The Direct Approach of General Dynamic Optimal Control: Application on General Software
Tawiwat Veeraklaew, Ph.D. and Settapong Malisuwan, Ph.D. Chulachomklao Royal Military Academy Nakhon-Nayok, Thailand
Find u over t in [0; 2 ] to minimize
| J = u1+u2 |
subject to:
| = A*x + B*u |
Reference: [32]
toms t
p = tomPhase('p', t, 0, 2, 60);
setPhase(p);
tomStates x1 x2 x3 x4
tomControls u1 u2
x = [x1;x2;x3;x4];
u = [u1;u2];
m1 = 1.0; m2 = 1.0; c1 = 1.0; c3 = 1.0;
c2 = 2.0; k1 = 3.0; k2 = 3.0; k3 = 3.0;
B = [0 0; 1/m1 0;
0 0; 0 1/m2];
A = [0 1 0 0;...
1/m1*[-(k1+k2) -(c1+c2) k2 c2];...
0 0 0 1;...
1/m2*[ k2 c2 -(k2+k3) -(c2+c3)]];
x0i = [5; 0; 10; 0];
xfi = [0; 0; 0; 0];
% Box constraints
cbox = {0 <= collocate(u) <= 9};
% Boundary constraints
cbnd = {initial(x == x0i)
final(x == xfi)};
% ODEs and path constraints
ceq = collocate(dot(x) == A*x+B*u);
% Objective
objective = integrate(u1+u2);
options = struct;
options.name = 'Spring Mass Damper';
solution = ezsolve(objective, {cbox, cbnd, ceq}, [], options);
t = subs(collocate(t),solution);
x1 = subs(collocate(x1),solution);
x2 = subs(collocate(x2),solution);
x3 = subs(collocate(x3),solution);
x4 = subs(collocate(x4),solution);
u1 = subs(collocate(u1),solution);
u2 = subs(collocate(u2),solution);
Problem type appears to be: lp
Starting numeric solver
===== * * * =================================================================== * * *
TOMLAB - Tomlab Optimization Inc. Development license 999001. Valid to 2011-02-05
=====================================================================================
Problem: --- 1: Spring Mass Damper f_k 16.485256203068737000
sum(|constr|) 0.000000008199340966
f(x_k) + sum(|constr|) 16.485256211268076000
f(x_0) 0.000000000000000000
Solver: CPLEX. EXIT=0. INFORM=1.
CPLEX Dual Simplex LP solver
Optimal solution found
FuncEv 243 Iter 243
CPU time: 0.093750 sec. Elapsed time: 0.094000 sec.
subplot(2,1,1)
plot(t,x1,'*-',t,x2,'*-',t,x3,'*-',t,x4,'*-');
legend('x1','x2','x3','x4');
title('Spring Mass Damper state variables');
subplot(2,1,2)
plot(t,u1,'+-',t,u2,'+-');
legend('u1','u2');
title('Spring Mass Damper control');