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Abstract

TOMLAB is a general purpose, open and integrated
MATLAB environment for solving optimization prob-
lems on UNIX and PC systems. TOMLAB has meny
systems and driver routines for the most common op-
timization problems and more than 50 algorithms im-
plemented in the toolbox NLPLIB and the toolbox
OPERA.

NLPLIB TB 1.0 is a MATLAB toolbox for non-
linear programming and parameter estimation and
OPERA TB 1.0 is a MATLAB toolbox for opera-
tional research, with emphasis on linear and discrete
optimization. Of special interest in NLPLIB TB 1.0
are the algorithms for general and separable nonlinear
least squares parameter estimation.

TOMLAB is using MEX-file interfaces to call solvers
written in C/C++ and FORTRAN. Currently MEX-
file interfaces have been developed for the commercial
solvers MINOS, NPSOL, NPOPT, NLSSOL, LPOPT,
QPOPT and LSSOL. From TOMLARB it is also pos-
sible to call routines in the MathWorks Optimization
Toolbox.

Interfaces are available for the model language AMPL
and the CUTE (Constrained and Unconstrained Test-
ing Environment). Optimization problems may be ei-
ther be defined in MATLAB code or in the CUTE
SIF language or AMPL model language. Included in
TOMLAB are many example and demonstration files.

The motivation for TOMLAB is to simplify the re-
search and solution of practical optimization problems,
giving easy access to all types of solvers; at the same
time having full access to the power of MATLAB. Us-
ing MATLAB as an environment for solving optimiza-
tion problems offers much more possibilities for analy-
sis, then currently available in modeling languages like
AIMMS, AMPL, ASCEND, GAMS and LINGO.

TOMLAB is free for academic pur-
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poses. More information about TOMLAB,
NLPLIB TB 1.0 and OPERA TB 1.0 is found
at http://www.ima.mdh.se/tom.

1 Introduction

This paper presents TOMLAB, an environment in
MATLAB for the solution of optimization problems.
TOMLAB features menu systems and driver rou-
tines for the most common optimization problems.
TOMLAB has many internal algorithms implemented
in the toolbox NLPLIB [20] and OPERA [21] and
also calls routines from the MathWorks Optimization
Toolbox [18]. It also provides interfaces to optimization
software in FORTRAN and C/C++. This is possible
using MEX-file interfaces.

To solve optimization problems, traditionally the user
has been forced to write a FORTRAN code that calls
some standard solver written as a FORTRAN subrou-
tine. For nonlinear problems the user must also write
subroutines which computes the function value and con-
straint values. The needed derivatives has either been
explicitly coded, computed by using numerical differ-
ences or nowadays using automatic differentiation tech-
niques.

In recent years several modeling languages has been de-
veloped, like AIMMS [6], AMPL [14], ASCEND [27],
GAMS [7, 9] and LINGO [1]. The modeling system acts
as a preprocessor. The user describes his problem in de-
tail in a very verbal language, an opposite to a concise
mathematical description of the problem. This problem
description file was normally modified in a text editor,
with help from example files solving the same type of
problem. Now much effort is directed to the develop-
ment of more user friendly interfaces. The model system
processes the input description file and calls any of the
predefined solvers which interfaces are built for.

The modeling language approach is suitable for many
management and decision problems, but may not al-



ways be the best way for engineering problems, which
often are nonlinear and have complicated problem de-
scriptions. For people with some mathematical back-
ground, modeling languages often seems a very tedious
way to define an optimization problem. Using MATLAB
as an environment for solving optimization problems of-
fers much more possibilities for analysis than just the
pure solution of the problem.

The idea of this paper, and the concept of TOMLAB,
is to try to integrate all different systems, getting access
to the best of all worlds. TOMLAB should be seen
as a complement to existing model languages, for the

— PC (NT4.0, Win95, Windows 3.11).

e Menu programs and driver routines makes

TOMLAB very easy to use.

e MEX-file interfaces to standard optimization soft-
ware. Works for both PC and UNIX. Currently
MINOS, NPSOL, NPOPT, NLSSOL, QPOPT,
LSSOL and LPOPT.

¢ TOMLAB interface to the CUTE SIF language
and the standard set of test problems [8]. The
CUTE distribution includes MATLAB interface

user needing more power and flexibility than given by a
model system.

This paper is organized as follows. In Section 2, we
describe the main features of TOMLAB. We then
describe the two most important parts of TOMLAB,
the toolbox OPERA in Section 3 and the toolbox
NLPLIB in Section 4. Finally we end with some con-
clusions and further work in Section 5.

2 The features of TOMLAB

The main features of TOMLAB may be summarized
as follows:

o MATLAB based environment

e Implements >50 optimization algorithms in toolbox
OPERA and NLPLIB.

e Solves linear and discrete optimization problems:

linear programming

— transportation programming problems

network programming problems
— integer programming problems

— dynamic programming problems
using the toolbox OPERA
e Solves

— unconstrained nonlinear optimization prob-
lems

quadratic programming problems

— nonlinear constrained optimization problems

nonlinear least squares optimization problems

fitting of positive sums of exponential func-
tions to data

using the toolbox NLPLIB

e Portable, runs in MATLAB 5.1 and MATLAB 4.2¢
on

— UNIX (SUN, HP) and

routines.

