ITERATIVE DYNAMIC PROGRAMMING, REIN LUUS
8.3.2 Example 2
CHAPMAN & HALL/CRC Monographs and Surveys in Pure and Applied Mathematics
Linear time-delay system considered by Palanisamy et al.
Find u over t in [0; 2 ] to minimize
| J = x2(tF) |
subject to:
| = t*x1 + x1(t−tau) + u |
| = x12 + u2 |
| tau = 1 |
A Taylor series expansion gives:
| ≈ |
|
The initial condition are:
| x(0) = [1 0] |
| −inf <= u <= inf |
Reference: [25]
toms t
p = tomPhase('p', t, 0, 2, 50);
setPhase(p);
tomStates x1 x2
tomControls u
% Initial guess
x0 = {icollocate({x1 == 1; x2 == 0})
collocate(u == 0)};
% Boundary constraints
cbnd = initial({x1 == 1; x2 == 0});
% ODEs and path constraints
tau = 1;
ceq = collocate({
dot(x1) == ((t+1).*x1+u)/(1+tau)
dot(x2) == x1.^2+u.^2});
% Objective
objective = final(x2);
options = struct;
options.name = 'Time Delay 2 Appr.';
solution = ezsolve(objective, {cbnd, ceq}, x0, options);
t = subs(collocate(t),solution);
u = subs(collocate(u),solution);
Problem type appears to be: lpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Time Delay 2 Appr. f_k 5.340734691399960700
sum(|constr|) 0.000000236393505091
f(x_k) + sum(|constr|) 5.340734927793465500
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 31 ConJacEv 31 Iter 26 MinorIter 138
CPU time: 0.218750 sec. Elapsed time: 0.218000 sec.
figure(1)
plot(t,u,'+-');
legend('u');
title('Time Delay 2 control');