Global Optimization of Chemical Processes using Stochastic Algorithms 1996, Julio R. Banga, Warren D. Seider
Case Study IV: Optimal control of a nondifferentiable system
This problem has been studied by Thomopoulos and Papadakis who report convergence difficulties using several optimization algorithms and by Luus using Iterative Dynamic Programming. The optimal control problem is:
Find u(t) to minimize:
| J = x3(tf) |
Subject to:
| = x2 |
| = −x1−x2+u+d |
| = 5*x12+2.5*x22+0.5*u2 |
with
| d = 100*[U(t−0.5)−U(t−0.6)] |
where U(t-alpha) is the unit function such that U = 0 for t - alpha < 0 and U = 1 for t - alpha > 0. Hence d is a rectangular pulse of magnitude 100 from t=0.5 until t=0.6. These authors consider t_f = 2.0s and the initial conditions:
| x(t0) = [0 0 0]′ |
Reference: [4]
toms t1
p1 = tomPhase('p1', t1, 0, 0.5, 30);
toms t2
p2 = tomPhase('p2', t2, 0.5, 0.1, 20);
toms t3
p3 = tomPhase('p3', t3, 0.6, 2-0.6, 50);
x1p1 = tomState(p1,'x1p1');
x2p1 = tomState(p1,'x2p1');
x3p1 = tomState(p1,'x3p1');
up1 = tomControl(p1,'up1');
x1p2 = tomState(p2,'x1p2');
x2p2 = tomState(p2,'x2p2');
x3p2 = tomState(p2,'x3p2');
up2 = tomControl(p2,'up2');
x1p3 = tomState(p3,'x1p3');
x2p3 = tomState(p3,'x2p3');
x3p3 = tomState(p3,'x3p3');
up3 = tomControl(p3,'up3');
% Initial guess
x0 = {icollocate(p1,{x1p1 == 0;x2p1 == 0;x3p1 == 0})
icollocate(p2,{x1p2 == 0;x2p2 == 0;x3p2 == 0})
icollocate(p3,{x1p3 == 0;x2p3 == 0;x3p3 == 0})
collocate(p1,up1==-4-8*t1/0.5)
collocate(p2,up2==-12)
collocate(p3,up3==-12+14*t3/2)};
% Box constraints
cbox = {
icollocate(p1,{-100 <= x1p1 <= 100
-100 <= x2p1 <= 100
-100 <= x3p1 <= 100})
icollocate(p2,{-100 <= x1p2 <= 100
-100 <= x2p2 <= 100
-100 <= x3p2 <= 100})
icollocate(p3,{-100 <= x1p3 <= 100
-100 <= x2p3 <= 100
-100 <= x3p3 <= 100})
collocate(p1,-15 <= up1 <= 2)
collocate(p2,-15 <= up2 <= 2)
collocate(p3,-15 <= up3 <= 2)};
% Boundary constraints
cbnd = {initial(p1,{x1p1 == 0;x2p1 == 0;x3p1 == 0})
final(p3,x3p3) <= 60};
% ODEs and path constraints
ceq = {collocate(p1,{
dot(p1,x1p1) == x2p1
dot(p1,x2p1) == -x1p1-x2p1+up1
dot(p1,x3p1) == 5*x1p1.^2+2.5*x2p1.^2+0.5*up1.^2})
collocate(p2,{
dot(p2,x1p2) == x2p2
dot(p2,x2p2) == -x1p2-x2p2+up2+100
dot(p2,x3p2) == 5*x1p2.^2+2.5*x2p2.^2+0.5*up2.^2})
collocate(p3,{
dot(p3,x1p3) == x2p3
dot(p3,x2p3) == -x1p3-x2p3+up3
dot(p3,x3p3) == 5*x1p3.^2+2.5*x2p3.^2+0.5*up3.^2})};
% Objective
objective = final(p3,x3p3);
% Link phase
link = {final(p1,x1p1) == initial(p2,x1p2)
final(p1,x2p1) == initial(p2,x2p2)
final(p1,x3p1) == initial(p2,x3p2)
final(p2,x1p2) == initial(p3,x1p3)
final(p2,x2p2) == initial(p3,x2p3)
final(p2,x3p2) == initial(p3,x3p3)};
options = struct;
options.name = 'Nondiff System';
constr = {cbox, cbnd, ceq, link};
solution = ezsolve(objective, constr, x0, options);
t = subs(collocate(p1,t1),solution);
t = [t;subs(collocate(p2,t2),solution)];
t = [t;subs(collocate(p3,t3),solution)];
x1 = subs(collocate(p1,x1p1),solution);
x1 = [x1;subs(collocate(p2,x1p2),solution)];
x1 = [x1;subs(collocate(p3,x1p3),solution)];
x2 = subs(collocate(p1,x2p1),solution);
x2 = [x2;subs(collocate(p2,x2p2),solution)];
x2 = [x2;subs(collocate(p3,x2p3),solution)];
x3 = subs(collocate(p1,x3p1),solution);
x3 = [x3;subs(collocate(p2,x3p2),solution)];
x3 = [x3;subs(collocate(p3,x3p3),solution)];
u = subs(collocate(p1,up1),solution);
u = [u;subs(collocate(p2,up2),solution)];
u = [u;subs(collocate(p3,up3),solution)];
Problem type appears to be: lpcon
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Nondiff System f_k 58.065028469582764000
sum(|constr|) 0.000030760875102477
f(x_k) + sum(|constr|) 58.065059230457869000
f(x_0) 0.000000000000000000
Solver: snopt. EXIT=0. INFORM=1.
SNOPT 7.2-5 NLP code
Optimality conditions satisfied
FuncEv 1 ConstrEv 45 ConJacEv 45 Iter 38 MinorIter 1056
CPU time: 1.437500 sec. Elapsed time: 1.516000 sec.
subplot(2,1,1)
plot(t,x1,'*-',t,x2,'*-',t,x3,'*-');
legend('x1','x2','x3');
title('Nondiff System state variable');
subplot(2,1,2)
plot(t,u,'+-');
legend('u');
title('Nondiff System control');