMLAB LDO to solve the different type of problems discussed in Section 14.1

14.2.1 How to Solve Linear Programming Problems

The following example shows how the simple LP problem in (11) can be solved by direct use of the optimization
routines lpsimp1 and lpsimp2:

A = [1 2

4 1];

b = [6 12]’;

c = [-7 -5]’;

meq = 0;

optPar = lpDef;

optPar(13) = meq;

[x_0, B_0, optPar, y] = lpsimp1(A, b, optPar);

[x, B, optPar, y] = lpsimp2(A, b, c, optPar, x_0, B_0);

For further illustrations of how to solve linear programming problems see the example files listed in Table 24 and
Table 25.

Table 24: Test examples for linear programming.

Function Description
exinled.m First simple LP example from a course in Operations Research.
excycle Menu with cycling examples.
excycle1 The Marshall-Suurballe cycling example. Run both the Bland’s cycle preventing rule and

the default minimum reduced cost rule and compare results.
excycle2 The Kuhn cycling example.
excycle3 The Beale cycling example.
exKleeM The Klee-Minty example. Shows that the simplex algorithm with Dantzig’s rule visits all

vertices.
exfl821 Run exercise 8.21 from Fletcher, Practical methods of Optimization. Illustrates redun-

dancy in constraints.
ex412b4s Wayne Winston example 4.12 B4, using lpsimp1 and lpsimp2.
expertur Perturbed both right hand side and objective function for Luenberger 3.12-10,11.
ex6rev17 Wayne Winston chapter 6 Review 17. Simple example of calling the dual simplex solver

lpdual.
ex611a2 Wayne Winston example 6.11 A2. A simple problem solved with the dual simplex solver

lpdual.

Some test examples are collected in the file demoLP and further described in Table 25.

Table 25: Test examples for linear programming running interior point methods.

Function Description
exww597 Test of karmark and lpsimp2 on Winston example page 597 and Winston 10.6 Problem

A1.
exstrang Test of karmark and lpsimp2 on Strangs’ nutshell example.
exkarma Test of akarmark.
exKleeM2 Klee-Minty example solved with lpkarma and karmark.

154

14.2.2 How to Solve Transportation Programming Problems

The following is a simple example of a transportation problem

s =

5
25
25

 , d =

10
10
20
15

, C =

6 2 −1 0
4 2 2 3
3 1 2 1

 , (20)

where s is the supply vector, d is the demand vector and C is the cost matrix. See TPsimplx Section 14.4.19.
Solving (20) by use of the routine TPsimplx is done by:

s = [5 25 25]’;

d = [10 10 20 15]’;

C = [6 2 -1 0

4 2 2 3

3 1 2 1];

[X, B, optPar, y, C] = TPsimplx(s, d, C)

When neither starting base nor starting point is given as input argument TPsimplx calls TPvogel (using Vogel’s
approximation method) to find an initial basic feasible solution (bfs). To use another method to find an initial bfs,
e.g. the northwest corner method, explicitly call the corresponding routine (TPnw) before the call to TPsimplx:

s = [5 25 25]’;

d = [10 10 20 15]’;

C = [6 2 -1 0

4 2 2 3

3 1 2 1];

[X_0, B_0] = TPnw(s, d)

[X, B, optPar, y, C] = TPsimplx(s, d, C, X_0, B_0)

For further illustrations of how to solve transportation programming problems see the example files listed in Table
26.

Table 26: Test examples for transportation programming.

Function Description
extp bfs Test of the three routines that finds initial basic feasible solution to a TP problem, routines

TPnw, TPmc and TPvogel.
exlu119 Luenberger TP page 119. Find initial basis with TPnw, TPmc and TPvogel and run

TPsimplx for each.
exlu119U Test unbalanced TP on Luenberger TP page 119, slightly modified. Runs TPsimplx.
extp Runs simple TP example. Find initial basic feasible solution and solve with TPsimplx.

14.2.3 How to Solve Network Programming Problems

In TOMLAB LDO there are several routines for network programming problems. Here follows an example of how
to solve a shortest path problem. Given the network in Figure 20, where the numbers at each arc represent the
distance of the arc, find the shortest path from node 1 to all other nodes. Representing the network with the
node-arc incidence matrix A and the cost vector c gives:

155

A =

1 1 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0
0 −1 0 1 1 0 −1 0
0 0 −1 0 0 1 1 −1
0 0 0 0 −1 −1 0 1

, c =

2
3
1
4
2
4
1
3

(21)

Representing the network with the forward and reverse star technique gives:

P =

1
3
4
6
8
9

, Z =

1 2
1 3
2 4
3 2
3 5
4 5
4 3
5 4

, c =

2
3
1
4
2
4
1
3

, T =

1
4
2
7
3
8
5
6

, R =

1
1
3
5
7
9

(22)

See a2frstar Section 14.5.1 for an explanation of the notation.

&%
'$

1

&%
'$

2

&%
'$

3

&%
'$

4

&%
'$

5

©©
©©

©©
©©

©©
©©

©©
©©
©*

2

HHHHHHHHHHHHHHHHHj

3

-1

6

4

-2

?

4

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡ª

1

6

3

Figure 20: A network example.

Choose modlabel to solve this example, see Section 14.4.14, modlabel implements a modified label correcting
algorithm. First define the incidence matrix A and the cost vector c and call the routine a2frstar to convert to a
forward and reverse star representation (which is used by modlabel). Then the actual problem is solved.

A = [1 1 0 0 0 0 0 0

156

-1 0 1 -1 0 0 0 0

0 -1 0 1 1 0 -1 0

0 0 -1 0 0 1 1 -1

0 0 0 0 -1 -1 0 1];

C = [2 3 1 4 2 4 1 3];

[P Z c T R x_U] = a2frstar(A, C);

[pred dist] = modlabel(1,P,Z,c);

For further illustrations of how to solve network programming problems see the example files listed in Table 27.

Table 27: Test examples for network programming.

Function Description
exgraph Testing network routines on simple example.
exflow Testing several maximum flow examples.
pathflow Pathological test example for maximum flow problems.
exflow31 Test example N31.
exmcnfp Minimum Cost Network Flow Problem (MCNFP) example from Ahuja et. al.

14.2.4 How to Solve Integer Programming Problems

The routines originally in TOMLAB LDO for solving integer programming problems were cutplane, mipSolve and
balas. Now cutplane and mipSolve are part of the standard Tomlab and are called using the Tomlab format, see
Section 5.3. Examples showing how to use the balas routine and the other solvers are listed in Table 28. These
examples are all part of the demonstration routine demoMIP.m.

Table 28: Test examples for integer programming.

Function Description
expkorv Test of cutplane and mipSolve for example PKorv.
exIP39 Test example I39.
exbalas Test of 0/1 IP (Balas algorithm) on simple example.

14.2.5 How to Solve Dynamic Programming Problems

In this subsection dynamic programming is illustrated with a simple approach to solve a knapsack problem and an
inventory problem. The routines dpknap (see Section 14.4.5) and dpinvent (Section 14.4.4) are used. The knapsack
problem (23) is an example from Holmberg [48] and the inventory problem is an example from Winston [83, page
1013].

max
u

f(u) = 7u1 + u2 + 4u3

s/t 2u1 + 3u2 + 2u3 ≤ 4
0 ≤ u1 ≤ 1
0 ≤ u2 ≤ 1
0 ≤ u3 ≤ 2
uj ∈ N, j = 1, 2, 3

(23)

Problem (23) will be solved by the following definitions and call:

157

A = [2 3 2];

b = 4;

c = [7 2 4];

u_UPP = [1 1 2];

PriLev = 0;

[u, f_opt] = dpknap(A, b, c, u_UPP, PriLev);

Description of the inventory problem:
A company knows that the demand for its product during each of the next for months will be as follows: month 1,
1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units. At the beginning of each month, the company must
determine how many units should be produced during the current month. During a month in which any units are
produced, a setup cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit produced. At the
end of each month, a holding cost of 50 cents per unit on hand is incurred. Capacity limitations allow a maximum
of 5 units to be produced during each month. The size of the company’s warehouse restricts the ending inventory
for each month to at most 4 units. The company wants to determine a production schedule that will meet all
demands on time and will minimize the sum of production and holding costs during the four months. Assume
that 0 units are on hand at the beginning of the first month.

The inventory problem described above will be solved by the following definitions and call:

d = [1 3 2 4]’; % Demand. N = 4;

P_s = 3; % Setup cost $3 if u > 0

P = ones(5,1); % Production cost $1/unit in each time step

I_s = 0; % Zero setup cost for the Inventory

I = 0.5*ones(5,1); % Inventory cost $0.5/unit in each time step

x_L = 0; % lower bound on inventory, x

x_U = 4; % upper bound on inventory, x

x_LAST = []; % Find best choice of inventory at end

x_S = 0; % Empty inventory at start

u_L = [0 0 0 0]; % Minimal amount produced in each time step

u_U = [5 5 5 5]; % Maximal amount produced in each time step

PriLev = 1;

[u, f_opt] = dpinvent(d, P_s, P, I_s, I, u_L, u_U, x_L, x_U, x_S, x_LAST, PriLev);

For further illustrations of how to solve dynamic programming problems see the example files listed in Table 29.

Table 29: Test examples for dynamic programming.

Function Description
exinvent Test of dpinvent on two inventory examples.
exknap Test of dpknap (calls mipSolve and cutplane) on five knapsack examples.

14.2.6 How to Solve Lagrangian Relaxation Problems

This section shows an example of using Lagrangian relaxation techniques implmented in the routine ksrelax to
solve an integer programming problem. The problem to be solved, (24), is an example from Fischer [23].

max
x

f(x) = 16x1 + 10x2 + 4x4

s/t 8x1 + 2x2 + x3 + x4 ≤ 10
x1 + x2 ≤ 1
x3 + x4 ≤ 1
xj ∈ 0/1, j = 1, 2, 3, 4

(24)

158

A = [8 2 1 4

1 1 0 0

0 0 1 1];

b = [10 1 1]’;

c = [16 10 0 4]’;

r = 1; % Do not relax the first constraint

x_UPP = [1 1 1 1]’;

[x u f_opt optPar] = ksrelax(A, b, c, r, x_UPP);

For further illustrations of how to solve Lagrangian Relaxation problems see the example files listed in Table 30.

Table 30: Test examples for Lagrangian Relaxation.

Function Description
exrelax Test of ksrelax on LP example from Fischer -85.
exrelax2 Simple example, runs ksrelax.
exIP39rx Test example I39, relaxed. Calls urelax and plot.

159

14.3 Printing Utilities and Print Levels

This section is written for the part of TOMLAB LDO which is not using the same input/output format and is not
designed in the same way as the other routines in TOMLAB. Information about printing utilities and print levels
for the other routines could be found in Section 10.5

The amount of printing is determined by setting a print level for each routine. This parameter most often has the
name PriLev.

Normally the zero level (PriLev = 0) corresponds to silent mode with no output. The level one corresponds to
a result summary and error messages. Level two gives output every iteration and level three displays vectors and
matrices. Higher levels give even more printing of debug type. See the help in the actual routine.

The main driver or menu routine called may have a PriLev parameter among its input parameters. The routines
called from the main routine normally sets the PriLev parameter to optPar(1). The vector optPar is set to default
values by a call to goptions. The user may then change any values before calling the main routine. The elements
in optPar is described giving the command: help goptions. For linear programming there is a special initialization
routine, lpDef, which calls goptions and changes some relevant parameters.

There is a wait flag in optPar, optPar(24). If this flag is set, the routines uses the pause statement to avoid the
output just flushing by.

The TOMLAB LDO routines print large amounts of output if high values for the PriLev parameter is set. To
make the output look better and save space, several printing utilities have been developed, see Table 23.

For matrices there are two routines, mPrint and printmat. The routine printmat prints a matrix with row and
column labels. The default is to print the row and column number. The standard row label is eight characters
long. The supplied matrix name is printed on the first row, the column label row, if the length of the name is at
most eight characters. Otherwise the name is printed on a separate row.

The standard column label is seven characters long, which is the minimum space an element will occupy in the
print out. On a 80 column screen, then it is possible to print a maximum of ten elements per row. Independent
on the number of rows in the matrix, printmat will first display A(:, 1 : 10), then A(:, 11 : 20) and so on.

The routine printmat tries to be intelligent and avoid decimals when the matrix elements are integers. It determines
the maximal positive and minimal negative number to find out if more than the default space is needed. If any
element has an absolute value below 10−5 (avoiding exact zeros) or if the maximal elements are too big, a switch
is made to exponential format. The exponential format uses ten characters, displaying two decimals and therefore
seven matrix elements are possible to display on each row.

For large matrices, especially integer matrices, the user might prefer the routine mPrint. With this routine a more
dense output is possible. All elements in a matrix row is displayed (over several output rows) before next matrix
row is printed. A row label with the name of the matrix and the row number is displayed to the left using the
Matlab style of syntax.

The default in mPrint is to eight characters per element, with two decimals. However, it is easy to change the
format and the number of elements displayed. For a binary matrix it is possible to display 36 matrix columns in
one 80 column row.

14.4 Optimization Routines in TOMLAB LDO

In the following subsections the optimization routines in TOMLAB LDOwill be described.

14.4.1 akarmark

Purpose
Solve linear programming problems of the form

min
x

f(x) = cTx

s/t Ax = b
x ≥ 0

where x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m.

160

Calling Syntax
[x, optPar, y, x 0] = akarmark(A, b, c, optPar, x 0)

Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
x 0 Starting point.

Description of Outputs
x Optimal point.
optPar Optimization parameter vector, see goptions.m.
y Dual parameters.
x 0 Starting point used.

Description
The routine akarmark is an implementation of the affine scaling variant of Karmarkar’s method as described in
Bazaraa [41, pages 411-413]. As the purification algorithm a modified version of the algorithm on page 385 in
Bazaraa is used.

Examples
See exakarma, exkarma, exkleem2.

M-files Used
lpDef.m

See Also
lpkarma, karmark

14.4.2 balas

Purpose
Solve binary integer linear programming problems.

balas solves problems of the form

min
x

f(x) = cTx

s/t aTi x = bi i = 1, 2, ...,meq

aTi x ≤ bi i = meq + 1, ...,m
xj ∈ 0/1 j = 1, 2, ..., n

where c ∈ Z
n, A ∈ Z

m×n and b ∈ Z
m.

Calling Syntax
[x, optPar] = balas(A, b, c, optPar)

Description of Inputs
A Constraint matrix, integer coefficients.
b Right hand side vector, integer coefficients.
c Cost vector, integer coefficients.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x Optimal point.
optPar Optimization parameter vector, see goptions.m.

Description
The routine balas is an implementation of Balas method for binary integer programs restricted to integer coeffi-
cients.

Examples
See exbalas.

M-files Used
lpDef.m

161

See Also
mipSolve, cutplane

14.4.3 dijkstra

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = dijkstra(s, P, Z, c)

Description of Inputs
s The starting node.
p Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.

Description of Outputs
pred pred(j) is the predecessor of node j.
dist dist(j) is the shortest distance from node s to node j.

Description
dijkstra is a direct implementation of the algorithm DIJKSTRA in [2, pages 250-251] for solving shortest path
problems using Dijkstra’s algorithm. Dikstra’s algorithm belongs to the class of label setting methods which are
applicable only to networks with nonnegative arc lengths. For solving shortest path problems with arbitrary arc
lengths use the routine labelcor or modlabel which belongs to the class of label correcting methods.

Examples
See exgraph, exflow31.

See Also
labelcor, modlabel

Limitations
dijkstra can only solve problems with nonnegative arc lengths.

14.4.4 dpinvent

Purpose
Solve production/inventory problems of the form

min
u

f(u) = Ps(t) + P (t)Tu(t) + I(t)Tx(t)

s/t uL ≤ u(t) ≤ uU
xL ≤ x(t) ≤ xU
0 ≤ u(t) ≤ x(t) + d(t)

uj ∈ N j = 1, 2, ..., n
xj ∈ N j = 1, 2, ..., n

where x(t) = x(t− 1) + u(t)− d(t) and d ∈ N
n.

Calling Syntax
[u, f opt, exit] = dpinvent(d, P s, P, I s, I, u L, u U, x L, x U, x S, x LAST, PriLev)

162

Description of Inputs
d Demand vector.
P s Production setup cost.
P Production cost vector.
I s Inventory setup cost.
I Inventory cost vector.
u L Minimal amount produced in each time step.
u U Maximal amount produced in each time step.
x L Lower bound on inventory.
x U Upper bound on inventory.
x S Inventory state at start.
x LAST Inventory state at finish.
PriLev Printing level:

PriLev = 0, no output.
PriLev = 1, output of convergence results.
PriLev > 1, output of each iteration.

Description of Outputs
u Optimal control.
f opt Optimal function value.
exit Exit flag.

Description
dpinvent solves production/inventory problems using a forward recursion dynamic programming technique as
described in Winston [83, chap. 20].

Examples
See exinvent.

14.4.5 dpknap

Purpose
Solve knapsack problems of the form

max
u

f(u) = cTu

s/t Au ≤ b
u ≤ uU

uj ∈ N j = 1, 2, ..., n

where A ∈ N
n, c ∈ R

n and b ∈ N

Calling Syntax
[u, f opt, exit] = dpknap(A, b, c, u U, PriLev)

Description of Inputs
A Weigth vector.
b Knapsack capacity.
c Benefit vector.
u U Upper bounds on u.
PriLev Printing level:

PriLev = 0, no output.
PriLev = 1, output of convergence results.
PriLev > 1, output of each iteration.

Description of Outputs
u Optimal control.
f opt Optimal function value.
exit Exit flag.

Description
dpknap solves knapsack problems using a forward recursion dynamic programming technique as described in [83,
chap. 20]. The Lagrangian relaxation routines ksrelax and urelax call dpknap to solve the knapsack subproblems.

163

Examples
See exknap.

14.4.6 karmark

Purpose
Solve linear programming problems of Karmakar’s form

min
x

f(x) = cTx

s/t Ax = 0
n
∑

j=1

xj = 1

x ≥ 0

where x, c ∈ R
n, A ∈ R

m×n and the following assumptions hold:

• The point x(0) =
(

1
n
, ..., 1

n

)T
is feasible.

• The optimal objective value is zero.

Calling Syntax
[x, optPar] = karmark(A, c, optPar)

Description of Inputs
A Constraint matrix.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x Optimal point.
optPar Optimization parameter vector, see goptions.m.

