« Previous « Start
References
- [1]
-
LINGO - The Modeling Language and Optimizer.
LINDO Systems Inc., Chicago, IL, 1995.
- [2]
-
M. Al-Baali and R. Fletcher.
Variational methods for non-linear least squares.
J. Oper. Res. Soc., 36:405–421, 1985.
- [3]
-
M. Al-Baali and R. Fletcher.
An efficient line search for nonlinear least-squares.
Journal of Optimization Theory and Applications, 48:359–377,
1986.
- [4]
-
Jordan M. Berg and K. Holmström.
On Parameter Estimation Using Level Sets.
SIAM Journal on Control and Optimization, 37(5):1372–1393,
1999.
- [5]
-
J. Bisschop and R. Entriken.
AIMMS - The Modeling System.
Paragon Decision Technology, Haarlem, The Netherlands, 1993.
- [6]
-
J. Bisschop and A. Meeraus.
On the development of a general algebraic modeling system in a
strategic planning environment.
Mathematical Programming Study, 20:1–29, 1982.
- [7]
-
M. Björkman.
Nonlinear Least Squares with Inequality Constraints.
Bachelor Thesis, Department of Mathematics and Physics,
Mälardalen University, Sweden, 1998.
Supervised by K. Holmström.
- [8]
-
M. Björkman and K. Holmström.
Global Optimization Using the DIRECT Algorithm in Matlab.
Advanced Modeling and Optimization, 1(2):17–37, 1999.
- [9]
-
M. Björkman and K. Holmström.
Global Optimization of Costly Nonconvex Functions Using
Radial Basis Functions.
Optimization and Engineering, 1(4):373–397, 2000.
- [10]
-
I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint.
CUTE: Constrained and Unconstrained Testing
Environment.
ACM Transactions on Mathematical Software, 21(1):123–160,
1995.
- [11]
-
I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint.
CUTE: Constrained and Unconstrained Testing
Environment.
Technical report, IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598, September 2 1997.
- [12]
-
Mary Ann Branch and Andy Grace.
Optimization Toolbox User's Guide.
24 Prime Park Way, Natick, MA 01760-1500, 1996.
- [13]
-
A. Brooke, D. Kendrick, and A. Meeraus.
GAMS - A User's Guide.
The Scientific Press, Redwood City, CA, 1988.
- [14]
-
Thomas Coleman, Mary Ann Branch, and Andy Grace.
Optimization Toolbox User's Guide.
24 Prime Park Way, Natick, MA 01760-1500, 1999.
Third Printing Revised for Version 2 (Release 11).
- [15]
-
A. R. Conn, N. I. M. Gould, A. Sartenaer, and P. L. Toint.
Convergence properties of minimization algorithms for convex
constraints using a structured trust region.
SIAM Journal on Scientific and Statistical Computing,
6(4):1059–1086, 1996.
- [16]
-
C. D. Perttunen D. R. Jones and B. E. Stuckman.
Lipschitzian optimization without the Lipschitz constant.
October 1993.
- [17]
-
T. J. Dekker.
Finding a zero by means of successive linear interpolation.
In B. Dejon and P. Henrici, editors, Constructive Aspects of the
Fundamental Theorem of Algebra, New York, 1969. John Wiley.
- [18]
-
Matthias Schonlau Donald R. Jones and William J. Welch.
Efficient global optimization of expensive Black-Box functions.
1998.
- [19]
-
J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart.
LINPACK User's Guide.
SIAM, 1979.
- [20]
-
E. Dotzauer and K. Holmström.
The TOMLAB Graphical User Interface for Nonlinear
Programming.
Advanced Modeling and Optimization, 1(2):9–16, 1999.
- [21]
-
Arne Stolbjerg Drud.
Interactions between nonlinear programing and modeling systems.
Mathematical Programming, Series B, 79:99–123, 1997.
- [22]
-
R. Fletcher and C. Xu.
Hybrid methods for nonlinear least squares.
IMA Journal of Numerical Analysis, 7:371–389, 1987.
- [23]
-
Roger Fletcher.
Practical Methods of Optimization.
