# TOMLAB  
# REGISTER (TOMLAB)
# LOGIN  
# myTOMLAB
TOMLAB LOGO

« Previous « Start » Next »

12  Constrained Global Optimization

In glc_prob there are 30 global mixed-integer nonlinear programming test problems with sizes to 20 variables and 5 constrains. In order to define the problem n and solve it execute the following in Matlab:
  Prob   = probInit('glc_prob',n);
  Result = tomRun('',Prob);
The basic structure of a constrained global optimization problems is the following

 
min
x
f(x)
   
s/t
−∞ < xL x xU < ∞
  bL A x bU  
  cL c(x) cU,  xj ∈ N   ∀ j ∈ I,
    (14)


where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1 × n, bL,bU ∈ Rm1 and cL,c(x),cU ∈ Rm2. The variables x ∈ I, the index subset of 1,...,n, are restricted to be integers.

The following files are required to define a problem of this category in TOMLAB.

File: tomlab/quickguide/glcQG_f.m, glcQG_c.m
  f:   Function
  c:   Constraints
An example of a problem of this class, (that is also found in the TOMLAB quickguide) is glcQG:

File: tomlab/quickguide/glcQG.m
% glcQG is a small example problem for defining and solving
% constrained global programming problems using the TOMLAB format.

Name = 'Hock-Schittkowski 59';
u = [75.196    3.8112    0.0020567  1.0345E-5  6.8306    0.030234   1.28134E-3 ...
     2.266E-7  0.25645   0.0034604  1.3514E-5  28.106    5.2375E-6  6.3E-8     ...
     7E-10     3.405E-4  1.6638E-6  2.8673     3.5256E-5];

x_L = [0 0]';     % Lower bounds for x.
x_U = [75 65]';   % Upper bounds for x.
b_L = []; b_U = []; A = []; % Linear constraints
c_L = [0 0 0];    % Lower bounds for nonlinear constraints.
c_U = [];         % Upper bounds for nonlinear constraints.
x_opt = [13.55010424 51.66018129]; % Optimum vector
f_opt = -7.804226324;              % Optimum
x_min = x_L;      % For plotting
x_max = x_U;      % For plotting
x_0 = [90 10]';   % If running local solver

Prob = glcAssign('glcQG_f', x_L, x_U, Name, A, b_L, b_U, ...
                  'glcQG_c', c_L, c_U, x_0, ...
                  [], [], [], [], ...
                  [], x_min, x_max, f_opt, x_opt);

Prob.user.u = u;
Prob.optParam.MaxFunc = 1500;

Result = tomRun('glcFast', Prob, 1);
%Result = tomRun('glcSolve', Prob, 1);
%Result = tomRun('lgo', Prob, 1);
%Result = tomRun('oqnlp', Prob, 1);

« Previous « Start » Next »