Description
The routine karmark is an implementation of Karmakar’s projective algorithm which is of polynomial complexity.
The implementation uses the description in Bazaraa [6, page 386]. There is a choice of update, either according
to Bazaraa or the rule by Goldfarb and Todd [41, chap. 9]. As the purification algorithm a modified version of
the algorithm on page 385 in Bazaraa is used. karmark is called by lpkarma which transforms linear maximization
problems on inequality form into Karmakar’s form needed for karmark.

Examples
See exstrang, exww597.

M-files Used
lpDef.m

See Also
lpkarma, akarmark

14.4.7 ksrelax

Purpose
Solve integer linear problems of the form

max
x

f(x) = cTx

s/t Ax ≤ b
x ≤ xU

xj ∈ N j = 1, 2, ..., n

where c ∈ R
n, A ∈ N

m×n and b ∈ N
m.

Calling Syntax
[x P, u, f P, optPar] = ksrelax(A, b, c, r, x U, optPar)

164

Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
r Constraint not to be relaxed.
x U Upper bounds on the variables.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x P Primal solution.
u Lagrangian multipliers.
f P Function value at x P .
optPar Optimization parameter vector, see goptions.m.

Description
The routine ksrelax uses Lagrangian Relaxation to solve integer linear programming problems with linear inequality
constraints and simple bounds on the variables. The problem is solved by relaxing all but one constraint and then
solve a simple knapsack problem as a subproblem in each iteration. The algorithm is based on the presentation in
Fisher [23], using subgradient iterations and a simple line search rule. LDO also contains a routine urelax which
plots the result of each iteration.

Examples
See exrelax, exrelax2.

M-files Used
lpDef.m, dpknap.m

See Also
urelax

14.4.8 labelcor

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = labelcor(s, P, Z, c)

Description of Inputs
s The starting node.
p Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.

Description of Outputs
pred pred(j) is the predecessor of node j.
dist dist(j) is the shortest distance from node s to node j.

Description
The implementation of labelcor is based on the algorithm LABEL CORRECTING in [2, page 260] for solving shortest
path problems. The algorithm belongs to the class of label correcting methods which are applicable to networks
with arbitrary arc lengths. labelcor requires that the network does not contain any negative directed cycle, i.e. a
directed cycle whose arc lengths sum to a negative value.

Examples
See exgraph.

See Also
dijkstra, modlabel

Limitations
The network must not contain any negative directed cycle.

165

14.4.9 lpdual

Purpose
Solve linear programming problems when a dual feasible solution is available.

lpdual solves problems of the form

min
x

fP (x) = cTx

s/t aTi x = bi i = 1, 2, ...,meq

aTi x ≤ bi i = meq + 1, ...,m
x ≥ 0

by rewriting it into standard form and solving the dual problem

max
y

fD(y) = bT y

s/t AT y ≤ c
y urs

with x, c ∈ R
n, A ∈ R

m×n and b, y ∈ R
m.

Calling Syntax
[x, y, B, optPar] = lpdual(A, b, c, optPar, B 0, x 0, y 0)

Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
B 0 Logical vector of length n for basic variables at start.
x 0 Starting point, must be dual feasible.
y 0 Dual parameters (Lagrangian multipliers) at x 0.

Description of Outputs
x Optimal point.
y Dual parameters (Lagrangian multipliers) at the solution.
B Optimal basic set.
optPar Optimization parameter vector, see goptions.m.

Description
When a dual feasible solution is available, the dual simplex method is possible to use. lpdual implements this
method using the algorithm in [41, pages 105-106]. There are three rules available for variable selection. Bland’s
cycling prevention rule is the choice if fear of cycling exist. The other two are variants of minimum reduced cost
variable selection, the original Dantzig’s rule and one which sorts the variables in increasing order in each step
(the default choice).

Examples
See ex611a2, ex6rev17.

M-files Used
lpDef.m

See Also
lpsimp1, lpsimp2

14.4.10 lpkarma

Purpose
Solve linear programming problems of the form

max
x

f(x) = cTx

s/t Ax ≤ b
x ≥ 0

166

where x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m.

Calling Syntax
[x, y, optPar] = lpkarma(A, b, c, optPar)

Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x Optimal point.
y Dual solution.
optPar Optimization parameter vector, see goptions.m.

Description
lpkarma converts a linear maximization problem on inequality form into Karmakar’s form and calls karmark to
solve the transformed problem.

Examples
See exstrang, exww597.

M-files Used
lpDef.m, karmark.m

See Also
karmark, akarmark

14.4.11 lpsimp1

Purpose
Find a basic feasible solution to linear programming problems.

lpsimp1 finds a basic feasible solution to problems of the form

min
x

f(x) = cTx

s/t aTi x = bi i = 1, 2, ...,meq

aTi x ≤ bi i = meq + 1, ...,m
x ≥ 0

where x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m, b ≥ 0.

Calling Syntax
[x, B, optPar, y] = lpsimp1(A, b, optPar)

Description of Inputs
A Constraint matrix.
b Right hand side vector.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x Basic feasible solution.
B Basic set at the solution x.
optPar Optimization parameter vector, see goptions.m.
y Lagrange multipliers.

Description
The routine lpsimp1 implements a Phase I Simplex strategy which formulates a LP problem with artificial variables.
Slack variables are added to the inequality constraints and artificial variables are added to the equality constraints.
The routine uses lpsimp2 to solve the Phase I problem.

Examples
See exinled, excycle, excycle2, exKleeM, exfl821, ex412b4s.

167

M-files Used
lpDef.m, lpsimp2.m

See Also
lpsimp2

14.4.12 lpsimp2

Purpose
Solve linear programming problems.

lpsimp2 solves problems of the form

min
x

f(x) = cTx

s/t aTi x = bi i = 1, 2, ...,meq

aTi x ≤ bi i = meq + 1, ...,m
x ≥ 0

where x, c ∈ R
n, A ∈ R

m×n and b ∈ R
m.

Calling Syntax
[x, B, optPar, y] = lpsimp2(A, b, c, optPar, x 0, B 0)

Description of Inputs
A Constraint matrix.
b Right hand side vector.
c Cost vector.
optPar Optimization parameter vector, see goptions.m.
x 0 Starting point, must be a basic feasible solution.
B 0 Logical vector of length n for basic variables at start.

Description of Outputs
x Optimal point.
B Optimal basic set.
optPar Optimization parameter vector, see goptions.m.
y Lagrange multipliers.

Description
The routine lpsimp2 implements the Phase II standard revised Simplex algorithm as formulated in Goldfarb and
Todd [41, page 91]. There are three rules available for variable selection. Bland’s cycling prevention rule is the
choice if fear of cycling exist. The other two are variants of minimum reduced cost variable selection, the original
Dantzig’s rule and one which sorts the variables in increasing order in each step (the default choice).

Examples
See exinled, excycle, excycle1, excycle2, excycle3, exKleeM, exfl821, ex412b4s, expertur.

M-files Used
lpDef.m

See Also
lpsimp1, lpdual

Warnings
No check is done whether the given starting point is feasible or not.

14.4.13 maxflow

Purpose
Solve the maximum flow problem.

Calling Syntax
[max flow, x] = maxflow(s, t, x U, P, Z, T, R, PriLev)

168

Description of Inputs
s The starting node, the source.
t The end node, the sink.
P Pointer vector to start of each node in the matrix Z.
x U The capacity on each arc.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
T Trace vector, points to Z with sorting order Head.
R Pointer vector in T vector for each node.
PriLev Printing Level: 0 Silent, 1 Print result (default).

Description of Outputs
max flow Maximal flow between node s and node t.
x The flow on each arc.

Description
maxflow finds the maximum flow between two nodes in a capacitated network using the Ford-Fulkerson augmented
path method. The implementation is based on the algorithm description in Luenberger [65, page 144-145].

Examples
See exflow, exflow31, pathflow.

14.4.14 modlabel

Purpose
Solve the shortest path problem.

Calling Syntax
[pred, dist] = modlabel(s, P, Z, c)

Description of Inputs
s The starting node.
p Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.

Description of Outputs
pred pred(j) is the predecessor of node j.
dist dist(j) is the shortest distance from node s to node j.

Description
The implementation of modlabel is based on the algorithm MODIFIED LABEL CORRECTING in [2, page 262] with
the addition of the heuristic rule discussed to improve running time in practice. The rule says: Add node to the
beginning of LIST if node has been in LIST before, otherwise add node at the end of LIST . The algorithm
belongs to the class of label correcting methods which are applicable to networks with arbitrary arc lengths.
modlabel requires that the network does not contain any negative directed cycle, i.e. a directed cycle whose arc
lengths sum to a negative value.

Examples
See exgraph.

See Also
dijkstra, labelcor

Limitations
The network must not contain any negative directed cycle.

14.4.15 NWsimplx

Purpose
Solve the minimum cost network flow problem.

169

Calling Syntax
[Z, X, xmax, C, S, my, optPar] = NWsimplx(A, b, c, u, optPar)

Description of Inputs
A Node-arc incidence matrix. A is m× n.
b Supply/demand vector of length m.
c Cost vector of length n.
u Arc capacity vector of length n.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
X Optimal flow.
xmax Upper bound on the flow.
C Costs related to the arcs in the matrix Z.
S Arc status at the solution:

Si = 1, arc i is in the optimal spanning tree.
Si = 2, arc i is in L (variable at lower bound).
Si = 3, arc i is in U (variable at upper bound).

my Lagrangian multipliers at the solution.
optPar Optimization parameter vector, see goptions.m.

Description
The implementation of the network simplex algorithm in NWsimplx is based on the algorithm NETWORK SIMPLEX

in Ahuja et al. [3, page 415]. NWsimplx uses the forward and reverse star representation technique of the network,
described in [3, pages 35-36].

Examples
See exmcnfp.

M-files Used
lpDef.m, a2frstar.m

14.4.16 qplm

Purpose
Solve equality constrained quadratic programming problems.

qplm solves problems of the form
min
x

f(x) = 1
2 (x)

TFx+ cTx

s/t Ax = b

where x, c ∈ R
n, F ∈ R

n×n, A ∈ R
m×n and b ∈ R

m.

Calling Syntax
[x, lambda] = qplm(F, c, A, b)

Description of Inputs
F Constant matrix, the Hessain.
c Constant vector.
A Constraint matrix for the linear constraints.
b Right hand side vector.

Description of Outputs
x Optimal point.
lambda Lagrange multipliers.

Description
The routine qplm solves a quadratic programming problem, restricted to equality constraints, using the Lagrange
method.

See Also
qpBiggs, qpSolve, qpe

170

14.4.17 qpe

Purpose
Solve equality constrained quadratic programming problems.

qpe solves problems of the form
min
x

f(x) = 1
2 (x)

TFx+ cTx

s/t Ax = b

where x, c ∈ R
n, F ∈ R

n×n, A ∈ R
m×n and b ∈ R

m.

Calling Syntax
[x, lambda, QZ, RZ] = qpe(F, c, A, b)

Description of Inputs
F Constant matrix, the Hessain.
c Constant vector.
A Constraint matrix for the linear constraints.
b Right hand side vector.

Description of Outputs
x Optimal point.
lambda Lagrange multipliers.
QZ The matrix Q in the QR-decomposition of F .
RZ The matrix R in the QR-decomposition of F .

Description
The routine qpe solves a quadratic programming problem, restricted to equality constraints, using a null space
method.

See Also
qpBiggs, qpSolve, qplm

14.4.18 salesman

Purpose
Solve the symmetric travelling salesman problem.

Calling Syntax
[Tour, f tour, OneTree, f tree, w max, my max, optPar] =
salesman(C, Zin, Zout, my, f BestTour, optPar)

Description of Inputs
C Cost matrix of dimension n× n where Cij = Cji is the cost of arc (i, j). If

there are no arc between node i and node j then set Cij = Cji = ∞. It
must hold that Cii = NaN .

Zin List of arcs forced in.
Zout List of arcs forced out.
my Lagrange multipliers.
f BestTour Cost (total distance) of a known tour.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
Tour Arc list of the best tour found.
f tour Cost (total distance) of the best tour found.
OneTree Arc list of the best 1-tree found.
f tree Cost of the best 1-tree found.
w max Best dual objective.
my max Lagrange multipliers at w max.
optPar Optimization parameter vector, see goptions.m.

Description
The routine salesman is an implementation of an algorithm by Held and Karp [44] which solves the symmetric
travelling salesman problem using Lagrangian Relaxation. The dual problem is solved using a subgradient method

171

with the step length given by the Polyak rule II. The primal problem is to find a 1-tree. Here the routine mintree
is called to get a minimum spanning tree. With this method there is no guarantee that an optimal tour is found,
i.e. a zero duality gap can not be guaranteed. To ensure convergence, salesman could be used as a subroutine in
a Branch and Bound algorithm, see travelng which calls salesman.

Examples
See ulyss16.

M-files Used
lpDef.m, mintree.m

See Also
travelng

14.4.19 TPsimplx

Purpose
Solve transportation programming problems.

TPsimplx solves problems of the form

min
x

f(x) =
m
∑

i

n
∑

j

cijxij

s/t
n
∑

j

xij = si i = 1, 2, ...,m

n
∑

i

xij = dj j = 1, 2, ..., n

x ≥ 0

where x, c ∈ R
m×n, s ∈ R

m and d ∈ R
n.

Calling Syntax
[X, B, optPar, y, C] = TPsimplx(s, d, C, X, B, optPar, Penalty)

Description of Inputs
s Supply vector.
d Demand vector.
C The cost matrix of linear objective function coefficients.
X Basic Feasible Solution matrix.
B Index (i, j) of basis found.
optPar Optimization parameter vector, see goptions.m.

Penalty If the problem is unbalanced with
m
∑

i

si <
n
∑

j

dj , a dummy supply point

is added with cost vector Penalty. If the length of Penalty < n then the
value of the first element in Penalty is used for the whole added cost vector.
Default: Computed as 10max(Cij).

Description of Outputs
X Solution matrix.
B Optimal set. Index (i, j) of the optimal basis found.
optPar Optimization parameter vector, see goptions.m.
y Lagrange multipliers.
C The cost matrix, changed if the problem is unbalanced.

Description
The routine TPsimplx is an implementation of the Transportation Simplex method described in Luenberger [65,
chap 5.4]. In LDO, three routines to find a starting basic feasible solution for the transportation problem are
included; the Northwest Corner method (TPnw), the Minimum Cost method (TPmc) and Vogel’s approximation
method (TPvogel). If calling TPsimplx without giving a starting point then Vogel’s method is used to find a
starting basic feasible solution.

Examples
See extp bfs, exlu119, exlu119U, extp.

172

M-files Used
TPvogel.m

See Also
TPmc, TPnw, TPvogel

Warnings
No check is done whether the given starting point is feasible or not.

14.4.20 urelax

Purpose
Solve integer linear problems of the form

max
x

f(x) = cTx

s/t Ax ≤ b
x ≤ xU

xj ∈ N j = 1, 2, ..., n

where c ∈ R
n, A ∈ N

m×n and b ∈ N
m.

Calling Syntax
[x P, u, f P] = urelax(u max, A, b, c, r, x U, optPar)

Description of Inputs
u max Upper bounds on u.
A Constraint matrix.
b Right hand side vector.
c Cost vector.
r Constraint not to be relaxed.
x U Upper bounds on the variables.
optPar Optimization parameter vector, see goptions.m.

Description of Outputs
x P Primal solution.
u Lagrangian multipliers.
f P Function value at x P .

Description
The routine urelax is a simple example of the use of Lagrangian Relaxation to solve integer linear programming
problems. The problem is solved by relaxing all but one constraint and then solve a simple knapsack problem as
a subproblem in each iteration. urelax plots the result of each iteration. LDO also contains a more sophisticated
routine, ksrelax, for solving problems of this type.

Examples
See exip39rx.

M-files Used
dpknap.m

See Also
ksrelax

14.5 Optimization Subfunction Utilities in TOMLAB LDO

In the following subsections the optimization subfunction utilities in TOMLAB LDO will be described.

14.5.1 a2frstar

Purpose
Convert a node-arc incidence matrix representation of a network to the forward and reverse star data storage
representation.

173

Calling Syntax
[P, Z, c, T, R, u] = a2frstar(A, C, U)

Description of Inputs
A The node-arc incidence matrix. A is m× n, where m is the number of arcs

and n is the number of nodes.
C Cost for each arc, n-vector.
U Upper bounds on flow (optional).

Description of Outputs
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.
T Trace vector, points to Z with sorting order Head.
R Rewerse pointer vector in T for each node.
u Upper bounds on flow if U is given as input, else infinity.

Description
The routine a2frstar converts a node-arc incidence matrix representation of a network to the forward and reverse
star data storage representation as described in Ahuja et.al. [3, pages 35-36].

Examples
See exflow, exflow31, exgraph, pathflow.

14.5.2 gsearch

Purpose
Find all nodes in a network which is reachable from a given source node.

Calling Syntax
[pred, mark] = gsearch(s, P, Z, c)

Description of Inputs
s The starting node.
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.

Description of Outputs
pred pred(j) = Predecessor of node j.
mark If mark(j) = 1 the node is reachable from node s.

Description
gsearch is searching for all nodes in a network which is reachable from the given source node s. The implementation
is a variation of the Algorithm SEARCH in [2, pages 231-233]. The algorithm uses a depth-first search which means
that it creates a path as long as possible and backs up one node to initiate a new probe when it can mark no new
nodes from the tip of the path. A stack approach is used where nodes are selected from the front and added to
the front.

Examples
See exgraph.

See Also
gsearchq

14.5.3 gsearchq

Purpose
Find all nodes in a network which is reachable from a given source node.

174

Calling Syntax
[pred, mark] = gsearchq(s, P, Z, c)

Description of Inputs
s The starting node.
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.

Description of Outputs
pred pred(j) = Predecessor of node j.
mark If mark(j) = 1 the node is reachable from node s.

Description
gsearchq is searching for all nodes in a network which is reachable from the given source node s. The implementation
is a variation of the Algorithm SEARCH in [2, pages 231-233]. The algorithm uses a breadth-first search which
means that it visits the nodes in order of increasing distance from s. The distance being the minimum number of
arcs in a directed path from s. A queue approach is used where nodes are selected from the front and added to
the rear.

Examples
See exgraph.

