TOMLAB - A General Purpose, Open MATLAB
Environment for Research and Teaching in
Optimization !

Kenneth Holmstrom
Applied Optimization and Modeling Group (TOM)
Center of Mathematical Modeling
Department of Mathematics and Physics
Malardalen University

P.O. Box 883, S-721 23 Vasteras, Sweden

Research Report in MATHEMATICS / APPLIED MATHEMATICS
Technical Report IMa-TOM-1997-3

10 October 1997 (Revised March 30, 1998)

!Presented at the 16th International Symposium on Mathematical Programming, August 24-29, 1997,
Lausanne, Switzerland.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 2

Abstract

TOMLARB is a general purpose, open and integrated MATLAB environment for
research and teaching in optimization on UNIX and PC systems. The motivation
for TOMLAB is to simplify research on practical optimization problems, giving
easy access to all types of solvers; at the same time having full access to the power
of MATLAB.

By using a simple, but general input format, combined with the ability in
MATLAB to evaluate string expressions, it is possible to run internal TOMLAB
solvers, MATLAB Optimization Toolbox and commercial solvers written in FOR-
TRAN or C/C++ using MEX-file interfaces. Currently MEX-file interfaces have
been developed for MINOS, NPSOL, NPOPT, NLSSOL, LPOPT, QPOPT and
LSSOL.

TOMLAB may either be used totally parameter driven or menu driven. The
basic principles will be discussed. The menu system makes it suitable for teach-
ing. Many standard test problems are included. More test problems are easily
added. There are many example and demonstration files. Iteration steps including
line search may be graphically displayed together with contour plots when running
nonlinear optimization.

TOMLAB is based on NLPLIB TB 1.0, a MATLAB toolbox for nonlin-
ear programming and parameter estimation and OPERA TB 1.0, a MATLAB
toolbox for operations research, with emphasis on linear and discrete optimization.
Over 50 different algorithms are implemented. Of special interest are the algorithms
for general and separable nonlinear least squares. Our new implementation of the
Fletcher-Xu hybrid method, the Al-Baali-Fletcher hybrid method and Huschens
totally structured secant method (TSSM) give fast and robust convergence on ill-
conditioned parameter estimation problems.

TOMLARB is free for academic purposes. Contribution from others are wel-
come, like more solvers, interfaces to other software packages, utilities and MEX-file
interfaces.

More information on TOMLAB is found on http://www.ima.mdh.se/tom.

KEYWORDS: MATLAB, Optimization, Mathematical Software, Algorithms, Nonlin-
ear Least Squares.

1 Introduction

This paper presents TOMLAB, an environment in MATLAB for the solution of op-
timization problems. TOMLAB features menu systems and driver routines for many
common types of optimization problems. TOMLAB has many algorithms implemented
in the toolboxes NLPLIB TB 1.0 [29] and OPERA TB 1.0 [30], but may also call
routines from the MATLAB Optimization Toolbox [10]. Furthermore, problems may be
solved running optimization solvers in FORTRAN and C/C++. This is possible using
MEX-file interfaces.

To solve optimization problems, traditionally the user has been forced to write a FOR-
TRAN code that calls some standard solver written as a FORTRAN subroutine. For
nonlinear problems the user must also write subroutines which computes the objective



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 3

function value and the vector of constraint function values. The needed derivatives are ei-
ther explicitly coded, computed by using numerical differences or derived using automatic
differentiation techniques.

In recent years several modeling languages has been developed, like AIMMS [7], AMPL
[21], ASCEND [40], GAMS [8, 11] and LINGO [2]. The modeling system acts as a
preprocessor. The user describes his problem in detail in a very verbal language, an
opposite to a concise mathematical description of the problem. This problem description
file is normally modified in a text editor, with help from example files solving the same type
of problem. Much effort is directed to the development of more user friendly interfaces.
The model system processes the input description file and calls any of the available solvers.
For a solver to be available to the model system, a special type of interface has previously
been written.

The modeling language approach is suitable for many management and decision problems,
but may not always be the best way for engineering problems, which often are nonlinear
and have complicated problem descriptions. Until recently, the support for nonlinear
problems in the modeling languages has been very crude. This is now rapidly changing
[16].

For people with a mathematical background, modeling languages often seems to be a very
tedious way to define an optimization problem. There has been general attempts to find
languages more suitable than FORTRAN or C/C++ to describe mathematical problems,
like the compact and powerful APL language [33, 41]. Using APL, the author around 1985
very easy built an advanced interactive menu and graphical analysis system. The system
was used by the research department at the Swedish National Industrial Board (SIND)
and researchers in regional economy to analyze the Swedish industry using mathematical
programming models [1].

