« Previous « Start » Next »
3 Mixed-Integer Linear Programming
In
mip_prob
there are 47 mixed-integer linear test problems
with sizes to nearly 1100 variables and nearly 1200 constraints.
In order to define the problem
n
and solve it execute the following in Matlab:
Prob = probInit('mip_prob',n);
Result = tomRun('',Prob);
An example of a problem of this class,
(that is also found in the TOMLAB quickguide) is mipQG:
|
|
f(x) = cT x |
|
|
s/t |
xL |
≤ |
x |
≤ |
xU, |
bL |
≤ |
A x |
≤ |
bU,
xj N j I |
|
|
(3) |
where
c,
x,
xL,
xU Rn,
A Rm1
× n, and
bL,
bU Rm1. The variables
x
I, the index subset of 1,...,
n are restricted to be
integers.
File: tomlab/quickguide/mipQG.m
% mipQG is a small example problem for defining and solving
% mixed-integer linear programming problems using the TOMLAB format.
Name='Weingartner 1 - 2/28 0-1 knapsack';
% Problem formulated as a minimum problem
A = [ 45 0 85 150 65 95 30 0 170 0 ...
40 25 20 0 0 25 0 0 25 0 ...
165 0 85 0 0 0 0 100 ; ...
30 20 125 5 80 25 35 73 12 15 ...
15 40 5 10 10 12 10 9 0 20 ...
60 40 50 36 49 40 19 150];
b_U = [600;600]; % 2 knapsack capacities
c = [1898 440 22507 270 14148 3100 4650 30800 615 4975 ...
1160 4225 510 11880 479 440 490 330 110 560 ...
24355 2885 11748 4550 750 3720 1950 10500]'; % 28 weights
% Make problem on standard form for mipSolve
[m,n] = size(A);
c = -c; % Change sign to make a minimum problem
x_L = zeros(n,1);
x_U = ones(n,1);
x_0 = zeros(n,1);
fprintf('Knapsack problem. Variables %d. Knapsacks %d\n',n,m);
% All original variables should be integer
IntVars = n; % Could also be set as: IntVars=1:n; or IntVars=ones(n,1);
x_min = x_L; x_max = x_U; f_Low = -1E7; % f_Low <= f_optimal must hold
b_L = -inf*ones(2,1);
f_opt = -141278;
nProblem = []; % Problem number not used
fIP = []; % Do not use any prior knowledge
xIP = []; % Do not use any prior knowledge
setupFile = []; % Just define the Prob structure, not any permanent setup file
x_opt = []; % The optimal integer solution is not known
VarWeight = []; % No variable priorities, largest fractional part will be used
KNAPSACK = 1; % Run with the knapsack heuristic
% Assign routine for defining a MIP problem.
Prob = mipAssign(c, A, b_L, b_U, x_L, x_U, x_0, Name, setupFile, ...
nProblem, IntVars, VarWeight, KNAPSACK, fIP, xIP, ...
f_Low, x_min, x_max, f_opt, x_opt);
Prob.optParam.IterPrint = 0; % Set to 1 to see iterations.
Prob.Solver.Alg = 2; % Depth First, then Breadth search
% Calling driver routine tomRun to run the solver.
% The 1 sets the print level after optimization.
Result = tomRun('mipSolve', Prob, 1);
%Result = tomRun('cplex', Prob, 1);
%Result = tomRun('xpress-mp', Prob, 1);
%Result = tomRun('miqpBB', Prob, 1);
%Result = tomRun('minlpBB', Prob, 1);
« Previous « Start » Next »