See Also
gsearch

14.5.4 mintree

Purpose
Find the minimum spanning tree of an undirected graph.

Calling Syntax
[Z tree, cost] = mintree(C, Zin, Zout)

Description of Inputs
C Cost matrix of dimension n× n where Cij = Cji is the cost of arc (i, j). If

there are no arc between node i and node j then set Cij = Cji = ∞. It
must hold that Cii = NaN .

Zin List of arcs which should be forced to be included in Z tree.
Zout List of arcs which should not be allowed to be included in Z tree (could

also be given as NaN in C).

Description of Outputs
Z tree List of arcs in the minimum spanning tree.
cost The total cost.

Description
mintree is an implementation of Kruskal’s algorithm for finding a minimal spanning tree of an undirected graph.
The implementation follows the algorithm description in [3, page 520-521]. It is possible to give as input, a list
of those arcs which should be forced to be included in the tree as well as a list of those arcs which should not be
allowed to be included in the tree. mintree is called by salesman.

14.5.5 TPmc

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X,B] = TPmc(s, d, C)

175

Description of Inputs
s Supply vector of length m.
d Demand vector of length n.
C The cost matrix of linear objective function coefficients.

Description of Outputs
X Basic feasible solution matrix.
B Index (i, j) of the basis found.

Description
TPmc is an implementation of the Minimum Cost method for finding a basic feasible solution to the transportation
problem. The implementation of this algorithm follows the algorithm description in Winston [83, chap. 7.2].

Examples
See extp bfs, exlu119, exlu119U, extp.

See Also
TPnw, TPvogel, TPsimplx

14.5.6 TPnw

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X, B] = TPnw(s, d)

Description of Inputs
s Supply vector of length m.
d Demand vector of length n.

Description of Outputs
X Basic feasible solution matrix.
B Index (i, j) of the basis found.

Description
TPnw is an implementation of the Northwest Corner method for finding a basic feasible solution to the trans-
portation problem. The implementation of this algorithm follows the algorithm description in Winston [83, chap.
7.2].

Examples
See extp bfs, exlu119, exlu119U, extp.

See Also
TPmc, TPvogel, TPsimplx

14.5.7 TPvogel

Purpose
Find a basic feasible solution to the Transportation Problem.

Calling Syntax
[X, B] = TPvogel(s, d, C, PriLev)

Description of Inputs
s Supply vector of length m.
d Demand vector of length n.
C The cost matrix of linear objective function coefficients.
PriLev If PriLev > 0, the matrix X is displayed in each iteration.

If PriLev > 1, pause in each iteration.
Default: PriLev = 0.

Description of Outputs
X Basic feasible solution matrix.
B Index (i, j) of the basis found.

176

Description
TPvogel is an implementation of Vogel’s method for finding a basic feasible solution to the transportation problem.
The implementation of this algorithm follows the algorithm description in Winston [83, chap. 7.2].

Examples
See extp bfs, exlu119, exlu119U, extp.

See Also
TPmc, TPnw, TPsimplx

14.5.8 z2frstar

Purpose
Convert a table of arcs and corresponding costs in a network to the forward and reverse star data storage repre-
sentation.

Calling Syntax
[P, Z, c, T, R, u] = z2frstar(Z, C, U)

Description of Inputs
Z A table with arcs (i, j). Z is n × 2, where n is the number of arcs. The

number of nodes m is set equal to the greatest element in Z.
C Cost for each arc, n-vector.
U Upper bounds on flow (optional).

Description of Outputs
P Pointer vector to start of each node in the matrix Z.
Z Arcs outgoing from the nodes in increasing order.

Z(:, 1) Tail. Z(:, 2) Head.
c Costs related to the arcs in the matrix Z.
T Trace vector, points to Z with sorting order Head.
R Rewerse pointer vector in T for each node.
u Upper bounds on flow if U is given as input, else infinity.

Description
The routine z2frstar converts a table of arcs and corresponding costs in a network to the forward and reverse star
data storage representation as described in Ahuja et.al. [3, pages 35-36].

177

A Description of Prob, the Input Problem Structure

The Input Problem Structure, here referred to as Prob, is one of the most central aspects of working with TOMLAB.
It contains numerous fields and substructures that influence the behaviour and performance of the solvers.

There are default values for everything that is possible to set defaults for, and all routines are written in a way
that makes it possible for the user to just set an input argument empty ([]) and get the default.

TOMLAB is using the structure variable optParam, see Table 39, for the optimization parameters controlling the
execution of the optimization solvers.

Subproblems

Many algorithms need sub-problems solved as part of the main algorithm. For example, in SQP algorithms
for general nonlinear programs, QP problems are solved as sub-problems in each iteration. As QP solver any
solver, even a general NLP solver, may be used. To send parameter information to the QP subsolver, the fields
Prob.optParam, Prob.Solver and Prob.SOL could be put as subfields to the Prob.QP field (see Table 34), i.e. as
fields Prob.QP.optParam, Prob.QP.Solver. The field Prob.QP.optParam need not have all subfields, the missing
ones are filled with default values for the particular QP solver.

The same Prob.QP subfield is used for the other types of subproblems recognized, i.e. Phase 1 feasibility problems,
LP and dual LP problems. Note that the fields Prob.SolverQP, Prob.SolverFP Prob.SolverLP and Prob.SolverDLP
are set to the name of the solver that should solve the subproblem. If the field is left empty, a suitable default
solver is used, dependent on the version of TOMLAB.

178

Table 31: Information stored in the problem structure Prob, part I. Fields defining sub-structures are
defined in Table 33

.

Field Description
A Matrix with linear constraints, one constraint per row (dense or sparse).
AutoDiff If true, use automatic differentiation.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.
c L Lower bounds on the general constraints.
c U Upper bounds on the general constraints.
cName Name of each general constraint.
CHECK If true, no more check is done by ProbCheck. Set to true (=1) after first call

to ProbCheck.
ConsDiff Numerical approximation of the constraint derivatives. If set to 1, the classical

approach with forward or backward differences together with automatic step
selection will be used. If set to 2, 3 or 4 the spline routines csapi, csaps or
spaps in the SPLINE Toolbox will be used. If set to 5, derivatives will be
estimated by use of complex variables. For the SOL solvers, the value 6 gives
the internal derivative approximation.

ConsPattern Matrix with non-zero pattern in the constraint gradient matrix.
f Low Lower bound on optimal function value.
f opt Objective function value f(x∗) corresponding to the points given in x opt.
GradTolg Size of step length to estimate first order derivatives in the gradient vector. If

this field is empty , optParam.DiffInt is used instead.
GradTolH Size of step length to estimate the Hessian matrix. If this field is empty ,

optParam.DiffInt is used instead.
GradTolJ Size of step length to estimate the Jacobian matrix or the constraint gradient

matrix. If this field is empty , optParam.DiffInt is used instead.
HessPattern Matrix with non-zero pattern in the Hessian matrix.
JacPattern Matrix with non-zero pattern in the Jacobian matrix.
LargeScale Flag if the problem is large scale. If this flag is set no collection of search steps

are made.
MENU Flag used to tell if a menu, the GUI or a driver is calling, to avoid unnecessary

checks of the fields in Prob (0).
Mode Indicates whether the user should return function values and/or derivatives.

Is best used when the user computes both function values and derivatives at
the same time to save CPU time. 0 = Assign function values. 1 = Assign
known derivatives, unknown derivative values set as -11111 (=missing value).
2 = Assign function and known derivatives, unknown derivatives set as -11111.

nState Indicates the first and last calls to the user routines to compute function and
derivatives. Used by the SOL solvers. 1 = First call. 0 = Other calls before
the last call. 2 + Inform Last call, see the Inform parameter for the solver
used.

N Problem dimension (number of variables).
Name Problem name.
NumDiff Numerical approximation of the derivatives of the objective function. If set to

1, the classical approach with forward or backward differences together with
automatic step selection will be used. If set to 2, 3 or 4 the spline routines csapi,
csaps or spaps in the SPLINE Toolbox will be used. If set to 5, derivatives
will be estimated by use of complex variables. For the SOL solvers, the value
6 gives the internal derivative approximation.

179

Table 32: Information stored in the problem structure Prob, part II. Fields defining sub-structures are
defined in Table 33

.

Field Description
P Problem number (1).
plotLine Flag if to do a plot of the line search problem.
PriLev Print level in the driver routines (0).
PriLevOpt Print level in the TOM solver and the Matlab part of the SOL solver interface

(0).
probFile Name of m-file in which the problems are defined.
probType TOMLAB problem type, see Table 1.
SolverDLP Name of the solver that should solve dual LP sub-problems. Used by

SolveDLP.
SolverLP Name of the Solver that should solve LP sub-problems. Used by SolveLP.
SolverFP Name of the solver that should solve a phase one LP sub-problem, i.e. finding

a feasible point to a convex set. Used by SolveFP.
SolverQP Name of the solver that should solve QP sub problems. Used by SolveQP.
uP User supplied parameters for the problem.
uPName Problem name (Prob.Name) connected to the user supplied parameters in (

uP).
WarmStart Flag. If > 0 the solver should do a warm start, if the solver supports a warm

start.
x 0 Starting point.
x L Lower bounds on the variables x.
x min Lower bounds on plot region.
x max Upper bounds on plot region.
x opt Stationary points x∗, one per row (if known). It is possible to define an extra

column, in which a zero (0) indicates a minimum point, a one (1) a saddle
point, and a two (2) a maximum. As default, minimum points are assumed.

x U Upper bounds on the variables x.
xName Name of each decision variable in x.

Table 33: The fields defining sub-structures in the problem structure Prob. Default values are in all tables
given in parenthesis at the end of each item.

Field Description
QP Structure with special fields for linear and quadratic problems, see Table 34.
LS Structure with special fields for least squares problems, see Table 35.
MIP Structure with special fields for mixed-integer programming, see Table 36.
ExpFit Structure with special fields for exponential fitting problems, see Table 37.
LineParam Structure with special fields for line search optimization parameters, see Table

38.
optParam Structure with special fields for optimization parameters, see Table 39.
PartSep Structure with special fields for partially separable functions, see Table 40.
SOL Structure with special fields for SOL (Stanford Optimization Laboratory)

solvers, see Table 41.
Solver Structure with fields Name, Alg and Method. Name is the name of the solver.

Alg is the solver algorithm to be used. Method is the solver sub-method tech-
nique. See the solver descriptions Section 13.

USER Structure with user defined names of the m-files computing the objective,
gradient, Hessian etc. See Table 42. These routines are called from the corre-
sponding gateway routine

180

Table 34: Information stored in the structure Prob.QP. The three last sub-fields, always part of the Prob
subfields, could optionally be put here to give information to a subproblem QP, LP, dual LP or feasible
point (Phase 1) solver.

Field Description
F Constant matrix F in 1

2x
′Fx+ c′x

c Cost vector c in 1
2x
′Fx+ c′x

B Logical vector of the same length as the number of variables. A zero
corresponds to a variable in the basis.

y Dual parameters y.
Q Orthogonal matrix Q in QR-decomposition.
R Upper triangular matrix R in QR-decomposition.
E Pivoting matrix E in QR-decomposition. Stored sparse.
Ascale Flag if to scale the A matrix, the linear constraints.
DualLimit Stop limit on the dual objective.
UseHot True if to use a crash basis (hot start).
HotFile If nonempty and UseCrash true, read basis from this file.
HotFreq How often to save a crash basis.
HotN The number of crash basis files.
optParam Structure with special fields for optimization parameters, see Table

39.
SOL Structure with special fields for SOL (Stanford Optimizaton Labo-

ratory) solvers, see Table 41.
Solver Structure with fields Name, Alg and Method. Name is the name of

the solver. Alg is the solver algorithm to be used. Method is the
solver sub-method technique. See the solver descriptions Section 13.

Table 35: Information stored in the structure Prob.LS

Field Description
weightType Weighting type:

0 No weighting.
1 Weight with data in y. If y(t) = 0, the weighting is 0, i.e.

deleting this residual element.
2 Weight with weight vector or matrix in weightY. If weightY is

a vector then weighting by weigthY.∗r (element wise multipli-
cation). If weightY is a matrix then weighting by weigthY ∗ r
(matrix multiplication).

3 nlp r calls the routine weightY (must be a string with the
routine name) to compute the residuals.

weightY Either empty, a vector, a matrix or a string, see weightType.
t Time vector t.
y Vector or matrix with observations y(t).
E Fixed matrix, in linear least squares problem E ∗ x− y.
yUse If yUse = 0 compute residual as f(x, t) − y(t) (default), other-

wise y(t) should be treated separately by the solver and the residual
routines just return f(x, t).

SepAlg If SepAlg = 1, use separable non linear least squares formulation
(default 0).

181

Table 36: Information stored in the structure Prob.MIP

Field Description
IntVars Which variables are integer valued
VarWeight Priority vector for each variable.
fIP Function value for point defined in xIP. Gives an upper bound on

the IP value wanted. Makes it possible to cut branches and avoid
node computations

xIP The point x giving the function value fIP.
PI See the Tomlab /Xpress User’s Guide.
SC See the Tomlab /Xpress User’s Guide.
SI See the Tomlab /Xpress User’s Guide.
SOS1 See the Tomlab /Xpress User’s Guide.
SOS2 See the Tomlab /Xpress User’s Guide.
xpcontrol See the Tomlab/ Xpress User’s Guide.
callback See the Tomlab /Xpress User’s Guide.
KNAPSACK See the Tomlab /Xpress User’s Guide.

Table 37: Information stored in the structure Prob.ExpFit. Default values in parenthesis.

Field Description
p Number of exponential terms (2).
wType Weighting type (1).
eType Type of exponential terms (1).
infCR Information criteria for selection of best number of terms (0).
dType Differentiation formula (0).
geoType Type of equation (0).
qType Length q of partial sums (0).
sigType Sign to use in (P ±√Q)/D in exp geo for p = 3, 4 (0).
lambda Vector of dimension p, intensities.
alpha Vector of dimension p, weights.
beta Vector of dimension p, weights in generalized exponential models.
x0Type Type of starting value algorithm.
sumType Type of exponential sum.

Table 38: Information stored in the structure Prob.LineParam

Field Description
LineAlg Line search algorithm. 0 = quadratic interpolation, 1 = cubic inter-

polation, 2 = curvilinear quadratic interpolation (not robust), 3 =
curvilinear cubic interpolation (not robust) (LineAlg = 1).

sigma Line search accuracy; 0 < sigma < 1. sigma = 0.9 inaccurate line
search. sigma = 0.1 accurate line search (0.9).

InitStepLength Initial length of step (1.0).
MaxIter Maximum number of line search iterations.
fLowBnd Lower bound on optimal function value. Used in the line search by

Fletcher, m-file LineSearch (= −realmax).
rho Determines the ρ line (0.01).
tau1 Determines how fast step grows in phase 1 (9).
tau2 How near end point of [a, b] (0.1).
tau3 Choice in [a, b] phase 2 (0.5).
eps1 Minimal length for interval [a, b] (10−7).
eps2 Minimal reduction (100× ε).

182

Table 39: Information stored in the structure Prob.optParam. Default values in parenthesis. Items marked
(SOL-n) are corresponding to SOL parameters, and are given different initial values dependent on which
solver is used. The number n gives the element number used in the optParam parameter vector in
Prob.SOL.

Field Description
PriLev Solver major print level in file output (SOL-1).
PriFreq Print frequency (SOL-5) in optimization solver.
SummFreq Summary frequency (SOL-6) in optimization solver.
MinorPriLev Minor print level in file output (SOL-2) in SOL sub-problem solver.
IterPrint Flag for one-row-per-iteration printout during optimization (0). If SOL-1

not explicitely set, setting this flag will set SOL-1 to 1 for the SOL solvers.
wait Flag, if true use pause statements after output in each iteration (0).
MaxFunc Maximal number of function evaluations.
MaxIter Maximum number of iterations (SOL-30).
MajorIter Maximum number of iterations in major problem (SOL-35).
MinorIter Maximum number of iterations in minor problem (SOL-36).
eps f Relative convergence tolerance in f (10−8).
eps absf Absolute convergence tolerance for the function value (−realmax).
eps x Relative convergence tolerance in parameter solution x (SOL-10).
eps dirg Convergence tolerance for the directed derivative (10−8).
eps c Feasibility tolerance for nonlinear constraints (SOL-9).
eps g Gradient (or reduced gradient) convergence tolerance (10−7).
eps Rank Rank test tolerance (SOL-27).
EpsGlob Global/local weight parameter in global optimization (10−4).
fTol Relative accuracy in the computation of the function value (SOL-41).
xTol If x ∈ [x L, x L+ bTol] or [x U − bTol, x U], fix x on bound (100 ∗ ε =

2.2204 · 10−13).
bTol Feasibility tolerance for linear constraints (SOL-11).
cTol Feasibility tolerance for nonlinear constraints (SOL-9).
MinorTolX Relative convergence tolerance in parameters x in sub-problem (SOL-12).
size x Size at optimum for the variables x, used in the convergence tests (1).

Only changed if scale very different, x >> 1.
size f Size at optimum for the function f , used in the convergence tests (1). Only

changed if scale very different, f >> 1.
size c Size at optimum for the constraints c, used in the convergence tests (1).

Only changed if scale very different, c >> 1.
PreSolve Flag if presolve analysis is to be applied on linear constraints (0).
DerLevel Derivative Level, knowledge about nonlinear derivatives: 0 = Some compo-

nents of the objective gradient are unknown and some components of the
constraint gradient are unknown, 1 = The objective gradient is known but
some or all components of the constraint gradient are unknown, 2 = All
constraint gradients are known but some or all components of the objec-
tive gradient are unknown, 3 = All objective and constraint gradients are
known (3,SOL-39).

GradCheck 0, 1, 2, 3 gives increasing level of user-supplied gradient checks (SOL-13).
DiffInt Difference interval in derivative estimates (SOL-42).
CentralDiff Central difference interval in derivative estimates (SOL-43).
QN InitMatrix Initial matrix for Quasi-Newton, may be set by the user. When

QN InitMatrix is empty, the identity matrix is used.
splineSmooth Smoothness parameter sent to the SPLINE Toolbox routine csaps.m when

computing numerical approximations of the derivatives (0.4).
splineTol Tolerance parameter sent to the SPLINE Toolbox routine spaps.m when

computing numerical approximations of the derivatives (10−3).
BigStep Unbounded step size. Used to detect unbounded nonlinear problems.