Now, languages like MATLAB has a very rapid growth of users. MATLAB was originally
created [36] as a preprocessor to the standard FORTRAN subroutine libraries in numerical
linear algebra, LINPACK [13] and EISPACK [44] [22], very much the same idea as the
modeling languages discussed above. MATLAB of today is a much more advanced and
powerful tool, with graphics, animation and advanced menu design possibilities integrated
with the mathematics. The MATLAB language has made the development of toolboxes
possible, which serves as a direct extension to the language itself. Using MATLAB as an
environment for solving optimization problems offers much more possibilities for analysis
than just the pure solution of the problem.

Comparing the power of the MATLAB environment with that of the modeling systems I
find it hard for the modeling systems to compete. The idea of this paper, and the concept
of TOMLAB is to try to integrate all different systems, getting access to the best of all
worlds. TOMLAB should be seen as a complement to existing model languages, for the
user needing more power and flexibility than given by a modeling system.

This paper is organized as follows. In Section 2 we discuss the main motivations for
TOMLAB and the concept. The next section, Section 3, describes the feature and
structure of TOMLAB. We then describe the two most important parts of TOMLAB,
the toolbox OPERA TB 1.0 in Section 4 and the toolbox NLPLIB TB 1.0 in Section
5. In Section 6 the nonlinear least squares solvers in NLPLIB TB 1.0 are discussed.
Finally, we end with some conclusions and a discussion about further work in Section 8.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 4

2 The concept of TOMLAB

The starting point for TOMLAB was to develop a system that could be of use in educa-
tion. The MATLAB language is very suitable for describing numerical algorithms and is
similar to the type of algorithmic pseudo code often used to present algorithms. When the
actual implementation is similar to the black board presentation, the students can eas-
ily follow the steps and get computational experience with the algorithm. The principle
has been that all algorithms discussed in a course should be available as an easy-to-read
computer implemented algorithm. The response has up-to-now been positive from the

students using TOMLAB.

Another important motivation for the development of TOMLAB was to get a research
environment for our group, the Applied Optimization and Modeling group. The applica-
tions we work with are often large, nonlinear and numerically ill conditioned. It is in most
cases not possible to directly use standard programs. Therefore we need a combination of
new algorithms and standard software. To find the best combination we need a flexible
environment which allows us to perform tests on many different problem formulations and
try out different solvers. Working in MATLAB has been a great benefit when developing
algorithms to find the unknown speciation and the parameters in inorganic chemical equi-
libria [28, 32]. TOMLAB has also been of great use in our energy optimization project
[14, 15] and in the development of algorithms for nonlinear parameter estimation [39].

We think that TOMLAB could be used to collect some single MATLAB research codes
that otherwise would not be used. It is difficult to get an algorithm into a production
code. Not all good algorithms find their way into such a code. At least it often takes long
time.

Looking at the demands on TOMLAB, it must be easy for students to use. Therefore
menu programs are needed. It should be easy to include new test problems of simple
type. To be of use for applied research it must be easy to integrate the problem definitions
independent of the language it has been written in. Commonly, problems are defined in
MATLAB, but may also be in the form of FORTRAN or C/C++ routines. The principle
must be that the problem should only needs to be defined once and then solved by any
type of solver. It must also be easy to integrate new solvers, normally using a MEX-file
interface.

The main problem with MEX-file interfaces is the weak support from the vendor of
MATLAB, the Math Works, Inc., for FORTRAN on PC systems. There are already
many ready-to-use MEX-file interfaces written in FORTRAN, which works well on UNIX
systems, but are difficult to use on PC systems. Hopefully the support will improve. On
PC we now have to use the freely available FORTRAN to C conversion routine f2¢ [17]
to make the interfaces work.