John Wiley and Sons, New York, 2nd edition, 1987.
- [24]
-
Roger Fletcher and Sven Leyffer.
Nonlinear programming without a penalty function.
Technical Report NA/171, University of Dundee, 22 September 1997.
- [25]
-
V. N. Fomin, K. Holmström, and T. Fomina.
Least squares and Minimax methods for inorganic chemical
equilibrium analysis.
Research Report 2000-2, ISSN-1404-4978, Department of Mathematics and
Physics, Mälardalen University, Sweden, 2000.
- [26]
-
T. Fomina, K. Holmström, and V. B. Melas.
Nonlinear parameter estimation for inorganic chemical equilibrium
analysis.
Research Report 2000-3, ISSN-1404-4978, Department of Mathematics and
Physics, Mälardalen University, Sweden, 2000.
- [27]
-
R. Fourer, D. M. Gay, and B. W.Kernighan.
AMPL - A Modeling Language for Mathematical Programming.
The Scientific Press, Redwood City, CA, 1993.
- [28]
-
C. M. Fransson, B. Lennartson, T. Wik, and K. Holmström.
Multi Criteria Controller Optimization for Uncertain MIMO
Systems Using Nonconvex Global Optimization.
In Proceedings of the 40th Conference on Decision and Control,
Orlando, FL, USA, December 2001.
- [29]
-
C. M. Fransson, B. Lennartson, T. Wik, K. Holmström, M. Saunders, and P.-O.
Gutmann.
Global Controller Optimization Using Horowitz Bounds.
In Proceedings of the 15th IFAC Conference, Barcelona, Spain,
21th-26th July, 2002.
- [30]
-
B. S. Garbow, J. M. Boyle, J. J. Dongara, and C. B. Moler.
Matrix Eigensystem Routines-EISPACK Guide Extension.
In Lecture Notes in Computer Science. Springer Verlag, New
York, 1977.
- [31]
-
P. E. Gill, W. Murray, and M. H. Wright.
Practical Optimization.
Academic Press, London, 1982.
- [32]
-
Philip E. Gill, Sven J. Hammarling, Walter Murray, Michael A. Saunders, and
Margaret H. Wright.
User's guide for LSSOL ((version 1.0): A Fortran package for
constrained linear least-squares and convex quadratic programming.
Technical Report SOL 86-1, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1986.
- [33]
-
Philip E. Gill, Walter Murray, and Michael A. Saunders.
User's guide for QPOPT 1.0: A Fortran package for Quadratic
programming.
Technical Report SOL 95-4, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1995.
- [34]
-
Philip E. Gill, Walter Murray, and Michael A. Saunders.
SNOPT: An SQP algorithm for Large-Scale constrained
programming.
Technical Report SOL 97-3, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1997.
- [35]
-
Philip E. Gill, Walter Murray, and Michael A. Saunders.
User's guide for SQOPT 5.3: A Fortran package for Large-Scale
linear and quadratic programming.
Technical Report Draft October 1997, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1997.
- [36]
-
Philip E. Gill, Walter Murray, and Michael A. Saunders.
User's guide for SNOPT 5.3: A Fortran package for Large-Scale
nonlinear programming.
Technical Report SOL 98-1, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, Stanford, California
94305-4022, 1998.
- [37]
-
Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright.
User's guide for NPSOL 5.0: A Fortran package for nonlinear
programming.
Technical Report SOL 86-2, Revised July 30, 1998, Systems
Optimization Laboratory, Department of Operations Research, Stanford
University, Stanford, California 94305-4022, 1998.
- [38]
-
D. Goldfarb and M. J. Todd.
Linear programming.
In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors,
Optimization, volume 1 of Handbooks in Operations Research and
Management Science. Elsevier/North Holland, Amsterdam, The Netherlands,
1989.
- [39]
-
Jacek Gondzio.
Presolve analysis of linear programs prior to applying an interior
point method.
INFORMS Journal on Computing, 9(1):73–91, 1997.
- [40]
-
T. Hellström and K. Holmström.
Parameter Tuning in Trading Algorithms using ASTA.
In Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend,
editors, Computational Finance (CF99) – Abstracts of the Sixth
International Conference, Leonard N. Stern School of Business, January 1999,
Leonard N. Stern School of Business, New York University, 1999. Department of
Statistics and Operations Research.
- [41]
-
T. Hellström and K. Holmström.
Parameter Tuning in Trading Algorithms using ASTA.
In Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend,
editors, Computational Finance 1999, Cambridge, MA, 1999. MIT Press.
- [42]
-
T. Hellström and K. Holmström.
Global Optimization of Costly Nonconvex Functions, with
Financial Applications.
Theory of Stochastic Processes, 7(23)(1-2):121–141, 2001.
- [43]
-
K. Holmström.
New Optimization Algorithms and Software.
Theory of Stochastic Processes, 5(21)(1-2):55–63, 1999.
- [44]
-
K. Holmström.
Solving applied optimization problems using TOMLAB.
In G. Osipenko, editor, Proceedings from MATHTOOLS '99, the 2nd
International Conference on Tools for Mathematical Modelling, pages 90–98,
St.Petersburg, Russia, 1999. St.Petersburg State Technical University.
- [45]
-
K. Holmström.
The TOMLAB Optimization Environment in Matlab.
Advanced Modeling and Optimization, 1(1):47–69, 1999.
- [46]
-
K. Holmström.
The TOMLAB v2.0 Optimization Environment.
In E. Dotzauer, M. Björkman, and K. Holmström, editors, Sixth Meeting of the Nordic Section of the Mathematical Programming Society.
Proceedings, Opuscula 49, ISSN 1400-5468, Västerås, 1999.
Mälardalen University, Sweden.
- [47]
-
K. Holmström.
Practical Optimization with the Tomlab Environment.
In T. A. Hauge, B. Lie, R. Ergon, M. D. Diez, G.-O. Kaasa, A. Dale,
B. Glemmestad, and A Mjaavatten, editors, Proceedings of the 42nd SIMS
Conference, pages 89–108, Porsgrunn, Norway, 2001. Telemark University
College, Faculty of Technology.
- [48]
-
K. Holmström and M. Björkman.
The TOMLAB NLPLIB Toolbox for Nonlinear Programming.
Advanced Modeling and Optimization, 1(1):70–86, 1999.
- [49]
-
K. Holmström, M. Björkman, and E. Dotzauer.
The TOMLAB OPERA Toolbox for Linear and Discrete
Optimization.
Advanced Modeling and Optimization, 1(2):1–8, 1999.
- [50]
-
K. Holmström and T. Fomina.
Computer Simulation for Inorganic Chemical Equilibrium
Analysis.
In S.M. Ermakov, Yu. N. Kashtanov, and V.B. Melas, editors, Proceedings of the 4th St.Petersburg Workshop on Simulation, pages 261–266,
St.Petersburg, Russia, 2001. NII Chemistry St. Peterburg University
Publishers.
- [51]
-
K. Holmström, T. Fomina, and Michael Saunders.
Parameter Estimation for Inorganic Chemical Equilibria by
Least Squares and Minimax Models.
Optimization and Engineering, 4, 2003.
Submitted.
- [52]
-
K. Holmström and J. Petersson.
A Review of the Parameter Estimation Problem of Fitting
Positive Exponential Sums to Empirical Data.
Applied Mathematics and Computations, 126(1):31–61, 2002.
- [53]
-
J. Huschens.
On the use of product structure in secant methods for nonlinear least
squares problems.
SIAM Journal on Optimization, 4(1):108–129, 1994.
- [54]
-
Kenneth Iverson.
A Programming Language.
John Wiley and Sons, New York, 1962.
- [55]
-
Donald R. Jones.
Encyclopedia of Optimization.
To be published, 2001.
- [56]
-
P. Lindström.
Algorithms for Nonlinear Least Squares - Particularly
Problems with Constraints.
PhD thesis, Inst. of Information Processing, University of Umeå,
Sweden, 1983.
- [57]
-
David G. Luenberger.
Linear and Nonlinear Programming.
Addison-Wesley Publishing Company, Reading, Massachusetts, 2nd
edition, 1984.