(SOL-45).
BigObj Unbounded objective value. Used to detect unbounded nonlinear problems.

(SOL-46).
CHECK If true, no more check is done on the structure. Set to true (=1) after first

call to optParamSet.
183

Table 40: Information stored in the structure Prob.PartSep

Field Description
pSepFunc Number of partially separable functions.
index Index for the partially separable function to compute, i.e. if i =

index, compute fi(x). If index = 0, compute the sum of all, i.e.

f(x) =
M
∑

i=1

fi(x).

Table 41: Information stored in the structure Prob.SOL

Field Description
SpecsFile If nonempty gives the name of a file which is written in the SOL

SPECS file format.
PrintFile If nonempty gives the name of a file which the SOL solver should

print information on. The amount printed is dependent on the print
level in Prob.SOL.optPar(1).

SummFile If nonempty gives the name of a file which the SOL solver prints
summary information on.

xs Vector with solution x and slack variables s. Used for warm starts.
hs Vector with basis information in the SOL sparse solver format. Used

for warm starts.
nS Number of superbasics. Used for warm starts.
hElastic Elastic variable information in SQOPT.
iState Vector with basis information in the SOL dense solver format. Used

for warm starts.
cLamda Vector with Lagrange multiplier information in the SOL dense solver

format. Used for warm starts.
H Cholesky factor of Hessian Approximation. Either in natural order

(Hessian Yes) or reordered (Hessian No). Used for warm starts using
natural order with NPSOL and NLSSOL.

callback For large dense or nearly dense quadratic problems (probType ==
qp) it is more efficient to use a callback function from the MEX
routine to compute the matrix-vector product F ·x. Then Prob.QP.F
is never copied into the MEX solver. This option applies to SQOPT
only.

optPar Vector with optParN elements with parameter information for SOL
solvers. Initialized to missing value, −999. The elements used are
described in the help for each solver. If running TOMLAB format,
also see the help of the TOMLAB solver interface routine whos name
always has the letters TL added, e.g. minosTL.

optParN Number of elements in optPar, defined as 62.

184

Table 42: Information stored in the structure Prob.USER

Field Description
f Name of m-file computing the objective function f(x).
g Name of m-file computing the gradient vector g(x). If Prob.USER.g

is empty then numerical derivatives will be used.
H Name of m-file computing the Hessian matrix H(x).
c Name of m-file computing the vector of constraint functions c(x).
dc Name of m-file computing the matrix of constraint normals ∂c(x)/dx.
d2c Name of m-file computing the 2nd part of 2nd derivative matrix of

the Lagrangian function,
∑

i λi∂
2c(x)/dx2.

r Name of m-file computing the residual vector r(x).
J Name of m-file computing the Jacobian matrix J(x).
d2r Name of m-file computing the 2nd part of the Hessian for nonlinear

least squares problem, i.e.
m
∑

i=1

ri(x)
∂2ri(x)
∂xj∂xk

.

Table 43: Information stored in the structure Prob.DUNDEE

Field Description
callback If 1, use a callback to Matlab to compute QP.F · x. Faster when F

is large and nearly dense. Avoids copying the matrix to the MEX
solvers.

kmax Maximum dimension of the reduced space (k), default equal to di-
mension of problem. Set to 0 if solving an LP problem.

mlp Maximum number of levels of recursion.
mode Mode of operation, default set as 2 ∗ Prob.WarmStart.
x Solution (warmstart).
k Dimension of reduced space (warmstart).
e Steepest-edge normalization coefficient (warmstart).
ls Indices of active constraints, first n− k. (warmstart).
lp List of pointers to recursion information in ls (warmstart).
peq Pointer to end of equality constraint indices in ls (warmstart).
PrintFile Name of print file. Amount/print type is determined by

Prob.PriLevOpt. Default name “bqpd.txt”.

optPar Vector with optimization parameters. -999 in any element gives de-
fault.
Length between 0 and 7 allowed. Default values:

optPar(1) (tol)
optPar(2) (emin)
optPar(3) (sgnf)
optPar(4) (nrep)
optPar(5) (npiv)
optPar(6) (nres)
optPar(7) (nfreq)

1 · 10−10 Relative accuracy in solution.
1.0 1.0: Use cscale (constraint scaling), 0.0 no scaling.
5 · 10−4 Max relative error in two numbers equal in exact arithmetic.
2 Maximum number of refinement steps.
3 No repeat of more than npiv steps were taken.
2 Maximum number of restarts if unsuccessful.
500 The maximum interval between refactorizations.

185

B Description of Result, the optimization result structure

The results of the optimization attempts are stored in a structure array named Result. The currently defined
fields in the structure are shown in Table 46. The use of structure arrays make advanced result presentation and
statistics possible. Results from many runs may be collected in an array of structures, making postprocessing on
all results easy.

When running global optimization, output results are also stored in mat-files, to enable fast restart (warm start)
of the solver. It is seldom the case that one knows that the solver actually converged for a particular problem.
Therefore one does restarts until the optimum does not change, and one is satisfied with the results. The infor-
mation stored in the mat-file glbSave.mat by the solver glbSolve is shown in Table 44. The information stored in
the mat-file glcSave.mat by the solver glcSolve is shown in Table 45.

Table 44: Information stored in the mat-file glbSave.mat by the solver glbSolve. Used for automatic
restarts.

Variable Description
Name Name of the problem, used as identification.
C Matrix with all rectangle centerpoints in original coordinates.
F Vector with function values.
D Vector with distances from centerpoints to the vertices.
L Matrix with all rectangle side lengths in each dimension.
d Row vector of all different distances, sorted.
d min Row vector of minimum function value for each distance.
f min Best function value found at a feasible point.
E Computed tolerance, dependent on f min.
i min indices for all best points.

Table 45: Information stored in the mat-file glcSave.mat by the solver glcSolve. Used for automatic
restarts.

Variable Description
Name Name of the problem, used as identification.
C Matrix with all rectangle centerpoints in original coordinates.
F Vector with function values.
T T (i) is the number of times rectangle i has been trisected.
D Vector with distances from centerpoint to the vertices.
G Matrix with constraint values for each point.
I L I L(i, j) is the lower bound for rectangle j in integer dimension I(i).
I U I U(i, j) is the upper bound for rectangle j in integer dimension I(i).
s 0 s 0 is used as s(0).
s s(j) is the sum of observed rates of change for constraint j.
t t(i) is the total number of splits along dimension i.
ignoreidx Rectangles to be ignored in the rectangle selection procedure.
feasible Flag indicating if a feasible point has been found.
Split Split(i, j) is the number of splits along dimension i of rectangle j.
f min Best function value found at a feasible point.

The field xState describes the state of each of the variables. In Table 47 the different values are described. The
different conditions for linear constraints are defined by the state variable in field bState. In Table 48 the different
values are described.

186

Table 46: Information stored in the global Matlab structure Result.

Field Description
Name Problem name.
P Problem number.
probType TOMLAB problem type, according to Table 1, page 10.
Solver Solver used.
SolverAlgorithm Solver algorithm used.
solvType TOMLAB solver type.
ExitFlag 0 if convergence to local min. Otherwise errors.
ExitText Text string describing the result of the optimization.
Inform Information parameter, type of convergence.
CPUtime CPU time used in seconds.
REALtime Real time elapsed in seconds.
Iter Number of major iterations.
MinorIter Number of minor iterations (for some solvers).
FuncEv Number of function evaluations needed.
GradEv Number of gradient evaluations needed.
HessEv Number of Hessian evaluations needed.
ConstrEv Number of constraint evaluations needed.
ResEv Number of residual evaluations needed (least squares).
JacEv Number of Jacobian evaluations needed (least squares).
f k Function value at optimum.
g k Gradient value at optimum.
B k Quasi-Newton approximation of the Hessian at optimum.
H k Hessian value at optimum.
x 0 Starting point.
f 0 Function value at start i.e. f(x 0).
x k Optimal point.
y k Dual parameters.
v k Lagrange multipliers for constraints on variables, linear and nonlinear

constraints.
r k Residual vector at optimum.
J k Jacobian matrix at optimum.
c k Value of constraints at optimum.
cJac Constraint Jacobian at optimum.
xState State of each variable, described in Table 47.
bState State of each linear constraint, described in Table 48.
cState State of each general constraint, described in Table 49.
p dx Matrix where each column is a search direction.
alphaV Matrix where row i stores the step lengths tried for the i:th iteration.
x min Lowest x-values in optimization. Used for plotting.
x max Highest x-values in optimization. Used for plotting.
LS Structure with statistical information for least squares problems, see

Table 50.
F X F X is a global matrix with rows: [iter no f(x)].
SepLS General result variable with fields z and Jz. Used when running sepa-

rable nonlinear least squares problems.
QP Structure with special fields for QP problems. Used for warm starts,

see Table 34.
SOL Structure with some of the fields in the Prob.SOL structure, the ones

needed to do a warm start of a SOL solver, see Table 41. The routine
WarmDefSOL moves the relevant fields back to to Prob.SOL for the
subsequent call.

plotData Structure with plotting parameters.
Prob Problem structure, see Table 31 and Table 32.

Please note that certain solvers that do reformulations of the problem,
such as L1Solve, infSolve and slsSolve return the problem structure of
the reformulated problem in this field, not the original one.187

Table 47: The state variable xState for the variable.

Value Description
0 A free variable.
1 Variable on lower bound.
2 Variable on upper bound.
3 Variable is fixed, lower bound is equal to upper bound.

Table 48: The state variable bState for each linear constraint.

Value Description
0 Inactive constraint.
1 Linear constraint on lower bound.
2 Linear constraint on upper bound.
3 Linear equality constraint.

Table 49: The state variable cState for each nonlinear constraint.

Value Description
0 Inactive constraint.
1 Nonlinear constraint on lower bound.
2 Nonlinear constraint on upper bound.
3 Nonlinear equality constraint.

Table 50: Information stored in the structure Result.LS.

Field Description
SSQ rTk · rk.
Covar Covariance matrix (inverse of JTk · Jk).
sigma2 Estimate of squared standard deviation.
Corr Correlation matrix (normalized covariance matrix).
StdDev Estimated standard deviation in parameters.
x The optimal point x k.
ConfLim 95% confidence limit (roughly) assuming normal distribution

of errors.
CoeffVar Coefficients of variation of estimates.

188

C Global Variables and Recursive Calls

The use of globally defined variables in TOMLAB is well motivated, for example to avoid unnecessary evaluations,
storage of sparse patterns, internal communication, computation of elapsed CPU time etc. The global variables
used in TOMLAB are listed in Table 51 and 52.

Even though global variables is efficient to use in many cases, it will be trouble with recursive algorithms and
recursive calls. Therefore, the routines globalSave and globalGet have been defined. The globalSave routine saves
all global variables in a structure glbSave(depth) and then initialize all of of them as empty. By using the depth
variable, an arbitrarily number of recursions are possible. The other routine globalGet retrieves all global variables
in the structure glbSave(depth).

For solving some kinds of problems it could be suitable or even necessary to apply algorithms which is based on a
recursive approach. A common case occurs when an optimization solver calls another solver to solve a subproblem.
For example, the EGO algorithm (implemented in the routine ego) solves an unconstrained (uc) and a box-bounded
global optimization problem (glb) in each iteration. To avoid that the global variables are not re-initialized or
given new values by the underlying procedure TOMLAB saves the global variables in the workspace before the
underlying procedure is called. Directly after the call to the underlying procedure the global variables are restored.

To illustrate the idea, the following code would be a possible part of the ego code, where the routines globalSave
and globalGet are called.

...

...

global GlobalLevel

if isempty(GlobalLevel)

GlobalLevel=1;

else

GlobalLevel=GlobalLevel+1;

end

Level=GlobalLevel

globalSave(Level);

EGOResult = glbSolve(EGOProb);

globalGet(Level);

GlobalLevel=GlobalLevel-1;

...

...

Level=GlobalLevel

globalSave(Level);

[DACEResult] = ucSolve(DACEProb);

globalGet(1);

globalGet(Level);

GlobalLevel=GlobalLevel-1;

...

...

In most cases the user does not need to define the above statements and instead use the special driver routine
tomSolve that does the above global variable checks and savings and calls the solver in between. In the actual
implementation of the ego solver the above code is simplified to the following:

...

...

EGOResult = tomSolve(’glbSolve’,EGOProb);

...

...

189

DACEResult = tomSolve(’ucSolve’,DACEProb);

...

...

This safely handles the global variables and is the recommended way for users in need of recursive optimization
solutions.

Table 51: The global variables used in TOMLAB

Name Description
MAXCOLS Number of screen columns. Default 120.
MAXMENU Number of menu items showed on one screen. Default 50.
MAX c Maximum number of constraints to be printed.
MAX x Maximum number of variables to be printed.
MAX r Maximum number of residuals to be printed.
CUTEPATH The path ending with \cute.
CUTEDLL Name of CUTE DLL file.
DLLPATH Full path to the CUTE DLL file.
CUTE g Gradient.
CUTE H Hessian.
CUTE Hx Value of x when computing CUTE H.
CUTE dc Constraint normals.
CUTE Equal Binary vector, element i equals 1 if constraint i is an equality con-

straint.
CUTE Linear Binary vector, element i equals 1 if constraint i is a linear constraint.
n f Counter for the number of function evaluations.
n g Counter for the number of gradient evaluations.
n H Counter for the number of Hessian evaluations.
n c Counter for the number of constraint evaluations.
n dc Counter for the number of constraint normal evaluations.
n d2c Counter for the number of evaluations of the 2nd part of 2nd deriva-

tive matrix of the Lagrangian function.
n r Counter for the number of residual evaluations.
n J Counter for the number of Jacobian evaluations.
n d2r Counter for the number of evaluations of the 2nd part of the Hessian

for a nonlinear least squares problem .
NLP x Value of x when computing NLP f.
NLP f Function value.
NLP xg Value of x when computing NLP g.
NLP g Gradient value.
NLP xH Value of x when computing NLP H.
NLP H Hessian value.
NLP xc Value of x when computing NLP c.
NLP c Constraints value.
NLP pSepFunc Number of partially separable functions.
NLP pSepIndex Index for the separated function computed.

190

Table 52: The global variables used in TOMLAB

Name Description
US A Problem dependent information sent between user routines. The

user is recommended to always use this variable.
LS A Problem dependent information sent from residual routine to Jaco-

bian routine.
LS x Value of x when computing LS r
LS r Residual value.
LS xJ Value of x when computing LS J
LS J Jacobian value.
SEP z Separated variables z.
SEP Jz Jacobian for separated variables z.
wNLLS Weighting of least squares residuals (internal variable in nlp r and

nlp J).
alphaV Vector with all step lengths α for each iteration.
BUILDP Flag.
F X Matrix with function values.
pLen Number of iterations so far.
p dx Matrix with all search directions.
X max The biggest x-values for all iterations.
X min The smallest x-values for all iterations.
X NEW Last x point in line search. Possible new x k.
X OLD Last known base point xk
probType Defines the type of optimization problem.
solvType Defines the solver type.
answer Used by the GUI for user control options.
instruction Used by the GUI for user control options.
question Used by the GUI for user control options.
plotData Structure with plotting parameters.
Prob Problem structure, see Table 31 and Table 32.
Result Result structure, see Table 46.
runNumber Vector index when Result is an array of structures.
TIME0 Used to compute CPU time and real time elapsed.
TIME1 Used to compute CPU time and real time elapsed
cJPI Used to store sparsity pattern for the constraint Jacobian when au-

tomatic differentiation is used.
HPI Used to store sparsity pattern for the Hessian when automatic dif-

ferentiation is used.
JPI Used to store sparsity pattern for the Jacobian when automatic dif-

ferentiation is used.
glbSave Used to save global variables in recursive calls to TOMLAB.

191

D Editing Init Files directly

TOMLAB is based on the principle of creating a problem structure that defines the problem and includes all
relevant information needed for the solution of the user problem. Two formats are defined, the TOMLAB Quick
format (TQ format) and the Init File format (IF format). The TQ format gives the user a fast way to setup a
problem structure and solve the problem from the Matlab command line using any suitable TOMLAB solver.

The definition of an advanced general graphical user interface (GUI) and a similar menu system demanded a more
complicated format. The solution is the IF format, where groups of problems are collected into sets, each set
having an initialization file. Besides defining the problem, a list of all problems in the set is also generated by the
initialization file.

In the following sections detailed descriptions are given on how to edit the Init Files for different types of problems,
linear programming, quadratic programming, unconstrained optimization, box-bounded global optimization, global
mixed-integer nonlinear programming and constrained optimization.

D.1 Editing New Problems in Linear Programming Init Files

The step wise description below shows how to edit new problems into an existing Init File for LP problems. The
example shows how to add one new problem in lp prob.m, the default file for LP problems in TOMLAB. As test
example choose the same test example as in Section 5.1, (11), here called lptest1.

1. Copy File: tomlab/testprob/lp prob to e.g. lpnew prob.m in a working directory.

2. Edit lpnew prob.m. Add the problem name, lptest1, to the menu choice:

...

,’Winston Ex. 4.12 B4. Max || ||. Rewritten’...

,’lptest1’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

3. There are twelve problems defined in lp prob.m, making thirteen the new problem number. Define the
constraint matrix A, the upper bounds for the constraints b U , the cost vector c as below. If the constraints
would be of equality type then define the lower bounds for the constraints b L equal to b U .

...

elseif P == 13

Name = ’lptest1’;

c = [-7 -5]’;

A = [1 2

4 1];

b_U = [6 12]’;

x_L = [0 0]’;

x_min = [0 0]’;

x_max = [10 10]’;

else

disp(’lp_prob: Illegal problem number’)

pause

Name=[];

end

...

192

4. Note that because the file name is changed, the new name must be substituted. There are three places where
the name should be changed, the function definition in the beginning of the file, the disp statement above
and the place shown in the following text

...

if ask==-1 & ~isempty(Prob)

if isstruct(Prob)

if ~isempty(Prob.P)

if P==Prob.P & strcmp(Prob.probFile,’lpnew_prob’), return; end

end

end

end

...