¢ TOMLAB interface to the AMPL model
language[14]. The MATLAB Interface to AMPL
was built by Gay [15].

o Integrated possibility to call to almost all routines
in the MathWorks Optimization Toolbox.

e You only need to define your problem once and use
all available solvers!

TOMLAB is described in more detail in Holmstrom
[22].

3 The OPERA Toolbox

The MATLAB toolbox OPERA is a collection of MAT-
LAB m-files which solves many of the basic optimization
problems in operations research and mathematical pro-
gramming. Currently OPERA consists of:

e 10 500 lines of MATLAB code

53 files with algorithms and utilities

42 example files

e Menu program and driver routine for linear pro-
gramming.

Interactive routine for the definition and direct so-
lution of linear programming problems

We now describe the algorithms implemented in
OPERA. The actual MATLAB m-file names are given
in parenthesis.

There are several algorithms implemented for linear
programming. The standard revised simplex algo-
rithm as formulated in Goldfarb and Todd [17, page
91] is used to solve the Phase II simplex problem (Ip-
simp2). A Phase I simplex strategy which formulates
a LP problem with artificial variables is implemented
(Ipsimp1). This routine is using Ilpsimp2 to solve the
phase I problem. The dual simplex method [17, pages
105-106], usable when a dual basic feasible solution is
available, is implemented in routine Ipdual.



Two polynomial algorithms for linear programming are
implemented. Karmakar’s projective algorithm is im-
plemented (karmark) using the description in Bazaraa
et al. [5, page 386]. There is a choice of update, ei-
ther according to Bazaraa or a rule by Goldfarb and
Todd [17, chap. 9]. An affine scaling variant of Kar-
makar’s method is implemented (akarmark) following
the description in Bazaraa [17, pages 411-413]. As the
purification algorithm a modification of the algorithm
on page 385 in Bazaraa is used.

To solve mixed linear inequality integer programs
two algorithms are implemented. The first implemen-
tation (branch) is a branch and bound algorithm from
Nemhauser and Wolsey [26, chap. 8]. The second imple-
mentation (cutplane) is a cutting plane algorithm with
Gomory cuts. Both routines are using other linear pro-
gramming routines in the toolbox ((lpsimpl, Ipsimp2,
Ipdual) to solve relaxed subproblems. Balas method for
0/1 integer programs restricted to integer coefficients is
implemented in the routine balas.

Transportation problems are solved using an imple-
mentation of the transportation simplex method as de-
scribed in Luenberger [25, chap 5.4]. Three algorithms
to find a starting basic feasible solution for the trans-
portation problem are included, the northwest corner
method, the minimum cost method and Vogel’s approx-
imation method. The implementation of these algo-
rithms follows the algorithm descriptions in Winston [32,
chap. 7.2].

The implementation of the Network Programming
algorithms are based on the forward and reverse star
representation technique described for example in Ahuja
et al. [3, pages 35-36]. The following algorithms are
currently implemented:

e Search for all reachable nodes in a network using
a stack approach (gsearch). The implementation is
a variation of the Algorithm SEARCH in [2, pages
231-233].

e Search for all reachable nodes in a network using
a queue approach (gsearchq). The implementation
a variation of the Algorithm SEARCH in [2, pages
231-232].

e Find the minimal spanning tree of an undirected
graph (mintree) with Kruskal’s algorithm described
in Ahuja et al. [3, page 520-521].

e Solve the shortest path problem using Dijkstras al-
gorithm (dijkstra). A direct implementation of the
Algorithm DIJKSTRA in [2, pages 250-251].

e Solve the shortest path problem using a label cor-
recting method (labelcor). The implementation is
based on Algorithm LABEL CORRECTING in [2,
page 260].

e Solve the shortest path problem using a modified
label correcting method (modlabel). The implemen-
tation is based on Algorithm MODIFIED LABEL

CORRECTING in [2, page 262], with the addition
of the heuristic rule discussed to improve running
time in practice.

e Solve the maximum flow problem using the Ford-
Fulkerson augmenting path method (mazflow). The
implementation is based on the algorithm descrip-
tion in Luenberger [25, pages 144-145].

e Solve the minimum cost network flow problem (MC-
NFP) using a network simplex algorithm (N Wsim-
plr). The implementation is based on Algorithm
network simplex in Ahuja et al. [3, page 415].

e Solve the symmetric travelling salesman problem
using Lagrangian relaxation and the sub gradient
method with Polyak rule IT (salesman), an algo-
rithm by Held and Karp [19].

Two algorithmic examples of dynamic programming
are included. Both algorithms are described in Winston
[32, chap. 20]. Forward recursion is used to solve an
inventory problem (dpinvent) and a knapsack problem
(dpknap).

