ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
10.2.1 Example 1
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Find u over t in [0; 2 ] to minimize
| J = x2(tF) |
subject to:
| = u |
| = 0.5*x12 |
The initial condition are:
| x(0) = [1 0] |
| −1 <= u <= 1 |
Reference: [25]
toms t
p = tomPhase('p', t, 0, 2, 50);
setPhase(p);
tomStates x1 x2
tomControls u
% Initial guess
x0 = {icollocate({x1 == 1; x2 == 0})
collocate(u == 0)};
% Box constraints
cbox = {-1 <= collocate(u) <= 1};
% Boundary constraints
cbnd = initial({x1 == 1; x2 == 0});
% ODEs and path constraints
ceq = collocate({dot(x1) == u
dot(x2) == 0.5*x1.^2});
% Objective
objective = final(x2);
options = struct;
options.name = 'Singular Control 1';
solution = ezsolve(objective, {cbox, cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Singular Control 1 f_k 0.166665695130345510
sum(|constr|) 0.000000330654862346
f(x_k) + sum(|constr|) 0.166666025785207870
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 41 ConJacEv 41 Iter 39 MinorIter 164
CPU time: 0.218750 sec. Elapsed time: 0.219000 sec.
figure(1)
plot(t,u,'+-');
legend('u');
title('Singular Control 1 control');