5. Save the file properly.

6. Run

AddProblemFile(’lpnew_prob’,’lp_prob with extra user problems’,’lp’);

7. To solve this problem the following statements may be used.

Prob = probInit(’lpnew_prob’, 13); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’lpSolve’, Prob); % Call lpSolve using driver routine

It is also possible to define the optional parameters B, f min and x 0 as described in the problem definition
description in lp prob.m. If B and x 0 are not given, as in this case, a Phase I linear program is solved to an initial
feasible solution point.

Now lpnew prob.m is one of the TOMLAB Init Files and all problems in lpnew prob.m are accessible from the GUI,
the menu systems, and the driver routines. The edited file is found in File: tomlab/usersguide/lpnew prob .

193

D.2 Editing New Problems in Quadratic Programming Init Files

The step wise description below shows how to edit new problems into an existing QP Init File. The example shows
how to add one new problem in qp prob.m, the default file for QP problems in TOMLAB. The test example is the
same as in Section 5.2, problem (13), named QP EXAMPLE.

1. Copy File: tomlab/testprob/qp prob to e.g. qpnew prob.m in a working directory.

2. Edit qpnew prob.m. Add the problem name, QP Example, to the menu choice:

...

,’Bazaara IQP 9.29b pg 405. F singular’...

,’Bunch and Kaufman Indefinite QP’...

,’QP EXAMPLE’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

3. There are fourteen problems defined in qp prob.m, making fifteen the new problem number. Add the following
in qpnew prob.m after the last already existing problem:

...

elseif P==15

Name=’QP EXAMPLE’;

F = [8 2 % Hessian

2 8];

c = [3 -4]’;

A = [1 1 % Constraint matrix

1 -1];

b_L = [-inf 0]’; % Lower bounds on the constraints

b_U = [5 0]’; % Upper bounds on the constraints

x_L = [0 0]’; % Lower bounds on the variables

x_U = [inf inf]’; % Upper bounds on the variables

x_0 = [0 1]’; % Starting point

x_min=[-1 -1]; % Plot region parameters

x_max=[6 6]; % Plot region parameters

else

disp(’qp_prob: Illegal problem number’)

pause

Name=[];

end

...

4. Note that because the file name is changed, the new name must be substituted. There are three places where
the name should be changed, the function definition in the beginning of the file, the disp statement above
and the place shown in the following text

...

if ask==-1 & ~isempty(Prob)

if isstruct(Prob)

if ~isempty(Prob.P)

if P==Prob.P & strcmp(Prob.probFile,’qpnew_prob’), return; end

end

end

end

...

194

5. Save the file properly.

6. Run

AddProblemFile(’qpnew_prob’,’qp_prob with extra user problems’,’qp’);

7. To solve this problem the following statements may be used.

Prob = probInit(’qpnew_prob’, 15); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’qpSolve’, Prob); % Call qpSolve using driver routine

Now qpnew prob.m is one of the TOMLAB Init Files in the GUI data base and all problems in qpnew prob.m
are accessible from the GUI, the menu systems, and the driver routines. The edited file is found in File:
tomlab/usersguide/qpnew prob .

195

D.3 Editing New Problems in Unconstrained Optimization Init Files

The step wise description below shows how to edit new problems into an existing unconstrained optimization (UC)
Init File. The example shows how to add one new problem in uc prob.m, the default file for UC problems in
TOMLAB. As test example the problem (15) in Section 6 is used, The m-file code for the objective function for
this problem is given in File: tomlab/usersguide/rbb f.m .

1. Copy File: tomlab/testprob/uc prob to e.g. ucnew prob.m in a working directory. Also copy File: tom-
lab/testprob/uc f , File: tomlab/testprob/uc g and File: tomlab/testprob/uc H to the working directory,
and change the names to ucnew f.m, ucnew g.m and ucnew H.m.

2. Add the problem name to the menu choice in ucnew prob.m:

...

,’Fletcher Q.2.6’...

,’Fletcher Q.3.3’...

,’RB BANANA’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

3. There are seventeen problems defined in ucnew prob.m, making eighteen the new problem number. Add the
following in ucnew prob.m after the last already existing problem (the optional parameters are not necessary
to define): Note that the routine checkuP is used to check if the user parameter in the Prob structure sent to
this routine is defined for the correct problem. The routine askparam then takes care of setting the proper
user parameter dependent on what value the flag ask is set to.

...

elseif P == 18

Name =’RB BANANA’;

x_0 = [-1.2 1]’; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).

f_min = 0; % Lower bound on function (optional).

x_max = [1.3 1.3]; % Plot region parameters.

x_min = [-1.1 -0.2]; % Plot region parameters.

% The following lines show how to use the advanced user parameter

% definition facility in TOMLAB.

uP = checkuP(Name,Prob); % Check if given uP is for this problem

% Ask the following question if flag set to ask questions

uP(1) = askparam(ask,’Give the nonlinear factor in Rosenbrocks banana: ’,...

0,[],100,uP);

% CHANGE: elseif P == 18

% CHANGE: Add an elseif entry and the other variable definitions needed

...

4. Note that because the file name is changed, the new name must be substituted. There are three places where
the name should be changed, the function definition in the beginning of the file, a disp statement and most
important the place shown in the following text

...

if ask==-1 & ~isempty(Prob)

196

if isstruct(Prob)

if ~isempty(Prob.P)

if P==Prob.P & strcmp(Prob.probFile,’ucnew_prob’), return; end

end

end

end

...

5. The names of the m-files are also changed and must be changed on two rows

...

% Define the m-files that compute the function value, the gradient vector

% and the Hessian matrix

%MIDEVA

%# call ucnew_f ucnew_g ucnew_H

Prob=mFiles(Prob,’ucnew_f’,’ucnew_g’,’ucnew_H’);

...

6. The function value, gradient vector and Hessian routine must now be edited. The function names should
also be renamed, but Matlab does not care what the name is of the routine, only what the file name is, so
it is optional to change the name of each function. Make the following addition in ucnew f.m:

...

elseif P == 17 % Fletcher Q.3.3

f = 0.5*(x(1)^2+x(2)^2)*exp(x(1)^2-x(2)^2);

elseif P == 18 % RB BANANA

f = Prob.uP(1)*(x(2)-x(1)^2)^2 + (1-x(1))^2;

end

...

7. Make the following addition in ucnew g.m:

...

elseif P == 17 % Fletcher Q.3.3

%f = 0.5*(x(1)^2+x(2)^2)*exp(x(1)^2-x(2)^2);

e = exp(x(1)^2-x(2)^2);

g = e*[x(1)*(1+x(1)^2+x(2)^2); x(2)*(1-x(1)^2-x(2)^2)];

elseif P == 18 % RB BANANA

g = Prob.uP(1)*[-4*x(1)*(x(2)-x(1)^2)-2*(1-x(1)); 2*(x(2)-x(1)^2)];

end

...

8. Make the following addition in ucnew H.m:

...

elseif P == 17 % Fletcher Q.3.3

%f = 0.5*(x(1)^2+x(2)^2)*exp(x(1)^2-x(2)^2);

%g = e*[x(1)*(1+x(1)^2+x(2)^2); x(2)*(1-x(1)^2-x(2)^2)];

e = exp(x(1)^2-x(2)^2);

H = [1+5*x(1)^2+2*x(1)^2*x(2)^2+x(2)^2+2*x(1)^4, ...

-2*x(1)*x(2)*(x(1)^2+x(2)^2);

0 , 1-x(1)^2+2*x(1)^2*x(2)^2-5*x(2)^2+2*x(2)^4];

H(2,1)=H(1,2);

H = e*H;

elseif P == 18 % RB BANANA

197

H = Prob.uP(1)*[12*x(1)^2-4*x(2)+2 , -4*x(1);

-4*x(1) , 2];

end

...

9. Save all the files properly.

10. Run

AddProblemFile(’ucnew_prob’,’uc_prob with extra user problems’,’uc’);

11. To solve this problem the following statements may be used.

Prob = probInit(’ucnew_prob’, 18); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’ucSolve’, Prob); % Call ucSolve using driver routine

Now ucnew prob.m is one of the TOMLAB Init Files in the GUI data base and all problems in ucnew prob.m
are accessible from the GUI, the menu system, and the driver routines. The edited Init File is found in File:
tomlab/usersguide/ucnew prob . In the same directory the function, gradient and Hessian routines are found.

198

D.4 Editing New Problems in Box-bounded Global Optimization Init Files

Box-bounded global optimization problems are defined in the same way as unconstrained optimization problems.
Since no derivative information is used, only the Init File definition file and the routine to compute the objective
function value have to be modified. The step wise description below shows how to edit a new problem into an
existing Init File, in this case the predefined glb prob, and the objective function routine glb f. As test example
use the Rosenbrock’s banana problem

min
x

f(x) = α
(

x2 − x2
1

)2
+ (1− x1)

2

s/t
−2 ≤ x1 ≤ 2
−2 ≤ x2 ≤ 2

(25)

The standard value is α = 100. To define (25) as a box-bounded global optimization problem follow the step wise
instructions below (for all instructions it is assumed that the files are edited in a text editor). Note that in this
example the lower variable bounds are changed to xL = (−2,−2)T . The reason for that is to speed up the global
search for the reader who wants to run this example. It is always important to make the box-bounded region as
small as possible.

1. Copy the files glb prob.m and glb f.m to a working directory.

2. Add the problem name to the menu choice in glb prob.m:

...

,’HGO 468:2’...

,’Spiral’...

,’RB BANANA’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

3. Add the following in glb prob.m after the last already existing problem (the optional parameters are not
necessary to define):

...

elseif P == 33

Name=’RB BANANA’;

x_L = [-2;-2]; % Lower bounds for x.

x_U = [2; 2]; % Upper bounds for x.

x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).

n_global = 1; % Number of global minima (optional).

n_local = 1; % Number of local minima (optional).

K = []; % Lipschitz constant, not used.

x_max = [2 2]; % Plot region parameters.

x_min = [-2 -2]; % Plot region parameters.

...

4. Make the following addition in glb f.m:

...

elseif P == 33 % RB BANANA

f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

end

...

199

5. Save all the files properly.

6. To solve this problem the following statements may be used.

Prob = probInit(’glb_prob’, 33); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’glbSolve’, Prob); % Call glbSolve using driver routine

Note that the working directory in Matlab must be the directory where the new files have been edited,
otherwise the predefined files in TOMLAB with the same names will be used.

200

D.5 Editing New Problems in Global Mixed-Integer Nonlinear Programming Init
Files

To illustrate how to define a global mixed-integer nonlinear programming problem in the Init File format, add
constraints to the test problem Rosenbrock’s banana,

min
x

f(x) = α
(

x2 − x2
1

)2
+ (1− x1)

2

s/t

−2 ≤ x1 ≤ 2, x1 integer
−2 ≤ x2 ≤ 2

x1 − x2 ≤ 1
−x2

1 − x2 ≤ 1

(26)

The standard value is α = 100 Note the additional constraint that x1 must be integer. The third constraint is
linear and is therefore defined separately from the nonlinear fourth constraint.

To define (26) as a global mixed-integer nonlinear programming problem follow the step wise instructions below
(for all instructions it is assumed that the files are edited in a text editor).

1. Copy the files glc prob.m, glc f.m and glc c.m to the working directory.

2. Modify the files glc prob.m and glc f.m in the same way as described for for the box-bounded case in Section
D.4.

3. Extend the problem definition in glc prob.m with the constraint parameters:

...

elseif P == 25

Name=’RB BANANA’;

x_L = [-2;-2]; % Lower bounds for x.

x_U = [2; 2]; % Upper bounds for x.

x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).

A = [1 -1]; % Linear constraints matrix.

b_L = -inf; % Lower bounds on linear constraints.

b_U = 1; % Upper bounds on linear constraints.

c_L = -inf; % Lower bounds on nonlinear constraints.

c_U = 1; % Upper bounds on nonlinear constraints.

IntVars = 1; % Indices for integer constrained variables.

n_global = 1; % Number of global minima (optional).

n_local = 1; % Number of local minima (optional).

K = []; % Lipschitz constant, not used.

x_max = [2 2]; % Plot region parameters.

x_min = [-2 -2]; % Plot region parameters.

end

...

4. Make the following addition in glc c.m:

...

elseif P == 25 % RB BANANA

cx = -x(1)^2 - x(2);

end

...

5. Save all the files properly.

6. To solve this problem the following statements may be used.

201

Prob = probInit(’glc_prob’, 25); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’glcSolve’, Prob); % Call glcSolve using driver routine

Note that the working directory in Matlab must be the directory where the new files have been edited,
otherwise the predefined files in TOMLAB with the same names will be used.

202

D.6 Editing New Problems in Constrained Optimization Init Files

To illustrate how to define a constrained problem in the Init File format, add two constraints to the Rosenbrock’s
banana problem,

min
x

f(x) = α
(

x2 − x2
1

)2
+ (1− x1)

2

s/t

−10 ≤ x1 ≤ 2
−10 ≤ x2 ≤ 2

x1 − x2 ≤ 1
−x2

1 − x2 ≤ 1

. (27)

The standard value is α = 100. The first two constraints are simple bounds on the variables. The third constraint
is linear and treated separately from the fourth nonlinear inequality constraint.

The problem will be defined by following the step wise instructions below (for all instructions it is assumed that
the files are edited in a text editor):

1. Copy the files con prob.m, con f.m, con g.m, con H.m, con c.m, con dc.m and con d2c.m to the working
directory.

2. Modify the files con prob.m, con f.m, con g.m and con H.m in the same way as described for for the uncon-
strained case in Section D.3.

3. Extend the problem definition in con prob.m with the constraint parameters:

...

elseif P == 15

Name=’RB BANANA’;

x_0 = [-1.2 1]’; % Starting values for the optimization.

x_L = [-10;-10]; % Lower bounds for x.

x_U = [2;2]; % Upper bounds for x.

x_opt = [1 1]; % Known optimal point (optional).

f_opt = 0; % Known optimal function value (optional).

f_min = 0; % Lower bound on function (optional).

x_max = [1.3 1.3]; % Plot region parameters.

x_min = [-1.1 -0.2]; % Plot region parameters.

A = [1 -1]; % Linear constraints matrix.

b_L = -inf; % Lower bounds on linear constraints.

b_U = 1; % Upper bounds on linear constraints.

c_L = -inf; % Lower bounds on nonlinear constraints.

c_U = 1; % Upper bounds on nonlinear constraints.

end

...

4. Make the following addition in con c.m:

...

elseif P == 15 % RB BANANA

cx = -x(1)^2 - x(2);

end

...

5. Make the following addition in con dc.m:

...

elseif P == 15 % RB BANANA

if init==0

dc = [-2*x(1) -1];

203

else

dc = ones(1,2);

end

end

...

6. Make the following addition in con d2c.m:

...

elseif P == 15 % RB BANANA

if init==0

d2c = [-2 0;0 0]*lam;

else

d2c = [1 0; 0 0];

end

end

...

7. Save all the files properly.

8. To solve this problem the following statements may be used.

Prob = probInit(’con_prob’, 15); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’conSolve’, Prob); % Call conSolve using driver routine

204

D.7 Creating a New Constrained Optimization Init File

Assume a collection of e.g. constrained problems should be defined in new problem definition files. Also assume
the problems have been defined in con prob, con f, con g, con H, con c and con dc as described in Section D.6. Of
course it is possible to remove the already existing problems and define the first new problem as number one. The
extra modifications needed are:

1. Rename the files to for example connew prob, connew f, connew g, connew H, connew c and connew dc.

2. Make the following modification in the beginning of connew prob:

...

if ask==-1 & ~isempty(Prob)

if isstruct(Prob)

if ~isempty(Prob.P)

if P==Prob.P & strcmp(Prob.probFile,’connew_prob’), return; end

end

end

end

...

3. Make the following modifications at the end of connew prob:

...

%MIDEVA

%# call connew_f connew_g connew_H connew_c connew_dc

Prob=mFiles(Prob,’connew_f’,’connew_g’,’connew_H’,’connew_c’,’connew_dc’);

...

4. Save all the files properly.

5. Run

AddProblemFile(’connew_prob’,’New Constrained Test Problems’,’con’);

The text New Constrained ... is of course possible to change as the user likes. Now connew prob.m is one
of the TOMLAB Init Files in the GUI data base and all problems in connew prob.m are accessible from the
GUI, the menu system, and the driver routines. This file is also the default file for constrained problems.

205

D.8 Editing New Problems in Nonlinear Least Squares Init Files

To define (15) as a nonlinear least squares problem follow the step wise instructions below (for all instructions it
is assumed that the files are edited in a text editor).

1. Copy the files ls prob.m, ls r.m and ls J.m to the working directory.

2. Add the problem name to the menu choice in ls prob.m:

...

...

,’Plasmid Stability n=3 (subst.)’...

,’Plasmid Stability n=3 (probability)’...

,’RB BANANA’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

...

3. Add the following in ls prob.m after the last already existing problem (the optional parameters are not
necessary to define):

...

...

elseif P==10

Name=’RB BANANA’;

y=[0;0]; % r(x) = residual = model psi(t,x) - data y(t)

x_0=[-1.2 1]’; % Starting values for the optimization.

x_L=[-10;-10]; % Lower bounds for x.

x_U=[2;2]; % Upper bounds for x.

x_opt=[1 1]; % Known optimal point (optional).

f_opt=0; % Known optimal function value (optional).

f_min=0; % Lower bound on function (optional).

x_max=[1.3 1.3]; % Plot region parameters.

x_min=[-1.1 -0.2]; % Plot region parameters.

else

disp(’ls_prob: Illegal problem number’)

pause

Name=[];

end

...

...

4. Make the following addition in ls r.m:

...

...

yMod=r;

elseif P==10

% RB BANANA

r = [10*(x(2)-x(1)^2);1-x(1)];

end

if Prob.LS.yUse & m==length(r), r=r-y; end

...

...

206

5. Make the following addition in ls J.m:

...

...

elseif P==10

% RB BANANA

J = [-20*x(1) 10

-1 0];

end

...

...

6. Save all the files properly.

7. To solve this problem the following statements may be used.

Prob = probInit(’ls_prob’, 10); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’clsSolve’, Prob); % Call clsSolve using driver routine

Note that the working directory in Matlab must be the directory where the new files have been edited,
otherwise the predefined files in TOMLAB with the same names will be used.