3 The features and structure of TOMLAB

The main features of TOMLAB may be summarized as follows:

e TOMLAB is a MATLAB based environment.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 5)

e [t implements >50 optimization algorithms in the toolbox OPERA TB 1.0 and
in the toolbox NLPLIB TB 1.0.

e It solves linear and discrete optimization problems like

— linear programs,
— network programs, with special treatment of transportation programs,
— integer programs and

— dynamic programming problems
using the toolbox OPERA TB 1.0.

e It solves

unconstrained and constrained nonlinear optimization problems,

quadratic programs,

unconstrained and constrained nonlinear least squares problems and

fitting of positive sums of exponential functions to data
using the toolbox NLPLIB TB 1.0.
e TOMLABRB is portable, runs in MATLAB 5.1 and partly MATLAB 4.2c on

— UNIX (SUN, HP) and
— PC (NT4.0, Win95, Windows 3.11).

e Menu programs and driver routines makes TOMLAB very easy to use.

e TOMLAB is using MEX-file interfaces to run standard optimization software.
The interfaces are available both for PC and UNIX. Currently MEX-file interfaces
has been developed for the commercial codes MINOS, NPSOL, NPOPT, NLSSOL,
QPOPT, LSSOL and LPOPT.

e [t is possible to use many of the routines in MATLAB Optimization Toolbox.

e You only need to define your problem once and use all available solvers!

The functional structure of TOMLAB is displayed in Figure 1. A normal user runs the
menu system for the actual problem type. The following is a list of the standard menu
choices for unconstrained and constrained optimization:

e Name of the problem setup file and the problem to be solved.

e Should the problem be solved using default parameters or should problem dependent
questions be asked?

e The amount of output and any restriction on the number of array elements displayed.
This is to avoid too much output for large size problems.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 6

User

Menu system [Advanced User)

_______________

Optimization Driver ' Setup Problem computing f(z), g(z) etc
le———— | 1 , N

_______________

MEX-file interface
—

NLPLIB/OPERA solverI Optimization Toolbox SolverI MEX-file SolverI

Interface Routines

———————————————————

' Low Level Routines: Compute f(z), g(z), H(z), c(z), dc(z)/dz, 3 }i0%ci(x)/da?

___________________

Figure 1: The process of optimization in TOMLAB.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 7

e Optimization method (algorithm).
e Print levels and pause/no pause after each iteration.
e Optimization parameters of the following type:

— 0, the line search accuracy.
— The maximal number of iterations.

— The starting values for the unknown variables z, and lower and upper bounds
on r.

— Choice if to use quadratic or cubic interpolation in line search algorithm.

— A best guess of the lower bound on the optimal objective function value (used
by the line search algorithm).

— The tolerance on the convergence for the iterative sequence of the variables z, a
convergence tolerance on the objective function value f(z), on the norm of the
gradient vector ¢g(x) and on the norm of the directed derivative pTg(z), p =
Tht1 — Tk

— The maximal constraint violation for the inequality constraints c¢(x) > 0 and
equality constraints c¢(z) = 0.

— The rank test tolerance which determines the pseudo rank used in the subspace

minimization technique. The subspace minimization technique is part of the

etermination of the search direction in some of the TB interna
solvers.

Optimize. Start an optimization with the selected optimization solver.

e Draw a contour plot of f(z), and also draw the search directions p. Mark line search
step length trials «; for each search direction.

e Draw a mesh plot of f(z).

Draw other types of graphics, e.g. the objective function value for each iteration or
the estimated linear convergence rate for each iteration.

Every parameter has initial default values. The user selects new values or simply uses
the default values. When the user selects the option Optimize, the menu system calls
the driver routine, the Optimization Driver box in Figure 1. The name of the routine
which defines the optimization problem is one of the parameters given in the call to the
driver. The driver routine calls this definition routine, the dashed Setup Problem box in
Figure 1. All problem setup routines in TOMLADB have two different modes of behavior.
If the problem number already is defined, the problem setup routine silently defines the
problem. Otherwise, a menu is displayed, letting the user select the wanted problem. The
user may set the problem number in a direct call to the Optimization Driver, symbolized
by the Advanced User box in Figure 1. This is useful if a large set of problems is to be
solved, for example when trying out algorithms for a certain applied problem.

The Setup Problem routine defines a string matrix with the names of the m-files that
computes the different elements defining the problem. These are the objective function



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 8

value f(z), the gradient vector g(z), the Hessian matrix (matrix of second derivatives)
H(x), the vector of constraint functions ¢(x), the matrix of constraint normals de(x) and
the second part of the Hessian of the Lagrangian, d2¢(x). For nonlinear least squares
problems the routines computing the residual vector r(z) and the Jacobian matrix J(x)
are defined. The Optimization Driver defines global strings with the given function names,
which are used in all computations.

The Optimization Driver either calls a NLPLIB TB 1.0 or OPERA TB 1.0 solver,
a routine from MATLAB Optimization Toolbox or a routine callable using a predefined
MEX-file interface.

The Interface Routines in Figure 1 are needed to convert computational results to the
form needed by different solvers.

