ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
10.2.3 Example 3
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Find u over t in [0; 5 ] to minimize
| J = x3(tF) |
subject to:
| = x2 |
| = u |
| = x12 + x22 |
The initial condition are:
| x(0) = [0 1 0] |
| −1 <= u <= 1 |
Reference: [25]
toms t
p = tomPhase('p', t, 0, 5, 60);
setPhase(p);
tomStates x1 x2 x3
tomControls u
% Initial guess
x0 = {icollocate({x1 == 0; x2 == 1; x3 == 0})
collocate(u == 0)};
% Box constraints
cbox = {-1 <= collocate(u) <= 1};
% Boundary constraints
cbnd = initial({x1 == 0; x2 == 1; x3 == 0});
% ODEs and path constraints
ceq = collocate({dot(x1) == x2
dot(x2) == u; dot(x3) == x1.^2 + x2.^2});
% Objective
objective = final(x3);
options = struct;
options.name = 'Singular Control 3';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Singular Control 3 f_k 0.753994561590098700
sum(|constr|) 0.000000015978054113
f(x_k) + sum(|constr|) 0.753994577568152800
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 43 ConJacEv 43 Iter 34 MinorIter 366
CPU time: 0.671875 sec. Elapsed time: 0.688000 sec.
figure(1)
plot(t,u,'+-');
legend('u');
title('Singular Control 3 control');