207

D.9 Editing New Problems in Exponential Sum Fitting Init Files

The pre-defined exponential sum fitting problems are defined in one problem definition file, exp prob.m. Assume
a fit of a sum of exponential terms should be made to the data series

t = 10−3

30
50
70
90
110
130
150
170
190
210
230
250
270
290
310
330
350
370

, Y (t) = 10−4

18299
15428
13347
11466
10077
8729
7382
6708
5932
5352
4734
4271
3744
3485
3111
2950
2686
2476

, (28)

here named SW.

To define (28) as a exponential sum fitting problem follow the step wise instructions below (for all instructions it
is assumed that the files are edited in a text editor).

1. Copy the file exp prob.m to the working directory.

2. Add the problem name to the menu choice in exp prob.m:

...

,’CDFsim5’...

,’CDFdata5\~ ’...

,’SW ’...

); % MAKE COPIES OF THE PREVIOUS ROW AND CHANGE TO NEW NAMES

if isempty(P)

return;

end

...

3. Add the following in exp prob.m after the last already existing problem:

...

elseif P==52

Name=’SW’;

t=[30:20:370]’; % Time in ms

y=[18299 15428 13347 11466 10077 8729 7382 6708 5932 5352 4734 4271 ...

3744 3485 3111 2950 2686 2476]’;

t=t/1000; % Scale to seconds. Gives lambda*1000, of order 1

y=y/10000; % Scale function values. Avoid large alpha

else

disp(’exp_prob: Illegal problem number’)

...

4. Save the file properly.

208

5. To solve this problem the following statements may be used.

Prob = probInit(’exp_prob’, 52); % Get Prob structure.

... % Define changes in Prob structure

Result = tomRun(’clsSolve’, Prob); % Call clsSolve using driver routine

Note that the working directory in Matlab must be the directory where the new files have been edited,
otherwise the predefined files in TOMLAB with the same names will be used.

There are five different types of exponential models available in TOMLAB. The type of exponential model is
determined by the parameter Prob.ExpFit.eType, which is set by defining the parameter eType in the problem
definition file:

...

elseif P==52

Name=’SW’;

t=[30:20:370]’; % Time in ms

y=[18299 15428 13347 11466 10077 8729 7382 6708 5932 5352 4734 4271 ...

3744 3485 3111 2950 2686 2476]’;

t=t/1000; % Scale to seconds. Gives lambda*1000, of order 1

y=y/10000; % Scale function values. Avoid large alpha

eType = 1;

else

disp(’exp_prob: Illegal problem number’)

...

The above definition of eType is not necessary and was made just in illustrative purpose since 1 is the default value
of eType. See page Section 8.4, page 64 for a description of the exponential models available.

209

D.10 Creating a New Nonlinear Least Squares Init File

Assume a collection of e.g. nonlinear least squares problems should be defined in new Init Files. Also assume that
the problems are defined in ls prob, ls r and ls J as described in Section D.8 It is of course possible to remove the
already existing problems and define the first new problem as number one. The extra modifications needed are:

1. Rename the files to for example lsnew prob, lsnew r and lsnew J.

2. Make the following modification in the beginning of lsnew prob:

...

...

if ask==-1 & ~isempty(Prob)

if isstruct(Prob)

if ~isempty(Prob.P)

if P==Prob.P & strcmp(Prob.probFile,’lsnew_prob’), return; end

end

end

end

...

...

3. Make the following modifications at the end of lsnew prob:

...

...

%MIDEVA

%# call ls_f ls_g ls_H lsnew_r lsnew_J

Prob=mFiles(Prob,’ls_f’,’ls_g’,’ls_H’,[],[],[],’lsnew_r’,’lsnew_J’);

...

...

4. Save all the files properly.

5. Run

AddProblemFile(’lsnew_prob’,’New Nonlinear Least Squares Test Problems’,’con’);

The text New Nonlinear ... is of course possible to change as the user likes. Now lsnew prob.m is one of the
TOMLAB Init Files in the GUI data base and all problems in lsnew prob.m are accessible from the GUI, the
menu systems, and the driver routines. This file is also the default file for nonlinear least squares problems.

The following example illustrate how the tomRun driver routine could be used in an efficient way. A simple for
loop solves all the least squares problems defined in the files lsnew prob, lsnew r and lsnew J, see Section D.10.
Several parameters are explicitly set for illustrative purpose, one could otherwise rely on the default values. The
function drv test below runs tomRun for all problems defined in lsnew prob, and then displays the number of
iterations performed. Instead of just printing the number of iterations, the results could be saved for later use in
e.g. statistical analysis.

function drv_test();

probFile = ’lsnew_prob’; % Solve problems defined in lsnew_prob.m

probNames = feval(probFile); % Get a list of all available problems.

ask = 0; % Do not ask questions in problem definition.

PriLev = 0; % No printing output.

210

for P = 1:size(probNames,1)

probNumber = P;

Prob = probInit(probFile, P, ask, []);

Prob.optParam.eps_x = 1E-7; % Termination tolerance for X

Prob.optParam.eps_f = 1E-9; % Termination tolerance on F

Prob.optParam.cTol = 1E-5; % Constraint violation

Prob.optParam.MaxIter = 200; % Maximum number of iterations

Prob.optParam.eps_g = 1E-5; % Termination tolerance on gradient

Prob.optParam.eps_absf = 1E-35; % Absolute convergence tol. in function f.

Prob.optParam.LineSearch.sigma = 0.5; % Line search accuracy sigma

fprintf(’\n Problem number %d:’,P);

fprintf(’ %s’,Prob.Name);

Result = tomRun(’clsSolve’, Prob, ask, PriLev);

fprintf(’\n Number of iterations: %d’,Result.Iter);

end

Another example is on how to solve the exponential sum fitting problem (28)

probFile = ’exp_prob’; % Problem definition file.

P = 44; % Problem number.

Prob = probInit(probFile, P); % Setup Prob structure.

Result = tomRun([], Prob, [], 2); % Default solver is clsSolve

Also see the Section 6.3 on how to make a direct call to an optimization routine.

211

D.11 Using the Driver Routines

Solve the problem RB BANANA (15) defined as an unconstrained problem. Default values will be used for all
parameters not explicitly changed. The following calls solve the problem:

probFile = ’uc_prob’; % Problem definition file.

P = 18; % Problem number, after editing the new problem

Result = tomRun(’ucSolve’, probFile, P);

To display the result of the run call the print routine PrintResult with the Result structure,

PrintResult(Result);

which gives the following printing output:

=== * * * == * * *

Problem 18: RB BANANA f_k 0.000000000000000001

User given f(x_*) 0.000000000000000000

f(x_0) 24.199999999999996000

Solver: ucSolve. EXIT=0. INFORM=2.

Safeguarded BFGS

FuncEv 48 GradEv 40

TOMLAB Global Variable Counters give:

FuncEv 48 GradEv 41 Iter 36

Starting vector x:

x_0: -1.200000 1.000000

Optimal vector x:

x_k: 1.000000 1.000000

Diff x-x0:

2.200000e+000 -2.312176e-009

Gradient g_k:

g_k: -4.162202e-009 9.227064e-010

TOMLAB found no active constraints.

=== * * * == * * *

To solve the problem using the routine fminu call the driver routine tomRun with the solver name as string
argument:

probFile = ’uc_prob’; % Problem definition file.

P = 18; % Problem number.

Prob = probInit(probFile, P); % Setup Prob structure.

Result = tomRun(’fminu’, Prob); % Call fminu using driver routine

The second example has a more ”testing and developing” characteristic. The purpose is to illustrate how the driver
routines could be used in an efficient way.

By use of a simple for loop solve all the constrained problems defined in the files connew prob, connew f, connew g,
connew H, connew c and connew dc, see Section D.10. Several parameter values are set explicitly for illustrative
purposes. The function drv test below runs tomRun for all problems defined in connew prob, and then displays
the number of iterations performed. Instead of just printing the number of iterations, the results could be stored
in a structure array for later use in e.g. statistical analysis.

212

function drv_test();

probFile = ’connew_prob’; % Solve problems defined in connew_prob.m

probNames = feval(probFile); % Get a list of all available problems.

ask = 0; % Do not ask questions in problem definition.

PriLev = 0; % No printing output.

for P = 1:size(probNames,1)

probNumber = P;

Prob = probInit(probFile, P, ask, []);

Prob.optParam.eps_x = 1E-7; % Termination tolerance for X

Prob.optParam.eps_f = 1E-9; % Termination tolerance on F

Prob.optParam.cTol = 1E-5; % Constraint violation

Prob.optParam.MaxIter = 200; % Maximum number of iterations

Prob.optParam.eps_g = 1E-5; % Termination tolerance on gradient

Prob.optParam.LineSearch.sigma = 0.5; % Line search accuracy sigma

fprintf(’\n Problem number %d:’,P);

fprintf(’ %s’,Prob.Name);

Result = tomRun(Solver, Prob, ask, PriLev);

fprintf(’\n Number of iterations: %d’,Result.Iter);

end

213

E Interfaces

Some users may have been used to work with MathWorks Optimization Toolbox v2.1 (or v1.5), or have code
written for use with these toolboxes. For that reason TOMLAB contains interfaces to simplify the transfer of code
to TOMLAB. There are two ways in which the MathWorks Optimization Toolbox may be used in TOMLAB.
One way is to use the same type of call to the main solvers as in MathWorks Optimization TB v2.1, but the
solution is obtained by converting the problem into the TOMLAB Quick format and calling a TOMLAB solver.
The other way is to formulate the problem in any of the TOMLAB formats, but when solving the problem
calling the driver routine with the name of the Optimization Toolbox solver. Interfaces have been made to both
MathWorks Optimization TB v2.1 and MathWorks Optimization TB v1.5. Which way to use is determined by
setting if 0 or if 1 in startup.m in the addpath for the variable OPTIM. If setting if 1 then the TOMLAB versions
are put first and MathWorks Optimization TB v2.1 is not accessible.

E.1 Solver Call Compatible with Optimization Toolbox 2.1

TOMLAB is call compatible with MathWorks Optimization TB v2.1. This means that the same syntax could be
used, but the solver is a TOMLAB solver instead. TOMLAB normally adds one extra input, the Prob structure,
and one extra output argument, the Result structure. Both extra parameters are optional, but if the user are
adding extra input arguments in his call to the MathWorks Optimization TB v2.1 solver, to use the TOMLAB
equivalents, the extra input must be shifted one step right, and the variable Prob be put first among the extra
arguments. Table 53 gives a list of the solvers with compatible interfaces.

Table 53: Call compatible interfaces to MathWorks Optimization TB v2.1.

Function Type of problem solved
fmincon Constrained minimization.
fminsearch Unconstrained minimization using Nelder-Mead type simplex search method.
fminunc Unconstrained minimization using gradient search.
linprog Linear programming.
lsqcurvefit Nonlinear least squares curvefitting.
lsqlin Linear least squares.
lsqnonlin Linear least squares with nonnegative variable constraints.
lsqnonneg Nonlinear least squares.
quadprog Quadratic programming.

In Table 54 a list is given with the demonstration files available in the directory examples that exemplify the usage
of the call compatible interfaces. In the next sections the usage of some of the solvers are further discussed and
exemplified.

Table 54: Testroutines for the call compatible interfaces to MathWorks Optimization TB v2.1 present in
the examples directory in the TOMLAB distribution.

Function Type of problem solved
testfmincon Test of constrained minimization.
testfminsearchTest of unconstrained minimization using a Nelder-Mead type simplex search method.
testfminunc Test of unconstrained minimization using gradient search.
testlinprog Test of linear programming.
testlsqcurvefit Test of nonlinear least squares curvefitting.
testlsqlin Test of linear least squares.
testlsqnonlin Test of linear least squares with nonnegative variable constraints.
testlsqnonneg Test of nonlinear least squares.
testquadprog Test of quadratic programming.

214

E.1.1 Solving LP Similar to Optimization Toolbox 2.1

For linear programs the MathWorks Optimization TB v2.1 solver is linprog. The TOMLAB linprog solver adds
one extra input argument, the Prob structure, and one extra output argument, the Result structure. Both extra
parameters are optional, but means that the additional functionality of the TOMLAB LP solver is accessible.

An example of the use of the TOMLAB linprog solver to solve test problem (11) illustrates the basic usage

File: tomlab/usersguide/lpTest4.m

lpExample;

% linprog needs linear inequalities and equalities to be given separately

% If the problem has both linear inequalities (only upper bounded)

% and equalities we can easily detect which ones doing the following calls

ix = b_L==b_U;

E = find(ix);

I = find(~ix);

[x, fVal, ExitFlag, Out, Lambda] = linprog(c, A(I,:),b_U(I),...

A(E,:), b_U(E), x_L, x_U, x_0);

% If the problem has linear inequalites with different lower and upper bounds

% the problem can be transformed using the TOMLAB routine cpTransf.

% See the example file tomlab\examples\testlinprog.m for an example.

fprintf(’\n’);

fprintf(’\n’);

disp(’Run TOMLAB linprog on LP Example’);

fprintf(’\n’);

xprinte(A*x-b_U, ’Constraints Ax-b_U ’);

xprinte(Lambda.lower, ’Lambda.lower: ’);

xprinte(Lambda.upper, ’Lambda.upper: ’);

xprinte(Lambda.eqlin, ’Lambda.eqlin: ’);

xprinte(Lambda.ineqlin, ’Lambda.ineqlin: ’);

xprinte(x, ’x: ’);

format compact

disp(’Output Structure’)

disp(Out)

fprintf(’Function value %30.20f. ExitFlag %d\n’,fVal,ExitFlag);

The results from this test show the same results as previous runs in Section 5, because the same solver is called.

File: tomlab/usersguide/lpTest4.out

linprog (MINOS): Optimization terminated successfully

Run TOMLAB linprog on LP Example

Constraints Ax-b_U 0.000000e+000 0.000000e+000

Lambda.lower: 0.000000e+000 0.000000e+000

Lambda.upper: 0.000000e+000 0.000000e+000

Lambda.eqlin:

Lambda.ineqlin: -1.857143e+000 -1.285714e+000

x: 2.571429e+000 1.714286e+000

Output Structure

215

iterations: 1

algorithm: ’MINOS: MEX-interface to MINOS 5.5 NLP code’

cgiterations: 0

Function value -26.57142857142856600000. ExitFlag 1

E.1.2 Solving QP Similar to Optimization Toolbox 2.1

For quadratic programs the MathWorks Optimization TB v2.1 solver is quadprog. The TOMLAB quadprog solver
adds one extra input argument, the Prob structure, and one extra output argument, the Result structure. Both
extra parameters are optional, but means that the additional functionality of the TOMLAB QP solver is accessible.

An example of the use of the TOMLAB quadprog solver to solve test problem (13) illustrates the basic usage

File: tomlab/usersguide/qpTest4.m

qpExample;

% quadprog needs linear equalities and equalities to be given separately

% If the problem has both linear inequalities (only upper bounded)

% and equalities we can easily detect which ones doing the following calls

ix = b_L==b_U;

E = find(ix);

I = find(~ix);

[x, fVal, ExitFlag, Out, Lambda] = quadprog(F, c, A(I,:),b_U(I),...

A(E,:), b_U(E), x_L, x_U, x_0);

% If A has linear inequalites with different lower and upper bounds

% the problem can be transformed using the TOMLAB routine cpTransf.

% See the example file tomlab\examples\testquadprog.m for an example.

fprintf(’\n’);

fprintf(’\n’);

disp(’Run TOMLAB quadprog on QP Example’);

fprintf(’\n’);

xprinte(A*x-b_U, ’Constraints Ax-b_U ’);

xprinte(Lambda.lower, ’Lambda.lower: ’);

xprinte(Lambda.upper, ’Lambda.upper: ’);

xprinte(Lambda.eqlin, ’Lambda.eqlin: ’);

xprinte(Lambda.ineqlin, ’Lambda.ineqlin: ’);

xprinte(x, ’x: ’);

format compact

disp(’Output Structure’)

disp(Out)

fprintf(’Function value %30.20f. ExitFlag %d\n’,fVal,ExitFlag);

The restricted problem formulation in MathWorks Optimization TB v2.1 sometimes makes it necessary to trans-
form the problem. See the comments in the above example and the test problem file tomlab/examples/testquadprog.m
. The results from this test show the same results as previous runs

File: tomlab/usersguide/qpTest4.out

Run TOMLAB quadprog on QP Example

Constraints Ax-b_U -4.900000e+000 0.000000e+000

216

Lambda.lower: 0.000000e+000 0.000000e+000

Lambda.upper: 0.000000e+000 0.000000e+000

Lambda.eqlin: -3.500000e+000

Lambda.ineqlin: 0.000000e+000

x: 5.000000e-002 5.000000e-002

Output Structure

iterations: 1

algorithm: ’bqpd: MEX-interface to BQPD QP/LP code’

cgiterations: []

firstorderopt: []

Function value -0.02500000000000000100. ExitFlag 1

E.2 The Matlab Optimization Toolbox Interface

Included in TOMLAB is an interface to a number of the solvers in the MathWorks Optimization TB v1.5 [15]. and
MathWorks Optimization TB v2.1 [17]. The solvers that are directly possible to use, when a problem is generated
in the TOMLAB format, are listed in Table 55. The user must of course have a valid license. The TOMLAB
interface routines are opt15Run and opt20Run, but the user does not need to call these directly, but can use the
standard multi-solver driver interface routine tomRun.

Several low-level interface routines have been written. For example, the constr solver needs both the objective
function and the vector of constraint functions in the same call, which nlp fc supplies. Also the gradient vector
and the matrix of constraint normals should be supplied in one call. These parameters are returned by the routine
nlp gdc.

MathWorks Optimization TB v1.5 is using a parameter vector OPTIONS of length 18, that the routine foptions
is setting up the default values for. MathWorks Optimization TB v2.1 is instead using a structure.

Table 55: Optimization toolbox routines with a TOMLAB interface.

Function Type of problem solved
fmincon Constrained minimization.
fminsearch Unconstrained minimization using Nelder-Mead type simplex search method.
fminunc Unconstrained minimization using gradient search.
linprog Linear programming.
lsqcurvefit Nonlinear least squares curvefitting.
lsqlin Linear least squares.
lsqnonlin Linear least squares with nonnegative variable constraints.
lsqnonneg Nonlinear least squares.
quadprog Quadratic programming.
constr Constrained minimization.
fmins Unconstrained minimization using Nelder-Mead type simplex search method.
fminu Unconstrained minimization using gradient search.
leastsq Nonlinear least squares.
lp Linear programming.
qp Quadratic programming.