- [58]
-
J. R. R. A. Martins, I. M. Kroo, and J. J. Alonso.
An automated method for sensitivity analysis using complex variables.
In 38th Aerospace Sciences Meeting and Exhibit, January 10-13,
2000, Reno, NV, AIAA-2000-0689, pages 1–12, 1801 Alexander Bell Drive,
Suite 500, Reston, Va. 22091, 2000. American Institute of Aeronautics and
Astronautics.
- [59]
-
C. B. Moler.
MATLAB — An Interactive Matrix Laboratory.
Technical Report 369, Department of Mathematics and Statistics,
University of New Mexico, 1980.
- [60]
-
Bruce A. Murtagh and Michael A. Saunders.
MINOS 5.5 USER'S GUIDE.
Technical Report SOL 83-20R, Revised July 1998, Systems Optimization
Laboratory, Department of Operations Research, Stanford University, Stanford,
California 94305-4022, 1998.
- [61]
-
G. L. Nemhauser and L. A. Wolsey.
Integer programming.
In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, editors,
Optimization, volume 1 of Handbooks in Operations Research and
Management Science. Elsevier/North Holland, Amsterdam, The Netherlands,
1989.
- [62]
-
C. C. Paige and M. A. Saunders.
Algorithm 583 LSQR: Sparse linear equations and sparse least
squares.
ACM Trans. Math. Software, 8:195–209, 1982.
- [63]
-
C. C. Paige and M. A. Saunders.
LSQR. An algorithm for sparse linear equations and sparse least
squares.
ACM Trans. Math. Software, 8:43–71, 1982.
- [64]
-
J. Petersson.
Algorithms for Fitting Two Classes of Exponential Sums
to Empirical Data.
Licentiate Thesis, ISSN 1400-5468, Opuscula ISRN
HEV-BIB-OP–35–SE, Division of Optimization and Systems Theory,
Royal Institute of Technology, Stockholm, Mälardalen University,
Sweden, December 4, 1998.
- [65]
-
P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg.
ASCEND: An object-oriented computer environment for modeling and
analysis: The modeling language.
Computers and Chemical Engineering, 15:53–72, 1991.
- [66]
-
J.D. Pintér.
Global Optimization in Action (Continuous and Lipschitz
Optimization: Algorithms, Implementations and Applications).
Kluwer Academic Publishers, Dordrecht / Boston / London., See
http://www.wkap.nl/prod/b/0-7923-3757-3, 1996.
- [67]
-
Raymond P. Polivka and Sandra Pakin.
APL: The Language and Its Usage.
Prentice Hall, Englewood Cliffs, N. J., 1975.
- [68]
-
Franco P. Preparata and Michael Ian Shamos.
Computational Geometry.
Springer-Verlag, New York, 1985.
- [69]
-
Axel Ruhe and Per-Åke Wedin.
Algorithms for Separable Nonlinear Least Squares Problems.
SIAM Review, 22(3):318–337, 1980.
- [70]
-
A. Sartenaer.
Automatic determination of an initial trust region in nonlinear
programming.
Technical Report 95/4, Department of Mathematics, Facultés
Universitaires ND de la Paix, Bruxelles, Belgium, 1995.
- [71]
-
M. A. Saunders.
Solution of sparse rectangular systems using LSQR and CRAIG.
BIT, 35:588–604, 1995.
- [72]
-
K. Schittkowski.
On the Convergence of a Sequential Quadratic Programming
Method with an Augmented Lagrangian Line Search Function.
Technical report, Systems Optimization laboratory, Stanford
University, Stanford, CA, 1982.
- [73]
-
L. F. Shampine and H. A. Watts.
Fzero, a root-solving code.
Technical Report Report SC-TM-70-631, Sandia Laboratories, September
1970.
- [74]
-
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,
and C. B. Moler.
Matrix Eigensystem Routines - EISPACK Guide Lecture Notes in
Computer Science.
Springer-Verlag, New York, 2nd edition, 1976.
- [75]
-
William Squire and George Trapp.
Using complex variables to estimate derivatives of real functions.
SIAM Review, 40(1):100–112, March 1998.
« Previous « Start