Lagrangian Relaxation is exemplified by a routine
(ksrelaz), which solves integer linear programming prob-
lems with linear inequality constraints and upper and
lower bounds on the variables . The problem is solved
by relaxing all but one constraint and hence solving
simple knapsack problems as subproblems in each it-
eration. The algorithm is based on the presentation in
Fischer [11], using subgradient iterations and a simple
line search rule.

4 The NLPLIB Toolbox

The current status of the NLPLIB toolbox is:

e 15 400 lines of MATLAB code.

e 101 files with algorithms, utilities and predefined
problems

e Menu programs and driver routines for

— unconstrained optimization,

— quadratic optimization,

constrained optimization and

nonlinear parameter estimation - nonlinear
least squares and fitting of sums of exponential
functions to data

The main routine for unconstrained optimization, uc-
solve and the main routine for nonlinear least squares,
gn, are both written as a prototype algorithm which in-
cludes several of the popular methods for these prob-
lems. The prototype algorithm for nonlinear least
squares is discussed in more detail in the next section
4.1.



The prototype routine for unconstrained optimiza-
tion called ucsolve handles problems with bound con-
straints as described in Gill et al. [16]. This routine im-
plements the Newtons method, the Quasi Newton BFGS
method, the inverse BFGS, the Fletcher-Reeves conju-
gate gradient method and the Polak-Ribiere conjugate
gradient method. Included is also a solver routine strusti
that implements a structural trust region algorithm [10
combined with an initial trust region radius algorithm
[29].

One of the menu options is to draw a contour plot of
f(z) together with the search steps. On each search ster
there are marks for each trial value the line search algo-
rithm has computed a function value for. It is possible
to follow the full iterative sequence on two-dimensiona.
problems. In Figure 1 the result of optimizing the classi-
cal Rosenbrock banana function using ucsolve with New-
tons method are displayed. There are a few steps where
the line search has shortened the step. In contrast to
this, see the behavior when running wucsolve with the
Fletcher-Reeves conjugate gradient method in Figure 2.
This method, when not using second derivative infor-
mation, has a much more chaotic path to the solution.

Rosenbrocks banana
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Figure 1: Rosenbrocks banana with search steps and line
search for Newtons method

For general nonlinear problems with nonlinear
constraints a sequential quadratic programming (SQP)
method by Schittkowski [30] is implemented in routine
consolve.

Quadratic programming (QP) problems are solved
with a standard active set method [25], routine gpi.
In NLPLIB there are also two routines for solving
QP with equality constraints, either with a null space
method (gpe) or with Lagranges method (gplm).

The line search algorithm linesrch used by the solvers in
NLPLIB (consolve, gn, ucsolve) is a modified version
the algorithm in Fletcher [12]. Quadratic (intpol2) or
cubic interpolation (intpol8) is possible in the line search
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Figure 2: Search path of Fletcher-Reeves conjugate gra-
dient method

algorithm.

4.1 Nonlinear Least Squares Algorithms

NLPLIB implements a prototype nonlinear least
squares algorithm g¢gn that also treat problems with
bound constraints in a similar way as the routine ucsolve
described in Section 4.

If rank problems occur the prototype algorithm is us-
ing subspace minimization, see Lindstrém [24]. The line
search algorithm used is a modified version of the algo-
rithm in Fletcher [12, chap. 2].

The prototype algorithms includes the following search
step methods:

o Gauss-Newton

¢ Al-Baali-Fletcher hybrid method [4]
e Fletcher-Xu hybrid method [13].

e Huschens method [23].

As shown in Holmstrém [22], the gn routine performs
very well on ill conditioned non linear least squares prob-
lems compared to other routines, like leastsq in the Op-
timization Toolbox.

In Figure 3 we see the result of running the prototype
solver gn with the Al-Baali-Fletcher hybrid method on
an approximation problem. The problem is to fit a circle
to points in the plane. The data points are artificially
generated, adding random noise. The dashed circle is
the theoretical circle.

In NLPLIB a separable nonlinear least squares algo-
rithm [28] is used to approximate positive sums of ex-
ponential functions to empirical data. To illustrate this
facility we approximate two weighted exponential terms
to the empirical data series by Steyn and Wyk [31]. Fig-
ure 4 shows the first part of the series, the approximating
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Figure 5: Using solver gn to find an exponential sum

Figure 3: Using solver gn to find approximating circle to
artifically generated and disturbed points in the plane

exponential model for the starting values used (dashdot
line) and the optimized model (solid line). The same
results are shown for the second part of the series in
Figure 5.
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Figure 4: Using solver gn to find an exponential sum
model that fits empirical data. Part 1.

5 Conclusions

TOMLAB together with the toolbox NLPLIB and
the toolbox OPERA offers a powerful and unique envi-
ronment for research, teaching and the practical solution
of optimization problems. TOMLAB is a flexible tool,
with both menu programs and driver routines.

TOMLAB is in continuous development. The num-
ber of external solvers possible to call with MEX-file
interfaces will increase as well as the number of internal
solvers. The graphics and menus should be improved
and implemented using the latest facilities in MATLAB.

model that fits empirical data. Part 2.
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