217

E.3 The CUTE Interface

The Constrained and Unconstrained Testing Environment (CUTE) [13, 14] is a well-known software environment
for nonlinear programming. The distribution of CUTE includes a test problem data base of nearly 1000 optimiza-
tion problems, both academic and real-life applications. This data base is often used as a benchmark test in the
development of general optimization software.

CUTE stores the problems in the standard input format (SIF) in files with extension sif. There are tools to select
appropriate problems from the data base. Running CUTE, a SIF decoder creates up to five Fortran files; elfuns,
extern, groups, ranges, and settyp, and one ASCII data file; outsdif.dat or outsdif.d. The Fortran files are compiled
and linked together with the CUTE library and a solver routine. Running the binary executable, the problem is
solved using the current solver. During the solution procedure, the ASCII data file outsdif.dat or outsdif.d is read.

With the CUTE distribution follows a Matlab interface. There are one gateway routine, ctools.f, for constrained
CUTE problems, and one gateway routine, utools.f, for unconstrained problems. These routines are using the
Matlab MEX-file interface for communication between Matlab and the compiled Fortran (or C) code. The gateway
routine is compiled and linked together with the Fortran files, generated by the SIF decoder, and the Matlab MEX
library to make a DLL (Dynamic Link Library) file. At run-time, Matlab calls the DLL, which will read the CUTE
ASCII data file for the problem specific information. Also included in the CUTE distribution is a set of Matlab
m-files that calls the gateway routine.

For the TOMLAB CUTE interface we assume that the DLLs are already built and stored in any of four predefined
directories; cutedll for constrained problems, cutebig for large constrained problems, cuteudll for unconstrained
problems, cuteubig for large unconstrained problems. The name of the dll is the problem name used by CUTE,
e.g. rosenbr.dll for the Rosenbrock banana function. The ASCII data file also has a unique name, e.g. rosenbr.dat.
The CUTE Matlab interface assumes the DLLs to be named ctools.dll and utools.dll (and the data file to be called
outsdif.dat on PC). TOMLAB calls the Matlab files in the CUTE distribution, but to solve the name problem,
using the m-files ctools.m and utools.m to make a call to the correct DLL file. The ASCII data file is also copied
to a temporary file, with the necessary filename outsdif.dat, before executing the DLL.

When using the TOMLAB interface, the user either gets a menu of all DLLs in the CUTE directory chosen, or
directly makes a choice of which problem to solve. Pre-compiled DLL files for the CUTE data set will be made
available, or the necessary files for the user to build his own DLLs. It is thus possible to run the huge set of CUTE
test problems in TOMLAB, using any solver callable from the toolbox.

Table 56 describes the low level test functions and the corresponding problem setup routines needed for the
predefined unconstrained and constrained optimization problems from the CUTE data base [13, 14].

Table 56: Test problems from CUTE data base.

Function Description
ctools Interface routine to constrained CUTE test problems.
utools Interface routine to unconstrained CUTE test problems.
cto prob Initialization of constrained CUTE test problems.
ctl prob Initialization of large constrained CUTE test problems.
cto f Compute the objective function f(x) for constrained CUTE test problems.
cto g Compute the gradient g(x) for constrained CUTE test problems.
cto H Compute the Hessian H(x) of f(x) for constrained CUTE test problems.
cto c Compute the vector of constraint functions c(x) for constrained CUTE test problems.
cto dc Compute the matrix of constraint normals for constrained CUTE test problems.
cto d2c Compute the second part of the second derivative of the Lagrangian function for con-

strained CUTE test problems.
uto prob Initialization of unconstrained CUTE test problems.
utl prob Initialization of large unconstrained CUTE test problems.
uto f Compute the objective function f(x) for unconstrained CUTE test problems.
uto g Compute the gradient g(x) for unconstrained CUTE test problems.
uto H Compute the Hessian H(x) of f(x) for unconstrained CUTE test problems.

218

E.4 The AMPL Interface

Using interfaces between a modeling language and TOMLAB could be of great benefit and improve the possibilities
for analysis on a given problem. As a first attempt, a TOMLAB interface to the modeling language AMPL [29]
was built. The reason to choose AMPL was that it has a rudimentary Matlab interface written in C [33] that
could easily be used.

AMPL is using ASCII files to define a problem. The naming convention is to use the problem name and vari-
ous extensions, e.g. rosenbr.mod and rosenbr.dat for the Rosenbrock banana function. These files are normally
converted to binary files with the extension nl, called nl-files. This gives a file rosenbr.nl for our example. Then
AMPL invokes a solver with two arguments, the problem name, e.g. rosenbr, and a string -AMPL. The second
argument is a flag telling AMPL is the caller. After solving the problem, the solver creates a file with extension
sol, e.g. rosenbr.sol, containing a termination message and the solution it has found.

The current TOMLAB AMPL interface is an interface to the problems defined in the AMPL nl-format. TOMLAB
assumes the nl-files to be stored in directory /tomlab/ampl or /tomlab/amplsp (for sparse problems). When using
the TOMLAB interface, the user either gets a menu of the nl-files found or directly makes a choice of which
problem to solve. The initialization routine in TOMLAB for AMPL problems, amp prob, either calls amplfunc or
spamfunc, the two MEX-file interface routines written by Gay [33]. The low level routines amp f, amp g , etc. calls
the same MEX-file interface routines, and dependent on the parameters in the call, the appropriate information is
returned.

Note that the design of the AMPL solver interface makes it easy to run the TOMLAB solvers from AMPL using
the Matlab Engine interface routines, a possible extension in the future. But indeed, any solver callable from
TOMLAB may now solve problems formulated in the AMPL language.

219

F Motivation and Background to TOMLAB

Many scientists and engineers are using Matlab as a modeling and analysis tool, but for the solution of optimization
problems, the support is weak. That was one motive for starting the development of TOMLAB;

To solve optimization problems, traditionally the user has been forced to write a Fortran code that calls some
standard solver written as a Fortran subroutine. For nonlinear problems, the user must also write subroutines
computing the objective function value and the vector of constraint function values. The needed derivatives
are either explicitly coded, computed by using numerical differences or derived using automatic differentiation
techniques.

In recent years several modeling languages are developed, like AIMMS [8], AMPL [29], ASCEND [73], GAMS [9, 16]
and LINGO [1]. The modeling system acts as a preprocessor. The user describes the details of his problem in a very
verbal language; an opposite to the concise mathematical description of the problem. The problem description file
is normally modified in a text editor, with help from example files solving the same type of problem. Much effort
is directed to the development of more user friendly interfaces. The model system processes the input description
file and calls any of the available solvers. For a solver to be accessible in the modeling system, special types of
interfaces are developed.

The modeling language approach is suitable for many management and decision problems, but may not always
be the best way for engineering problems, which often are nonlinear with a complicated problem description.
Until recently, the support for nonlinear problems in the modeling languages has been crude. This is now rapidly
changing [22].

For people with a mathematical background, modeling languages often seems to be a very tedious way to define an
optimization problem. There has been several attempts to find languages more suitable than Fortran or C/C++
to describe mathematical problems, like the compact and powerful APL language [60, 74]. Nowadays, languages
like Matlab has a rapid growth of users. Matlab was originally created [67] as a preprocessor to the standard
Fortran subroutine libraries in numerical linear algebra, LINPACK [20] and EISPACK [81] [32], much the same
idea as the modeling languages discussed above.

Matlab of today is an advanced and powerful tool, with graphics, animation and advanced menu design possibilities
integrated with the mathematics. The Matlab language has made the development of toolboxes possible, which
serves as a direct extension to the language itself. Using Matlab as an environment for solving optimization
problems offers much more possibilities for analysis than just the pure solution of the problem. The increased
quality of the Matlab MEX-file interfaces makes it possible to run Fortran and C-programs on both PC and Unix
systems. And the MIDEVA system that converts the Matlab m-file code into C++ and compiles it makes the
time penalty of using an interpretative system like Matlab much less.

The concept of TOMLAB is to integrate all different systems, getting access to the best of all worlds. TOMLAB
should be seen as a complement to existing model languages, for the user needing more power and flexibility than
given by a modeling system.

220

G Performance Tests on Linear Programming Solvers

We have made tests to compare the efficiency of different solvers on medium size LP problems. The solver lpSolve,
two algorithms implemented in the solver linprog from Optimization Toolbox 2.0 [17] and the Fortran solvers
MINOS and QPOPT, available in TOMLAB v3.2, are compared. In all test cases the solvers converge to the same
solution. The results are presented in five tables

Table 57, Table 58, Table 59, Table 60 and Table 61. The problem dimensions and all elements in (19) are chosen
randomly. Since the simplex algorithm in linprog does not return the number of iterations as output, these figures
could not be presented. lpSolve has been run with two selection rules; Bland’s cycling prevention rule and the
minimum cost rule. The minimum cost rule is the obvious choice, because lpSolve handles most cycling cases
without problems, and also tests on cycling, and switches to Bland’s rule in case of emergency (does not seem to
occur). But it was interesting to see how much slower Bland’s rule was.

The results in Table 57 show that problems with about 200 variables and 150 inequality constraints are solved by
lpSolve fast and efficient. When comparing elapsed computational time for 20 problems, it is clear that lpSolve is
much faster then the corresponding simplex algorithm implemented in the linprog solver. In fact lpSolve, with the
minimum cost selection rule, is more than five times faster, a remarkable difference. lpSolve is also more than twice
as fast as the other algorithm implemented in linprog, a primal-dual interior-point method aimed for large-scale
problems [17]. There is a penalty about a factor of three to choose Bland’s rule to prevent cycling in lpSolve. The
solvers written in Fortran, MINOS and QPOPT, of course run much faster, but the iteration count show that
lpSolve converges as fast as QPOPT and slightly better than MINOS. The speed-up is a factor of 35 when running
QPOPT using the MEX-file interface.

Table 57: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

128 32 37 12 10 11 16 1.05 0.61 0.33 0.31 9.06 1.14
129 60 8 10 10 9 17 0.63 0.59 0.24 0.21 9.20 2.07
125 45 8 9 16 7 14 0.57 0.59 0.35 0.32 8.20 1.34
81 65 27 5 7 4 12 1.30 0.54 0.23 0.21 3.51 1.38
102 40 25 9 12 8 12 1.00 0.60 0.39 0.33 5.26 1.01
96 33 13 7 6 8 11 0.65 0.41 0.34 0.32 4.72 0.84
110 61 29 10 9 9 15 1.38 0.66 0.25 0.33 6.34 1.73
113 27 25 8 161 8 10 0.87 0.50 0.41 0.34 6.72 0.77
127 58 16 9 13 8 14 0.91 0.58 0.26 0.34 8.58 1.82
85 58 10 7 7 7 14 0.68 0.59 0.25 0.21 3.70 1.45
103 31 15 7 9 6 12 0.69 0.52 0.35 0.33 5.39 0.87
101 41 22 9 11 9 11 0.87 0.56 0.36 0.22 5.20 0.98
83 41 9 6 7 7 12 0.54 0.36 0.38 0.33 3.55 0.98
118 39 28 9 8 8 13 0.89 0.57 0.36 0.34 7.23 1.14
92 33 13 8 8 7 12 0.63 0.53 0.23 0.33 4.33 0.90
110 46 21 7 15 6 13 0.81 0.46 0.25 0.34 6.37 1.26
82 65 25 6 6 5 15 1.21 0.51 0.38 0.22 3.41 1.63
104 29 6 6 10 4 11 0.47 0.36 0.23 0.34 5.52 0.85
83 48 28 8 10 10 13 1.13 0.50 0.24 0.35 3.53 1.15
90 50 8 4 4 3 11 0.44 0.35 0.24 0.23 4.13 1.18

103 45 19 8 17 7 13 0.84 0.52 0.30 0.30 5.70 1.23

In Table 58 a similar test is shown, running 20 problems with about 100 variables and 50 inequality constraints.

221

The picture is the same, but the time difference, a factor of five, between lpSolve and the Fortran solvers are not
so striking for these lower dimensional problems. lpSolve is now more than nine times faster than the simplex
algorithm in linprog and twice as fast as the primal-dual interior-point method in linprog.

Table 58: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

228 132 32 10 17 12 22 3.41 1.56 0.49 0.39 38.66 11.51
191 164 20 9 9 10 18 3.12 1.85 0.49 0.26 24.91 12.50
212 155 63 16 30 16 19 7.90 2.76 0.54 0.41 33.36 12.57
185 158 53 25 16 16 18 6.86 4.00 0.38 0.43 23.88 11.29
222 168 35 12 0 12 21 5.38 2.56 0.64 0.42 40.13 17.78
207 162 10 8 6 7 21 1.91 1.69 0.51 0.27 33.74 15.66
229 130 42 12 21 19 21 4.31 1.81 0.42 0.44 44.53 11.69
213 136 56 6 21 6 19 6.02 1.19 0.51 0.39 36.54 11.07
227 146 95 19 33 20 23 10.91 2.94 0.45 0.45 44.84 15.82
192 150 25 6 13 5 16 3.22 1.26 0.53 0.27 27.07 10.79
195 155 12 8 9 7 22 2.19 1.76 0.52 0.39 27.40 14.76
221 160 30 12 10 11 22 4.66 2.41 0.59 0.43 36.95 18.00
183 144 61 9 9 10 20 7.08 1.62 0.37 0.39 22.34 11.22
200 165 19 10 0 14 19 3.27 2.22 0.61 0.42 27.94 14.43
199 137 16 6 7 5 19 2.04 1.04 0.48 0.39 28.67 9.90
188 154 18 8 9 7 17 2.59 1.57 0.53 0.39 25.19 10.81
202 159 25 13 0 11 17 3.82 2.50 0.60 0.44 30.28 12.37
223 155 103 16 20 17 24 12.50 2.95 0.56 0.44 39.54 18.06
196 121 17 7 16 6 18 1.81 1.08 0.37 0.40 27.59 7.94
202 133 47 10 12 12 20 4.71 1.34 0.38 0.41 30.03 10.09

206 149 39 11 13 11 20 4.89 2.01 0.50 0.39 32.18 12.91

A similar test on larger dense problems, running 20 problems with about 500 variables and 240 inequality con-
straints, shows no benefit in using the primal-dual interior-point method in linprog, see Table 61. In that test
lpSolve is more than five times faster, and 15 times faster than the simplex algorithm in linprog. Still it is about
35 times faster to use the MEX-file interfaces.

In conclusion, looking at the summary for all tables collected in Table 62, for dense problems the LP solvers in
Optimization Toolbox offers no advantage compared to the TOMLAB solvers. It is clear that if speed is critical,
the availability of Fortran solvers callable from Matlab using the MEX-file interfaces in TOMLAB v3.2 is very
important.

222

Table 59: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

328 192 174 26 33 34 24 34.73 6.59 0.70 0.76 121.57 50.52
326 212 65 10 24 12 20 14.67 3.28 0.82 0.57 116.00 49.87
325 185 15 15 33 15 33 4.19 4.31 0.78 0.55 112.43 63.63
327 186 21 11 14 13 26 4.49 2.86 0.75 0.55 112.95 49.85
327 192 22 6 8 6 19 5.01 1.92 0.73 0.48 113.05 40.58
285 181 9 7 11 7 21 2.33 1.98 0.64 0.44 80.13 30.33
323 219 24 10 15 11 22 6.44 3.39 0.88 0.56 110.42 59.27
284 201 45 10 10 9 24 9.46 3.21 0.71 0.35 81.13 44.80
285 199 22 9 14 8 21 4.85 2.62 0.71 0.33 78.64 39.07
296 228 33 11 10 13 23 9.00 3.78 0.77 0.39 89.67 59.23
310 185 28 14 19 16 25 5.62 3.30 0.73 0.54 96.93 43.75
311 219 23 12 12 17 22 6.53 4.13 0.78 0.60 97.05 53.90
280 206 58 23 28 17 20 12.20 5.80 0.76 0.40 75.66 38.22
319 204 17 11 11 12 23 4.41 3.45 0.64 0.54 106.16 52.84
287 202 8 6 6 5 17 2.43 1.79 0.75 0.34 78.26 32.93
328 202 44 9 11 10 18 9.32 2.72 0.76 0.53 117.09 41.86
307 213 85 12 34 12 30 19.35 3.97 0.86 0.51 98.97 70.47
285 199 29 11 11 9 24 6.43 3.27 0.71 0.47 78.32 44.30
315 194 22 10 8 9 20 5.14 3.00 0.73 0.52 102.28 41.73
310 181 38 6 7 5 22 6.95 1.80 0.71 0.46 96.99 36.93

308 200 39 11 16 12 23 8.68 3.36 0.75 0.50 98.18 47.20

223

Table 60: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

428 232 8 6 7 5 24 3.02 2.47 0.97 0.57 248.88 90.83
421 234 22 5 11 4 22 7.54 2.64 0.86 0.54 232.29 84.15
397 242 19 9 8 10 26 7.13 4.30 0.93 0.52 196.02 101.09
388 226 30 10 11 10 24 9.19 3.80 0.89 0.51 187.35 78.37
381 248 23 6 11 5 29 8.28 3.31 0.99 0.54 176.07 109.18
402 228 80 16 28 22 25 22.21 5.94 1.03 0.86 207.52 84.60
383 241 41 7 10 7 22 13.30 3.79 0.93 0.57 180.90 83.62
421 236 94 21 19 15 34 27.94 7.80 1.06 0.80 234.26 131.09
402 253 23 8 8 7 22 8.58 4.01 0.89 0.62 206.50 95.63
395 260 24 8 8 7 23 8.95 3.95 0.94 0.48 197.14 100.85
404 224 73 7 13 6 21 20.85 3.11 0.83 0.47 208.55 70.67
393 267 44 11 15 9 25 16.64 5.86 1.09 0.65 192.59 116.73
393 247 15 8 9 7 19 5.56 3.67 0.86 0.63 191.53 77.74
384 245 79 14 27 20 25 24.59 6.10 1.08 0.79 185.63 97.19
385 254 75 9 16 9 21 25.06 5.30 1.06 0.67 177.95 88.69
409 226 58 8 9 8 23 15.76 3.56 0.82 0.63 210.86 78.32
410 263 38 15 20 19 29 14.66 7.27 0.98 0.74 214.83 130.13
403 250 117 12 27 20 20 36.56 5.35 1.06 0.87 201.18 81.53
426 238 15 4 5 3 20 5.20 2.05 0.99 0.44 239.71 80.46
409 250 57 10 13 10 24 19.00 5.01 1.21 0.72 210.15 101.34

