Max range version of Bryson-Denham problem
Reference: [9]
toms t
p = tomPhase('p', t, 0, 2, 50);
setPhase(p);
tomStates x y v
tomControls u1 u2
% Various constants and expressions
xmin = -10; xmax = 10;
ymin = xmin; ymax = xmax;
Vmin = -100; Vmax = 100;
g = 1;
a = 0.5*g;
% Initial guess
x0 = collocate({u1 == 1; u2 == 0});
% Box constraints
cbox = {xmin <= icollocate(x) <= xmax
ymin <= icollocate(y) <= ymax
Vmin <= icollocate(v) <= Vmax
-100 <= collocate(u1) <= 100
-100 <= collocate(u2) <= 100};
% Boundary constraints
cbnd = {initial({x == 0; y == 0; v == 0})
final(y == 0.1)};
% ODEs and path constraints
ceq = {collocate({
dot(x) == v.*u1
dot(y) == v.*u2
dot(v) == a-g*u2
})
collocate(u1.^2+u2.^2 == 1)};
% Objective
objective = -final(x);
options = struct;
options.name = 'Bryson MaxRange';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
x = subs(collocate(x),solution);
y = subs(collocate(y),solution);
v = subs(collocate(v),solution);
u1 = subs(collocate(u1),solution);
u2 = subs(collocate(u2),solution);
Problem type appears to be: lpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Bryson MaxRange f_k -1.712314875015309000
sum(|constr|) 0.000000100745600920
f(x_k) + sum(|constr|) -1.712314774269708000
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 55 ConJacEv 55 Iter 34 MinorIter 185
CPU time: 0.515625 sec. Elapsed time: 0.515000 sec.
subplot(2,1,1)
plot(t,x,'*-',t,y,'*-',t,v,'*-');
legend('x','y','v');
title('Bryson MaxRange state variables');
subplot(2,1,2)
plot(t,u1,'+-',t,u2,'+-');
legend('u1','u2');
title('Bryson MaxRange control');