Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems 2000, Anil V. Rao and Kenneth D. Mease
3.1. Motivating example, a hyper-sensitive HBVP
Find u(t) over t in [0; t_f ] to minimize
| J = | ∫ |
| (x2 + u2) dt |
subject to:
| = −x3+u |
| x0 = 1 |
| xtf = 1.5 |
| tf = 10 |
Reference: [27]
toms t
p = tomPhase('p', t, 0, 10, 50);
setPhase(p);
tomStates x
tomControls u
% Initial guess
x0 = {icollocate(x == 0)
collocate(u == 0)};
% bounds and ODEs
bceq = {collocate(dot(x) == -x.^3+u)
initial(x) == 1; final(x) == 1.5};
% Objective
objective = integrate(x.^2+u.^2);
options = struct; options.name = 'Hyper Sensitive'; solution = ezsolve(objective, bceq, x0, options); t = subs(collocate(t),solution); x = subs(collocate(x),solution); u = subs(collocate(u),solution);
Problem type appears to be: qpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Hyper Sensitive f_k 6.723925391388356800
sum(|constr|) 0.000000002440650080
f(x_k) + sum(|constr|) 6.723925393829007100
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 26 ConJacEv 26 Iter 21 MinorIter 70
CPU time: 0.093750 sec. Elapsed time: 0.093000 sec.
subplot(2,1,1)
plot(t,x,'*-');
legend('x');
title('Hyper Sensitive state variables');
subplot(2,1,2)
plot(t,u,'+-');
legend('u');
title('Hyper Sensitive control');