402 243 47 10 14 10 24 15.00 4.46 0.98 0.63 204.99 94.11

224

Table 61: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. The last row shows the mean value of
each column.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

528 232 35 7 7 6 28 12.33 3.50 1.28 0.86 453.03 124.19
482 252 33 9 7 8 25 12.02 4.26 1.00 0.71 346.37 120.24
503 251 72 15 38 17 35 25.45 6.79 1.49 1.01 387.91 170.35
507 259 142 18 46 27 28 50.68 8.55 1.43 1.33 397.67 147.41
487 240 48 17 33 19 26 16.69 7.02 1.29 1.03 346.64 114.96
506 251 46 8 11 8 24 16.92 4.19 1.13 0.78 394.38 119.71
504 256 35 9 16 8 36 14.73 4.97 1.26 0.81 395.37 183.20
489 255 36 28 27 28 26 14.39 11.87 1.32 1.30 355.66 129.45
514 228 9 4 4 3 32 3.24 1.80 1.05 0.51 399.44 133.82
524 245 64 11 27 14 28 21.99 5.34 1.26 1.00 439.31 135.32
506 255 112 22 28 23 23 40.12 10.07 1.12 1.21 385.12 117.49
497 224 50 11 14 12 31 15.51 4.57 1.11 0.86 362.38 121.94
482 249 27 16 17 20 30 10.24 6.75 1.15 1.08 339.27 138.16
485 249 18 6 21 5 20 6.36 2.87 1.35 0.55 340.35 95.15
509 223 84 22 35 17 35 23.51 7.55 1.17 1.04 390.88 142.31
506 224 38 12 11 14 33 11.89 4.65 1.09 0.94 383.13 132.21
511 241 115 10 36 9 26 36.51 4.32 1.29 0.69 390.78 122.23
497 230 78 23 43 12 26 23.60 8.27 1.29 0.75 362.08 109.30
514 226 84 21 42 26 31 25.10 7.90 1.57 1.47 407.94 126.53
511 268 59 10 30 9 28 24.74 5.76 1.43 0.94 385.56 161.65

503 243 59 14 25 14 29 20.30 6.05 1.26 0.94 383.16 132.28

Table 62: Computational results on randomly generated medium size LP problems for four different
routines. Iter is the number of iterations and Time is the elapsed time in seconds on a Dell Latitude
CPi 266XT running Matlab 5.3. The lpS solver is the TOMLAB lpSolve, and it is run with both Bland’s
selection rule (iterations Itb, time Tb) and with the minimum cost selection rule (iterations Itm, time Tm).
The linprog solver in the Optimization Toolbox 2.0 implements two different algorithms, a medium-scale
simplex algorithm (time Tm) and a large-scale primal-dual interior-point method (iterations Itl, time Tl).
The number of variables, n, the number of inequality constraints, m, the objective function coefficients,
the linear matrix and the right hand side are chosen randomly. Each row presents the mean of a test of
20 test problems with mean sizes shown in the first two columns.

n m lpS lpS Minos qpopt linprog lpS lpS Minos qpopt linprog linprog

Itb Itm Iter Iter Itl Tb Tm T ime T ime Tm Tl

103 45 19 8 17 7 13 0.84 0.52 0.30 0.30 5.70 1.23

206 149 39 11 13 11 20 4.89 2.01 0.50 0.39 32.18 12.91

308 200 39 11 16 12 23 8.68 3.36 0.75 0.50 98.18 47.20

402 243 47 10 14 10 24 15.00 4.46 0.98 0.63 204.99 94.11

503 243 59 14 25 14 29 20.30 6.05 1.26 0.94 383.16 132.28

225

References

[1] LINGO - The Modeling Language and Optimizer. LINDO Systems Inc., Chicago, IL, 1995.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and Applications. Prentice-
Hall Inc., Kanpur and Cambridge, 1993.

[4] M. Al-Baali and R. Fletcher. Variational methods for non-linear least squares. J. Oper. Res. Soc., 36:405–421,
1985.

[5] M. Al-Baali and R. Fletcher. An efficient line search for nonlinear least-squares. Journal of Optimization
Theory and Applications, 48:359–377, 1986.

[6] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear Programming and Network Flows. John
Wiley and Sons, New York, 2nd edition, 1990.

[7] Jordan M. Berg and K. Holmström. On Parameter Estimation Using Level Sets. SIAM Journal on Control
and Optimization, 37(5):1372–1393, 1999.

[8] J. Bisschop and R. Entriken. AIMMS - The Modeling System. Paragon Decision Technology, Haarlem, The
Netherlands, 1993.

[9] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling system in a strategic
planning environment. Mathematical Programming Study, 20:1–29, 1982.

[10] M. Björkman. Nonlinear Least Squares with Inequality Constraints. Bachelor Thesis, Department of Mathe-
matics and Physics, Mälardalen University, Sweden, 1998. Supervised by K. Holmström.

[11] M. Björkman and K. Holmström. Global Optimization Using the DIRECT Algorithm in Matlab. Advanced
Modeling and Optimization, 1(2):17–37, 1999.

[12] M. Björkman and K. Holmström. Global Optimization of Costly Nonconvex Functions Using Radial Basis
Functions. Optimization and Engineering, 1(4):373–397, 2000.

[13] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint. CUTE: Constrained and Unconstrained Testing
Environment. ACM Transactions on Mathematical Software, 21(1):123–160, 1995.

[14] I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint. CUTE: Constrained and Unconstrained Testing
Environment. Technical report, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, September
2 1997.

[15] Mary Ann Branch and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime Park Way, Natick, MA
01760-1500, 1996.

[16] A. Brooke, D. Kendrick, and A. Meeraus. GAMS - A User’s Guide. The Scientific Press, Redwood City, CA,
1988.

[17] Thomas Coleman, Mary Ann Branch, and Andy Grace. Optimization Toolbox User’s Guide. 24 Prime Park
Way, Natick, MA 01760-1500, 1999. Third Printing Revised for Version 2 (Release 11).

[18] A. R. Conn, N. I. M. Gould, A. Sartenaer, and P. L. Toint. Convergence properties of minimization algorithms
for convex constraints using a structured trust region. SIAM Journal on Scientific and Statistical Computing,
6(4):1059–1086, 1996.

[19] T. J. Dekker. Finding a zero by means of successive linear interpolation. In B. Dejon and P. Henrici, editors,
Constructive Aspects of the Fundamental Theorem of Algebra, New York, 1969. John Wiley.

[20] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK User’s Guide. SIAM, 1979.

226

[21] E. Dotzauer and K. Holmström. The TOMLAB Graphical User Interface for Nonlinear Programming. Ad-
vanced Modeling and Optimization, 1(2):9–16, 1999.

[22] Arne Stolbjerg Drud. Interactions between nonlinear programing and modeling systems. Mathematical Pro-
gramming, Series B, 79:99–123, 1997.

[23] Marshall L. Fisher. An Application Oriented Guide to Lagrangian Relaxation. Interfaces 15:2, pages 10–21,
March-April 1985.

[24] R. Fletcher and C. Xu. Hybrid methods for nonlinear least squares. IMA Journal of Numerical Analysis,
7:371–389, 1987.

[25] Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 2nd edition, 1987.

[26] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Technical Report
NA/171, University of Dundee, 22 September 1997.

[27] V. N. Fomin, K. Holmström, and T. Fomina. Least squares and Minimax methods for inorganic chemical
equilibrium analysis. Research Report 2000-2, ISSN-1404-4978, Department of Mathematics and Physics,
Mälardalen University, Sweden, 2000.

[28] T. Fomina, K. Holmström, and V. B. Melas. Nonlinear parameter estimation for inorganic chemical equilib-
rium analysis. Research Report 2000-3, ISSN-1404-4978, Department of Mathematics and Physics, Mälardalen
University, Sweden, 2000.

[29] R. Fourer, D. M. Gay, and B. W.Kernighan. AMPL - A Modeling Language for Mathematical Programming.
The Scientific Press, Redwood City, CA, 1993.

[30] C. M. Fransson, B. Lennartson, T. Wik, and K. Holmström. Multi Criteria Controller Optimization for
Uncertain MIMO Systems Using Nonconvex Global Optimization. In Proceedings of the 40th Conference on
Decision and Control, Orlando, FL, USA, December 2001.

[31] C. M. Fransson, B. Lennartson, T. Wik, K. Holmström, M. Saunders, and P.-O. Gutmann. Global Controller
Optimization Using Horowitz Bounds. In Proceedings of the 15th IFAC Conference, Barcelona, Spain, 2002.
Accepted.

[32] B. S. Garbow, J. M. Boyle, J. J. Dongara, and C. B. Moler. Matrix Eigensystem Routines-EISPACK Guide
Extension. In Lecture Notes in Computer Science. Springer Verlag, New York, 1977.

[33] David M. Gay. Hooking your solver to AMPL. Technical report, Bell Laboratories, Lucent Technologies,
Murray Hill, NJ 07974, 1997.

[34] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London, 1982.

[35] Philip E. Gill, Sven J. Hammarling, Walter Murray, Michael A. Saunders, and Margaret H. Wright. User’s
guide for LSSOL ((version 1.0): A Fortran package for constrained linear least-squares and convex quadratic
programming. Technical Report SOL 86-1, Systems Optimization Laboratory, Department of Operations
Research, Stanford University, Stanford, California 94305-4022, 1986.

[36] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for QPOPT 1.0: A Fortran package
for Quadratic programming. Technical Report SOL 95-4, Systems Optimization Laboratory, Department of
Operations Research, Stanford University, Stanford, California 94305-4022, 1995.

[37] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for Large-Scale con-
strained programming. Technical Report SOL 97-3, Systems Optimization Laboratory, Department of Oper-
ations Research, Stanford University, Stanford, California 94305-4022, 1997.

[38] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for SQOPT 5.3: A Fortran package for
Large-Scale linear and quadratic programming. Technical Report Draft October 1997, Systems Optimization
Laboratory, Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1997.

[39] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for SNOPT 5.3: A Fortran pack-
age for Large-Scale nonlinear programming. Technical Report SOL 98-1, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California 94305-4022, 1998.

227

[40] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright. User’s guide for NPSOL
5.0: A Fortran package for nonlinear programming. Technical Report SOL 86-2, Revised July 30, 1998, Sys-
tems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1998.

[41] D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[42] Jacek Gondzio. Presolve analysis of linear programs prior to applying an interior point method. INFORMS
Journal on Computing, 9(1):73–91, 1997.

[43] Hans-Martin Gutmann. A radial basis function method for global optimization. Journal of Global Optimiza-
tion, 19:201–227, 2001.

[44] Michael Held and Richard M. Karp. The Traveling-Salesman problem and minimum spanning trees: Part II.
Mathematical Programming, 1:6–25, 1971.

[45] T. Hellström and K. Holmström. Parameter Tuning in Trading Algorithms using ASTA. In Y. S. Abu-
Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend, editors, Computational Finance (CF99) – Abstracts of
the Sixth International Conference, Leonard N. Stern School of Business, January 1999, Leonard N. Stern
School of Business, New York University, 1999. Department of Statistics and Operations Research.

[46] T. Hellström and K. Holmström. Parameter Tuning in Trading Algorithms using ASTA. In Y. S. Abu-
Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend, editors, Computational Finance 1999, Cambridge, MA,
1999. MIT Press.

[47] T. Hellström and K. Holmström. Global Optimization of Costly Nonconvex Functions, with Financial Appli-
cations. Theory of Stochastic Processes, 7(23)(1-2):121–141, 2001.

[48] Kaj Holmberg. Heltalsprogrammering och dynamisk programmering och flöden i nätverk och kombinatorisk
optimering. Technical report, Division of Optimization Theory, Linköping University, Linköping, Sweden,
1988-1993.

[49] K. Holmström. New Optimization Algorithms and Software. Theory of Stochastic Processes, 5(21)(1-2):55–63,
1999.

[50] K. Holmström. Solving applied optimization problems using TOMLAB. In G. Osipenko, editor, Proceedings
from MATHTOOLS ’99, the 2nd International Conference on Tools for Mathematical Modelling, pages 90–98,
St.Petersburg, Russia, 1999. St.Petersburg State Technical University.

[51] K. Holmström. The TOMLAB Optimization Environment in Matlab. Advanced Modeling and Optimization,
1(1):47–69, 1999.

[52] K. Holmström. The TOMLAB v2.0 Optimization Environment. In E. Dotzauer, M. Björkman, and K. Holm-
ström, editors, Sixth Meeting of the Nordic Section of the Mathematical Programming Society. Proceedings,
Opuscula 49, ISSN 1400-5468, Väster̊as, 1999. Mälardalen University, Sweden.

[53] K. Holmström. Practical Optimization with the Tomlab Environment. In T. A. Hauge, B. Lie, R. Ergon,
M. D. Diez, G.-O. Kaasa, A. Dale, B. Glemmestad, and A Mjaavatten, editors, Proceedings of the 42nd SIMS
Conference, pages 89–108, Porsgrunn, Norway, 2001. Telemark University College, Faculty of Technology.

[54] K. Holmström and M. Björkman. The TOMLAB NLPLIB Toolbox for Nonlinear Programming. Advanced
Modeling and Optimization, 1(1):70–86, 1999.

[55] K. Holmström, M. Björkman, and E. Dotzauer. The TOMLAB OPERA Toolbox for Linear and Discrete
Optimization. Advanced Modeling and Optimization, 1(2):1–8, 1999.

[56] K. Holmström and T. Fomina. Computer Simulation for Inorganic Chemical Equilibrium Analysis. In S.M.
Ermakov, Yu. N. Kashtanov, and V.B. Melas, editors, Proceedings of the 4th St.Petersburg Workshop on
Simulation, pages 261–266, St.Petersburg, Russia, 2001. NII Chemistry St. Peterburg University Publishers.

228

[57] K. Holmström, T. Fomina, and Michael Saunders. Parameter Estimation for Inorganic Chemical Equilibria
by Least Squares and Minimax Models. Optimization and Engineering, 3, 2002. Submitted.

[58] K. Holmström and J. Petersson. A Review of the Parameter Estimation Problem of Fitting Positive Expo-
nential Sums to Empirical Data. Applied Mathematics and Computations, 126(1):31–61, 2002.

[59] J. Huschens. On the use of product structure in secant methods for nonlinear least squares problems. SIAM
Journal on Optimization, 4(1):108–129, 1994.

[60] Kenneth Iverson. A Programming Language. John Wiley and Sons, New York, 1962.

[61] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant.
Journal of Optimization Theory and Applications, 79(1):157–181, October 1993.

[62] Donald R. Jones. DIRECT. Encyclopedia of Optimization, 2001.

[63] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive Black-
Box functions. Journal of Global Optimization, 13:455–492, 1998.

[64] P. Lindström. Algorithms for Nonlinear Least Squares - Particularly Problems with Constraints. PhD thesis,
Inst. of Information Processing, University of Ume̊a, Sweden, 1983.

[65] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Reading,
Massachusetts, 2nd edition, 1984.

[66] J. R. R. A. Martins, I. M. Kroo, and J. J. Alonso. An automated method for sensitivity analysis using complex
variables. In 38th Aerospace Sciences Meeting and Exhibit, January 10-13, 2000, Reno, NV, AIAA-2000-0689,
pages 1–12, 1801 Alexander Bell Drive, Suite 500, Reston, Va. 22091, 2000. American Institute of Aeronautics
and Astronautics.

[67] C. B. Moler. MATLAB—An Interactive Matrix Laboratory. Technical Report 369, Department of Mathe-
matics and Statistics, University of New Mexico, 1980.

[68] Bruce A. Murtagh and Michael A. Saunders. MINOS 5.5 USER’S GUIDE. Technical Report SOL 83-
20R, Revised July 1998, Systems Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, California 94305-4022, 1998.

[69] G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and
M. J. Todd, editors, Optimization, volume 1 of Handbooks in Operations Research and Management Science.
Elsevier/North Holland, Amsterdam, The Netherlands, 1989.

[70] C. C. Paige and M. A. Saunders. Algorithm 583 LSQR: Sparse linear equations and sparse least squares.
ACM Trans. Math. Software, 8:195–209, 1982.

[71] C. C. Paige and M. A. Saunders. LSQR. An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Software, 8:43–71, 1982.

[72] J. Petersson. Algorithms for Fitting Two Classes of Exponential Sums to Empirical Data. Licentiate Thesis,
ISSN 1400-5468, Opuscula ISRN HEV-BIB-OP–35–SE, Division of Optimization and Systems Theory, Royal
Institute of Technology, Stockholm, Mälardalen University, Sweden, December 4, 1998.

[73] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND: An object-oriented computer
environment for modeling and analysis: The modeling language. Computers and Chemical Engineering, 15:53–
72, 1991.

[74] Raymond P. Polivka and Sandra Pakin. APL: The Language and Its Usage. Prentice Hall, Englewood Cliffs,
N. J., 1975.

[75] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

[76] Axel Ruhe and Per-Åke Wedin. Algorithms for Separable Nonlinear Least Squares Problems. SIAM Review,
22(3):318–337, 1980.

229

[77] A. Sartenaer. Automatic determination of an initial trust region in nonlinear programming. Technical Report
95/4, Department of Mathematics, Facultés Universitaires ND de la Paix, Bruxelles, Belgium, 1995.

[78] M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT, 35:588–604, 1995.

[79] K. Schittkowski. On the Convergence of a Sequential Quadratic Programming Method with an Augmented
Lagrangian Line Search Function. Technical report, Systems Optimization laboratory, Stanford University,
Stanford, CA, 1982.

[80] L. F. Shampine and H. A. Watts. Fzero, a root-solving code. Technical Report Report SC-TM-70-631, Sandia
Laboratories, September 1970.

[81] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix
Eigensystem Routines - EISPACK Guide Lecture Notes in Computer Science. Springer-Verlag, New York,
2nd edition, 1976.

[82] William Squire and George Trapp. Using complex variables to estimate derivatives of real functions. SIAM
Review, 40(1):100–112, March 1998.

[83] Wayne L. Winston. Operations Research: Applications and Algorithms. International Thomson Publishing,
Duxbury Press, Belmont, California, 3rd edition, 1994.

230