The names of the Low Level Routines in Figure 1 are the global strings defined in the
Optimization Driver.

The solvers or the Interface Routines are running the MATLAB function feval on these
global strings to compute the wanted functional quantities.

In Figure 2 an example is shown for the case of solving generally constrained nonlinear
optimization problems. The user calls the menu program conOpt, defines the different
options and start an optimization with the menu option Optimize, which makes conOpt
call conRun. If the user has not chosen a name for the Setup Problem routine, conRun calls
the Initialization routine InitFile using the default problem setup routine, con_prob. The
con_prob setup routine is defining the name con_f for the MATLAB m-file that computes
the objective function value. The names for the gradient vector, Hessian matrix, vector of
constraint functions matrix of constraint normals and second part of the second derivative
of the Lagrangian are con_g, con_H, con_c con_dc and con_d2c

These names are stored in the global strings, named p_f, p_g, p_H, p_c, p_dc and p_d2c.
Then conRun calls the selected solver, either conSolve in NLPLIB TB 1.0, constr in
MATLAB Optimization Toolbox or any of the three commercial solvers MINOS, NPSOL
or NPOPT from Systems Optimization Laboratory (SOL).

There are several Interface Routines needed. The constr solver needs both the objective
function and the vector of constraint functions in the same call, which nlp_fc supplies. Also
the gradient vector and the matrix of constraint normals should be supplied in one call.
These parameters are returned by the routine nlp_gde. MINOS, NPSOL and NPOPT
instead need both the objective function value and the gradient vector to be returned
in one call, which is the output of nlp_fg. The matrix of constraint normals should be
supplied together with the vector of constraint functions. For NPSOL and NPOPT the
routine nlp_cdc returns these both parameters. The matrix of constraint normals is stored
sparse for MINOS, so the sparse Interface Routine nlp_cdcS is needed.

One of the menu options is to draw a contour plot of f(x) together with the search
steps. On each search step there are marks for each trial value the line search algorithm
for each trial value, where the line search algorithm had to evaluate the function. It is
possible to follow the full iterative sequence on two-dimensional problems. We have run
the prototype unconstrained solver ucSolve using two different methods. In Figure 3 the
result of optimizing the classical Rosenbrock banana function, see [37] or [24, page 95,
using Newtons method are displayed. There are a few steps where the line search has



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization

(User]

conOpt Either choose problem from
/ [Advanced USefJ/ menu or silent setup
I -=-==7 Define names of functions: con_f,
conftun [__(_3(_)1_1:1_11_1?_“: con-g, con_H, con_c, CO’I”L_dC, con_d2c

N MEX: minos, npsol or npopt
p——

conSolve (NLPLIB)I constr (OPTIM) I MINOS NPSOL I NPOPT I
\ Interface: nlp_fc, nlp_gdc, nlp_fg, nlp_cdcS, nlp_cdc

TRt - global p_f="con_f’ in conRun
' Low Level Routines ' Compute f(z) = feval(p_f,x,prob)

___________________

Figure 2: Solution of constrained nonlinear problems in TOMLAB.



TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 10

shortened the step. In contrast to this, see the behavior of the Fletcher-Reeves conjugate
gradient method in Figure 4. This method (not using second derivative information) has
a much more chaotic path to the solution. Such graphs can be illustrative for students in
a first course in optimization.

Rosenbrocks banana

-0.2
-1 -0.5 0

Figure 3: The Rosenbrock banana function with search directions and marks for the line
search trials running ucsolve using the Newtons method.

Rosenbrocks banana

N/

N

Figure 4: The Rosenbrock banana function with search directions and marks for the line
search trials running ucsolve using the Fletcher-Reeves conjugate gradient method.

L
-0.5 0

4 The OPERA Toolbox

The MATLAB toolbox OPERA TB 1.0 was developed as a teaching tool for a course
in operations research taught in the autumn of 1994. It is a collection of MATLAB m-
files which solves many of the basic optimization problems in operations research and
mathematical programming. Currently OPERA TB 1.0 consists of:



[y

TOMLAB - A General Purpose, Open MATLAB Environment for ... Optimization 1

e 11 200 lines of MATLAB code, in directory opera and operdemo.
e 55 files with algorithms and utilities in the directory opera.

e 45 example files in the directory operdemo.

1S.







practice.







—
=
—
<P}
—_






1%
—
L
>
et
Q
0 .

interfaces.



[\

o0

. (o}
O —
o ~
=2 o)
— [\l



1997.









